EXISTENCE OF A POTENTLAL FUNCTION WITH
 A PRESCRIBED SINGULARITY ON ANY
 RIEMANN SURFACE

Masatsugu Tsuji

(Received July 20, 1951)
Let F be a closed or an open Riemann surface spread over the z-plane, then by the Dirichlet principle, it is proved ${ }^{11}$ that there exists a potential function $u\left(z, z_{0}\right)$, which has a polar singularity at z_{0} and a potential function $u\left(z ; \zeta_{1}, \zeta_{2}\right)$, which has logarithmic singularities at ζ_{1}, ζ_{2}. In this paper, I shall prove this theorem and a more general Osgood's theorem simply by means of the modified Green's function defined in $\S 1$.

1. Modified Green's function

1. Let F be an open Riemann surface, which contains $z=0$. We approximate F by a sequence of compact Riemann surfaces $F_{0} \subset F_{1} \subset \cdots \subset F_{n} \rightarrow F$, where F_{0} contains $z=0$ and the boundary I_{n} of F_{n} consists of a finite number of analytic Jordan curves. Let $g_{n}(z, 0)$ be the Green's function of F_{n} with $z=0$ as its pole and let at $z=0$,

$$
\begin{equation*}
g_{n}(z, 0)=\log 1 /|z|+\gamma_{n}(0)+\varepsilon_{n}(z) \quad\left(\varepsilon_{n}(0)=0\right) \tag{1}
\end{equation*}
$$

where $\gamma_{n}(0)$ is the Robin's constant.
Let

$$
\begin{equation*}
M_{n}=\operatorname{Max}_{\Gamma_{0}} g_{n}(z, 0) \tag{2}
\end{equation*}
$$

then Heins ${ }^{3}$) proved that

$$
\begin{equation*}
\left|M_{n}-g_{n}(z, 0)\right| \leqq K(\Delta) \quad(n=1,2, \cdots) \tag{3}
\end{equation*}
$$

in any compact domain Δ, which lies outside F_{0}, where $K(\Delta)$ is a constant, which depends on Δ only.

Hence on Γ_{1},

$$
\begin{equation*}
\left|M_{n}-g_{n}(z, 0)-\log 1 /|z|\right| \leqq K(=\text { const. }) \quad(n=1,2, \cdots), \tag{4}
\end{equation*}
$$

so that at $z=0$,

$$
\begin{equation*}
\left|M_{n}-\gamma_{n}(0)\right| \leqq K \quad(n=1,2, \cdots) . \tag{5}
\end{equation*}
$$

From (3), (4), (5), we have easily the following theorem.
Theorem 1.

$$
\left|g_{n}(z, 0)-\gamma_{n}(0)\right| \leqq K(\Delta) \quad(n=1,2, \cdots)
$$

[^0]in any comcapt domain Δ, which does not contain $z=0$ and for any z in F_{0} $\left|g_{n}(z, 0)-\log 1 /|z|-\gamma_{n}(0)\right| \leqq K|z| \quad(n=1,2, \cdots) \quad(K=$ const. $)$. Hence we can find a partial sequence n_{ν}, such that
\[

$$
\begin{equation*}
\lim _{\nu}\left(g_{n_{\nu}}(z, 0)-\gamma_{n_{\nu}}(0)\right)=g(z, 0) \tag{6}
\end{equation*}
$$

\]

converges uniformly in any compact domain, which does not contain $z=0$. $g(z, 0)$ is harmonic on F, except at $z=0$, where $g(z, 0)-\log 1 /|z|$ is harmonic and vanishes.
2. For a closed surface, the following theorem holds.

Theorem 2. Let F be a closed Riemann surface and $z_{0}(\neq 0)$ be a point of F and $F_{n}=F-\Delta_{n}$, where $\Delta_{n}:\left|z-z_{0}\right| \leqq r_{n}\left(r_{1}>r_{2}>\cdots>r_{n}>0\right)$. Let $g_{n}(z, 0)$ be the Green's function of F_{n}, then

$$
\lim _{n}\left(g_{n}(z, 0)-\gamma_{n}(0)\right)=g(z, 0)
$$

and

$$
\lim _{n}\left(\gamma_{n}(0)-\log \frac{1}{r_{n}}\right)
$$

exist and $g(z, 0)+\log 1 /\left|z-z_{0}\right|$ is harmonic at $z=z_{0}$.
Proof. Let

$$
\begin{equation*}
\lim _{v}\left(g_{n_{\nu}}(z, 0)-\gamma_{n_{\nu}}(0)\right)=g(z, 0) \tag{1}
\end{equation*}
$$

and in $0<\left|z-z_{0}\right| \leqq r_{1}, \quad\left(z-z_{0}=r e^{i \theta}\right)$,

$$
\begin{align*}
g(z, 0)=\log r & +a_{0}+\sum_{k=1}^{\infty}\left(a_{k} r^{k}+a_{-k} r^{-k}\right) \cos k \theta \\
& +\sum_{k=1}^{\infty}\left(b_{k} r^{k}+b_{-k} r^{-k}\right) \sin k \theta, \tag{2}
\end{align*}
$$

the coefficient of $\log r$ is 1 , since $\int_{0}^{2 \pi} \frac{\partial g}{\partial r} r d \theta=2 \pi$. Let in $r_{n} \leqq\left|z-z_{0}\right| \leqq r_{1}$,

$$
\begin{align*}
g_{n}(z, 0)-\gamma_{n}(0)=\log r+a_{0}^{(n)} & +\sum_{k=1}^{\infty}\left(a_{k}^{(n)} r^{k}+a_{-k}^{(n)} r^{-k}\right) \cos k \theta \\
& +\sum_{k=1}^{\infty}\left(b_{k}^{(n)} r^{k}+b_{-k}^{(n)} r^{-k}\right) \sin k \theta . \tag{3}
\end{align*}
$$

Then by (1),

$$
\begin{equation*}
\lim _{\nu} a_{0}^{(n \nu)}=a_{0}, \lim _{\nu} a_{k}^{(n \nu)}=a_{k}, \operatorname{Iim}_{\nu} a_{-k}^{(n \nu)}=a_{-k}, \lim _{\nu} b_{k}^{(n \nu)}=b_{k}, \lim _{\nu} b_{-k}^{(n \nu)}=b_{-k} \tag{4}
\end{equation*}
$$

Since $g_{n}(z, 0)=0$ on $\left|z-z_{v}\right|=r_{n}$,

$$
\begin{equation*}
\log \boldsymbol{r}_{n}+a_{0}^{(n)}=-\gamma_{n}(0), a_{k}^{(n)} r_{n}^{k}+a_{-k}^{(n)} r_{n}^{-k}=0, b_{k}^{(n)} r_{n}^{k}+b_{-k}^{(n)} \boldsymbol{r}_{n}^{-k}=0 . \tag{5}
\end{equation*}
$$

Since by (4), $a_{k}^{(n \nu)}, b_{k}^{(n v)}(\nu=1,2, \cdots)$ are bounded and $r_{n_{\nu}} \rightarrow 0$, we have from (5),

$$
\lim _{\nu} a_{-k}^{(n \nu)}=a_{-k}=0, \quad \lim _{\nu} b_{-k}^{(\eta \nu)}=b_{-k}=0,
$$

so that

$$
\begin{equation*}
g(z, 0)=\log r+a_{0}+\sum_{k=1}^{\infty}\left(a_{k} \cos k \theta+b_{k} \sin k \theta\right) r^{x} \tag{6}
\end{equation*}
$$

Hence $g(z, 0)+\log 1 /\left|z-z_{0}\right|$ is harmonic at z_{0} and

$$
\begin{equation*}
\lim _{\nu}\left(\gamma_{n_{\nu}}(0)-\log 1 / r_{n_{\nu}}\right)=-a_{0} . \tag{7}
\end{equation*}
$$

Next we shall prove that $\lim _{n}\left(g_{n}(z, 0)-\gamma_{n}(0)\right)$ exists. For, suppose that the limit does not exist, then $\stackrel{n}{w e}$ can find two partial sequences n_{ν}, m_{v}, such that

$$
\begin{aligned}
\lim _{\nu}\left(g_{n_{\nu}}(z, 0)-\gamma_{n_{\nu}}(0)\right)= & g_{1}(z, 0), \lim _{\nu}\left(g_{m_{\nu}}(z, 0)-\gamma_{m_{\nu}}(0)\right)=g_{2}(z, 0), \\
& g_{1}(z, 0) \equiv g_{2}(z, 0) .
\end{aligned}
$$

Since by (6), $g_{1}(z, 0)-g_{2}(z, 0)$ is harmonic on F, it is a constant and since it vanishes at $z=0, g_{1}(z, 0) \equiv g_{2}(z, 0)$, which contradicts the hypothesis. Hence $\lim _{n}\left(g_{n}(z, 0)-\gamma_{n}(0)\right.$ and so $\lim _{n}\left(\gamma_{n}(0)-\log 1 / r_{n}\right)$ exists.
3. The following theorem plays an important rôle in this paper.

Theorem 3. Let F be an open Riemann surface, which contains $z=0$ and $F_{n} \rightarrow F$ be its exhaustion, where F_{0} contains $z=0$ and Γ_{n} be the boundary of F_{n}. Let $g_{n}(z, \zeta)$ be the Green's function of F_{n} with ζ as its pole and $\gamma_{n}(\zeta)$ be its Robin's constant.

Let a disc $\Delta_{0}:\left|\zeta-\zeta_{0}\right| \leqq \rho_{0}$ be contained in $F_{n}\left(n \geqq n_{0}\right)$ and Δ be a compact domain, which lies outside Δ_{0} and is contained in F_{n}. Then
(i) $\left|\gamma_{n}(\zeta)-\gamma_{n}\left(\zeta_{0}\right)\right| \leqq K\left(\Delta_{0}\right)\left|\zeta-\zeta_{0}\right|, \zeta \in \Delta_{0} \quad\left(n \geqq n_{0}\right)$,
(ii) $\left|g_{n}(z, \zeta)-g_{n}\left(z, \zeta_{0}\right)\right| \leqq K\left(\Delta_{0}, \Delta\right)\left|\zeta-\zeta_{0}\right|, \zeta \in \Delta_{0}, z \in \Delta \quad\left(n \geqq n_{0}\right)$,
where $K\left(\Delta_{0}\right), K\left(\Delta_{0}, \Delta\right)$ are constants, which depend on Δ_{0} or Δ_{0}, Δ only.
Proof. Let $\rho_{0}<\rho_{1}<\rho_{2}$,

$$
\begin{equation*}
C_{1}:\left|\zeta-\zeta_{0}\right|=\rho_{1}, \Delta_{1}:\left|\zeta-\zeta_{0}\right| \leqq \rho_{1}, C_{2}:\left|\zeta-\zeta_{0}\right|=\rho_{2}, \Delta_{2}:\left|\zeta-\zeta_{0}\right| \leqq \rho_{2}, \tag{1}
\end{equation*}
$$

such that Δ lies outside C_{1}. Let $g(z, \zeta)\left(\zeta \in \Delta_{0}\right)$ be the Green's function of Δ_{2}, such that

$$
\begin{equation*}
g(z, \zeta)=\log \left|\frac{\rho_{z}^{z}-\left(\overline{\zeta-\zeta_{0}}\right)\left(z-\zeta_{0}\right)}{\rho_{2}(z-\zeta)}\right| \tag{2}
\end{equation*}
$$

We put for $\zeta \in \Delta_{0}$,

$$
\begin{align*}
& M_{n}(\zeta)=\operatorname{Max}_{c_{1}} \frac{g_{n}(z, \zeta)-g_{n}\left(z, \zeta_{0}\right)}{\left|\zeta-\zeta_{0}\right|}\left(\zeta \in \Delta_{0}\right)\left(n \geqq n_{0}\right) \\
& M(\zeta)=\operatorname{Max}_{c_{1}} \frac{g(z, \zeta)-g\left(z, \zeta_{0}\right)}{\left|\zeta-\zeta_{0}\right|} \tag{3}
\end{align*}
$$

and

$$
\begin{align*}
& u_{n}(z)=M_{n}(\zeta)-\frac{g_{n}(z, \zeta)-g_{n}\left(z, \zeta_{0}\right)}{\left|\zeta-\zeta_{0}\right|} \quad\left(n \geqq n_{0}\right) \tag{4}\\
& u(z)=M(\zeta)-\frac{g(z, \zeta)-g\left(z, \zeta_{0}\right)}{\left|\zeta-\zeta_{0}\right|}
\end{align*}
$$

We may assume that $M_{n}(\zeta) \geqq 0$, since, otherwise, we interchange $g_{n}(z, \zeta)$, $g_{n}\left(z, \zeta_{0}\right)$ and $g(z, \zeta), g\left(z, \zeta_{0}\right)$. Since $\boldsymbol{u}_{n}(z)=\boldsymbol{M}_{n}(\zeta) \geqq 0$ on Γ_{n} and $\geqq 0$ on \boldsymbol{C}_{l}, by the maximum principle,

$$
\begin{equation*}
u_{n}(z) \geqq 0 \quad \text { in } F_{n}-\Delta_{1} \tag{5}
\end{equation*}
$$

Since $u(z)-u_{n}(z)$ is harmonic in C_{2} and at a point z_{0} on $C_{1}, u_{n}\left(z_{0}\right)=0$, $u\left(z_{0}\right) \geqq 0, u\left(z_{0}\right)-u_{n}\left(z_{0}\right) \geqq 0$, by the maximum principle,

$$
\underset{c_{2}}{\operatorname{Max}}\left(u(z)-u_{n}(z)\right) \geqq 0
$$

Since $u(z)=M(\zeta)$ on C_{2},

$$
\begin{equation*}
\operatorname{Min}_{c_{2}} u_{n}(z) \leqq M(\zeta) \tag{6}
\end{equation*}
$$

From (2), for any $\zeta \in \Delta_{0},|M(\zeta)| \leqq K\left(\Delta_{0}\right)$, where $K\left(\Delta_{0}\right)$ depends on Δ_{0} only, so that

$$
\begin{equation*}
\operatorname{Min}_{C_{2}} u_{n}(z) \leqq K\left(\Delta_{0}\right) \tag{7}
\end{equation*}
$$

In the following, we denote constants, which depend on Δ_{0} or Δ_{0}, Δ only by the same letter $K\left(\Delta_{0}\right), K\left(\Delta_{0}, \Delta\right)$.

Since $u_{n}(z) \geqq 0$ in $F_{n}-\Delta_{1}$, we have by (7)

$$
\left|u_{n}(z)\right|=\left|M_{n}(\zeta)-\frac{g_{n}(z, \zeta)-g_{n}\left(z, \zeta_{0}\right)}{\left|\zeta-\zeta_{0}\right|}\right| \leqq K\left(\Delta_{0}, \Delta\right), \quad \zeta \in \Delta_{0}, \quad z \in \Delta
$$

$$
\begin{equation*}
\left(n \geqq n_{0}\right) \tag{8}
\end{equation*}
$$

Hence for z on C_{2},
$\left|M_{n}(\zeta)-\frac{1}{\left|\zeta-\zeta_{0}\right|}\left(g_{n}(z, \zeta)-\log \frac{1}{|z-\zeta|}-g_{n}\left(z, \zeta_{0}\right)+\log \frac{1}{\left|z-\zeta_{0}\right|}\right)\right| \leqq K\left(\Delta_{0}\right)$.
Since the left-hand side of (9) is harmonic in $C_{2},(9)$ holds in C_{2}, so that at $z=\zeta_{0}, z=\zeta$, we have

$$
\left\lvert\, \begin{aligned}
& \left.M_{n}(\zeta)-\frac{1}{\left|\zeta-\zeta_{0}\right|}\left(g_{n}\left(\zeta_{0}, \zeta\right)-\log \frac{1}{\left|\zeta-\zeta_{0}\right|}-\gamma_{n}\left(\zeta_{0}\right)\right) \right\rvert\, \leqq K\left(\Delta_{0}\right) \\
& \left|M_{n}(\zeta)-\frac{1}{\left|\zeta-\zeta_{0}\right|}\left(\gamma_{n}(\zeta)-g_{n}\left(\zeta, \zeta_{0}\right)+\log \frac{1}{\left|\zeta-\zeta_{0}\right|}\right)\right| \leqq K\left(\Delta_{0}\right)
\end{aligned}\right.
$$

Hence adding and subtracting each other, we have

$$
\begin{gather*}
\left|M_{n}(\zeta)-\frac{\gamma_{n}(\zeta)-\gamma_{n}\left(\zeta_{0}\right)}{\left|\zeta-\zeta_{0}\right|}\right| \leqq K\left(\Delta_{0}\right) \tag{10}\\
\left|\frac{\gamma_{n}(\zeta)-\gamma_{n}\left(\zeta_{0}\right)}{2}-\left(g_{n}\left(\zeta, \zeta_{0}\right)-\log \frac{1}{\left|\zeta-\zeta_{0}\right|}-\gamma_{n}\left(\zeta_{0}\right)\right)\right| \leqq K\left(\Delta_{0}\right)\left|\zeta-\zeta_{0}\right| \tag{11}
\end{gather*}
$$

Since by Theorem 1,

$$
\left|g_{n}\left(\zeta, \zeta_{0}\right)-\log \frac{1}{\left|\zeta-\zeta_{0}\right|}-\gamma_{n}\left(\zeta_{0}\right)\right| \leqq K\left(\Delta_{0}\right)\left|\zeta-\zeta_{0}\right| \quad\left(n \geqq n_{0}\right)
$$

we have

$$
\begin{equation*}
\left|\gamma_{n}(\zeta)-\gamma_{n}\left(\zeta_{0}\right)\right| \leqq K\left(\Delta_{0}\right)\left|\zeta-\zeta_{0}\right| \quad\left(n \geqq n_{0}\right) \tag{12}
\end{equation*}
$$

so that from (10), $\left|M_{n}(\zeta)\right| \leqq K\left(\Delta_{0}\right)$, hence from (8),

$$
\begin{equation*}
\left|g_{n}(z, \zeta)-g_{n}\left(z, \zeta_{0}\right)\right| \leqq K\left(\Delta_{0}, \Delta\right)\left|\zeta-\zeta_{0}\right|, \quad \zeta \in \Delta_{0}, \quad z \in \Delta\left(n \geqq n_{0}\right) \tag{13}
\end{equation*}
$$

Hence our theorem is proved.
4. Let Δ_{0}, Δ be two compact domains on F, which have no common points and $\Delta_{0} \subset F_{90}, \Delta \subset F_{n}\left(n \geqq n_{0}\right)$.

By Theorem 3 and Borel's covering theorem; we can prove easily that for
any $\varepsilon>0$, there exists $\delta=\delta\left(\varepsilon, \Delta_{0}, \Delta\right)$, which depends on $\varepsilon, \Delta_{0}, \Delta$ only, such that for any $z \in \Delta,\left|g_{n}\left(z, \zeta_{1}\right)-g_{n}\left(z, \zeta_{2}\right)\right|<\varepsilon$, if $\left|\zeta_{1}-\zeta_{z}\right|<\delta, \zeta_{1} \in \Delta_{0}$, $\zeta_{2} \in \Delta_{0}\left(n \geqq n_{0}\right)$ and for any $\zeta \in \Delta_{0}$,

$$
\left|g_{n}\left(z_{1}, \zeta\right)-g_{n}\left(z_{2}, \zeta\right)\right|<\varepsilon, \text { if }\left|z_{1}-z_{2}\right|<\delta, \quad z_{1} \in \Delta, \quad z_{2} \in \Delta\left(n \geqq n_{0}\right)
$$ so that

$$
\left|g_{n}\left(z_{1}, \zeta_{1}\right)-g_{n}\left(z_{2}, \zeta_{2}\right)\right|<2 \varepsilon, \text { if }\left|z_{1}-z_{2}\right|<\delta, \quad\left|\zeta_{1}-\zeta_{2}\right|<\delta\left(n \geqq n_{0}\right)
$$

Hence

$$
\begin{equation*}
\varphi_{n}(z, \zeta)=g_{n}(z, \zeta)-\gamma_{n}(0) \quad\left(n \geqq n_{0}\right) \tag{1}
\end{equation*}
$$

is equi-continuous for $z \in \Delta, \zeta \in \Delta_{0}$. Since by Theorem $1, g_{n}\left(z, \zeta_{0}\right)-\gamma_{n}\left(\zeta_{0}\right)$ is uniformly bounded in $\Delta, \gamma_{n}\left(\zeta_{0}\right)-\gamma_{n}(0)$ and $g_{n}(z, \zeta)-g_{n}\left(z, \zeta_{0}\right)$ are bounded by (i), $\varphi_{n}(z, \zeta)(n=1,2, \cdots)$ is uniformly bounded for $z \in \Delta, \zeta \in \Delta_{0}$. Hence by Arzelà's theorem, we can find a partial sequence n_{ν}, such that

$$
\begin{equation*}
\lim _{\nu} \varphi_{n_{\nu}}(z, \zeta)=\lim _{\nu}\left(g_{n_{\nu}}(z, \zeta)-\gamma_{n_{\nu}}(0)\right) \tag{2}
\end{equation*}
$$

uniformly in $z \in \Delta, \zeta \in \Delta_{0}$. From this, we can prove easily that we can find a partial sequence, which we denote n_{ν}, such that for any fixed ζ on F, (2) converges uniformly in z in any compact domain, which does not contain ζ and for any fixed z on F, (2) converges uniformly in ζ in any compact domain, which does not contain z. Hence if we put

$$
\begin{equation*}
\lim _{\nu}\left(g_{n_{\nu}}(z, \zeta)-\gamma_{n_{\nu}}(0)\right)=g(z, \zeta) \tag{3}
\end{equation*}
$$

then for any fixed $\zeta, g(z, \zeta)$ is a harmonic function of z at $z(\neq \zeta)$ and for any fixed $z, g(z, \zeta)$ is a harmonic function of ζ at $\zeta(\neq z)$.

Let $U:\left|z-\zeta_{0}\right| \leqq \rho, V:\left|\zeta-\zeta_{0}\right| \leqq \rho$ be a neighbourhood of ζ_{0} and we put for $z \in U, \zeta \in V$,

$$
\begin{equation*}
g_{n}(z, \zeta)=\log \frac{1}{|z-\zeta|}+\gamma_{n}(0)+\psi_{n}(z, \zeta) \tag{4}
\end{equation*}
$$

then $\psi_{n}(z, \zeta)$ is a harmonic function with respect to each variable in $z \in U$, $\zeta \in V$. Since on $\left|z-\zeta_{0}\right|=\rho,\left|\zeta-\zeta_{0}\right|=\rho_{0}(>\rho)$,

$$
\begin{equation*}
\lim _{v} \psi_{n_{v}}(z, \zeta)=\psi(z, \zeta)=g(z, \zeta)-\log \frac{1}{|z-\zeta|} \tag{5}
\end{equation*}
$$

uniformly, (5) converges uniformly in $z \in U, \zeta \in V$, so that $\psi(z, \zeta)$ is a harmonic function of z in U for a fixed $\zeta \in V$ and is a harmonic function of ζ in V for a fixed $z \in U$. Since $g_{n_{\nu}}(z, \zeta)-\gamma_{n_{\nu}}(0)=g_{n_{\nu}}(\zeta, z)-\gamma_{n_{\nu}}(0)$, we have $g(z, \zeta)=g(\zeta, z)$. Hence we have proved the following theorem.

Theorem 4. Let F be an open Riemann surface and $F_{n} \rightarrow F$ be its exhaustion, where F_{0} contains $z=0$ and $g_{n}(z, \zeta)$ be the Green's function of F_{n} with ζ as its pole. Then there exists a partial sequence n_{v}, such that

$$
\lim _{\nu}\left(g_{n_{\nu}}(z, \zeta)-\gamma_{n_{\nu}}(0)\right)=g(z, \zeta) \quad(g(z, \zeta)=g(\zeta, z))
$$

(for a fixed ζ) converges uniformly in z in any compact domain, which does not contain ζ and (for a fixed z) converges uniformly in ζ in any compact domain, which does not contain z. Hence for a fixed $\zeta, g(z, \zeta)$ is a harmonic function
of z at $z(\neq \zeta)$ and for a fixed $z, g(z, \zeta)$ is a harmonic function of ζ at ζ ($\neq z)$. Let $U:\left|z-\zeta_{0}\right| \leqq \rho, V:\left|\zeta-\zeta_{0}\right| \leqq \rho$ be a neighbourhood of ζ_{0} and for $z \in U$, $\zeta \in V$, let

$$
g(z, \zeta)=\log \frac{1}{|z-\zeta|}+\psi(z, \zeta)
$$

then for a fixed $\zeta \in V, \psi(z, \zeta)$ is a harmonic function of z in U and for a fixed $z \in U, \psi(z, \zeta)$ is a harmonic function of ζ in V.

We shall call $g(z, \zeta)$ the modified Green's function of F with ζ as its pole. In the following, $g(z, \zeta)$ denotes always the modified Green's function.

2. Potential functions with two logarithmic singularities

We shall prove
Theorem 5. Let F be an open Riemann surface and ζ_{1}, ζ_{2} be two inner points and put

$$
g\left(z ; \zeta_{1}, \zeta_{2}\right)=g\left(z, \zeta_{1},\right)-g\left(z, \zeta_{2}\right)
$$

Then $g\left(z ; \zeta_{1}, \zeta_{2}\right)$ is harmonic on F, except at ζ_{1}, ζ_{2}, where

$$
\begin{aligned}
& g\left(z ; \zeta_{1}, \zeta_{2}\right)-\log \frac{1}{\left|z-\zeta_{1}\right|} \text { is harmonic at } \zeta_{1} \\
& g\left(z ; \zeta_{1}, \zeta_{3}\right)+\log \frac{1}{\left|z-\zeta_{\varepsilon}\right|} \text { is harmonic at } \zeta_{2}
\end{aligned}
$$

Let Γ be an analytic Jordan curve, which contains ζ_{1}, ζ_{2} in its inside and $\Gamma(F)$ be the part of F, which is contained in I . Then the Dirichlet integral of $g=g\left(z ; \zeta_{1}, \zeta_{2}\right)$ in $F-\Gamma(F)$ is finite, such that

$$
D_{F-\Gamma(F)}[g] \leqq \int_{\mathbf{\Gamma}} g \frac{\partial g}{\partial \nu} d s
$$

where ν is the inner normal of Γ and ds is its arc element.
Proof. Since the first part is evident, we shall prove the second part. Let $F_{n} \rightarrow F$ be the exhaustion of F, where F_{0} contains the inside of Γ and Γ_{n} be the boundary of F_{n}. We put

$$
\begin{equation*}
g_{n}=g_{n}\left(z ; \zeta_{1}, \zeta_{2}\right)=\left(g_{n}\left(z, \zeta_{1}\right)-\gamma_{n}(0)\right)-\left(g_{n}\left(z, \zeta_{2}\right)-\gamma_{n}(0)\right) \tag{1}
\end{equation*}
$$

then

$$
\begin{equation*}
\lim _{\nu} g_{n_{\nu}}\left(z ; \zeta_{1}, \zeta_{2}\right)=g\left(z, \zeta_{1}\right)-g\left(z, \zeta_{2}\right)=g\left(z ; \zeta_{1}, \zeta_{2}\right) \tag{2}
\end{equation*}
$$

Since $g_{n}=0$ on Γ_{n}, we have

$$
D_{F_{n}-\Gamma(F)}\left[g_{n}\right]=\int_{\Gamma} g_{n} \frac{\partial g_{n}}{\partial \nu} d s
$$

so that

$$
D_{F_{m}-\Gamma(F)}\left[g_{n}\right] \leqq \int_{\Gamma} g_{n} \frac{\partial g_{n}}{\partial \nu} d s \quad(m<n)
$$

Hence if we make $n=n_{\nu} \rightarrow \infty$ and then $m \rightarrow \infty$, we have

$$
D_{F-\Gamma(F)}[g] \leqq \int_{\Gamma} g \frac{\partial g}{\partial \nu} d s . \quad \text { q.e.d. }
$$

Remark. If F is a closed surface, we take off a point $z_{0}\left(\neq \zeta_{1}, \neq \zeta_{2}\right)$ from F and put $F^{\prime}=F-\left(z_{0}\right)$ and for the open surface F^{\prime}, we construct $g\left(z ; \zeta_{1}, \zeta_{2}\right)$, then since the Dirichlet integral of $g\left(z ; \zeta_{1}, \zeta_{2}\right)$ in the neighbourhood of z_{0} is finite, $g\left(z_{;} \zeta_{1}, \zeta_{2}\right)$ is harmonic at z_{0}. Hence there exists a potential function on F, which has logarithmic singularities at ζ_{1}, ζ_{2}.

In the following Theorem 6 and 7 , we assume that F is open and though we do not repeat the same remark, if F is closed we make the same modification to establish the existence of a potential function with the prescribed singularity.

Theorem 6. Lot F be an open Riemann surface and ζ_{1}, ζ_{2} be two inner points. We connect ζ_{1}, ζ_{2} by an analytic Jordan arc C and put

$$
h\left(z ; \zeta_{1}, \zeta_{2}\right)=\int_{\sigma} \frac{\partial g(z, \zeta)}{\partial \nu} d s_{\zeta}=\int_{\zeta_{1}}^{-\zeta_{2}} \frac{\partial g(z, \zeta)}{\partial v} d s_{\zeta},
$$

where ν is the normal of C at ζ, which is obtained from the direction of ds by a rotation of an angle $-\pi / 2$ then $h\left(z ; \zeta_{1}, \zeta_{2}\right)$ is harmonic on F, but is many valued, such that

$$
\begin{aligned}
& \boldsymbol{h}\left(z ; \zeta_{1}, \zeta_{2}\right)-\arg \left(z-\zeta_{1}\right) \text { is harmonic at } \zeta_{1}, \\
& \boldsymbol{h}\left(z ; \zeta_{1}, \zeta_{2}\right)+\arg \left(z-\zeta_{2}\right) \text { is harmonic at } \zeta_{2} .
\end{aligned}
$$

Let Γ be an analytic Jordan curve, which contains ζ_{1}, ζ_{2} in its inside, then the Dirichlet integral of $h=h\left(z ; \zeta_{1}, \zeta_{2}\right)$ in $F-\Gamma(F)$ is finite, such that

$$
D_{F-\Gamma(F)}[h] \leqq \int_{\Gamma} h \frac{\partial h}{\partial \nu} d s .
$$

Proof. For a fixed $z \in F-C$, let $h(z, \zeta)$ be the conjugate harmonic function of $g(z, \zeta)$, then

$$
\begin{equation*}
h\left(z ; \zeta_{1}, \zeta_{2}\right)=\int_{\zeta_{1}}^{\zeta_{2}} \frac{\partial g(z, \zeta)}{\partial \nu} d s_{\zeta}=\int_{\zeta_{1}}^{\zeta_{2}} d h(z, \zeta)=h\left(z, \zeta_{2}\right)-h\left(z, \zeta_{1}\right) . \tag{1}
\end{equation*}
$$

Since by Theorem 4, $\partial g(z, \zeta) / \partial \nu$ is a harmonic function of $z, h\left(z ; \zeta_{1}, \zeta_{2}\right)$ is a harmonic function of z, except at ζ_{1}, ζ_{2}. Let $U:\left|z-\zeta_{1}\right| \leqq \rho, V:\left|\zeta-\zeta_{1}\right| \leqq \rho$ be a neighbourhood of ζ_{1} and for $z \in U, \zeta \in V$, put

$$
g(z, \zeta)=\log \frac{1}{|z-\zeta|}+\psi(z, \zeta)
$$

then by Theorem 4, $\psi(z, \zeta)$ is a harmonic function in each variable. Let ζ_{0} be the first point of intersection of C with $\left|\zeta-\zeta_{1}\right|=\rho$, when we proceed from ζ_{1} to ζ_{2} on C and let C_{1} be the part of C, which is bounded by ζ_{1}, and ζ_{0} and $\boldsymbol{C}_{2}=\boldsymbol{C}-\boldsymbol{C}_{1}$, then

$$
\begin{align*}
& h\left(z ; \zeta_{1}, \zeta_{2}\right)=\int_{C} \frac{\partial g(z, \zeta)}{\partial \nu} d s_{\zeta}=\int_{c_{1}} \frac{\partial g(z, \zeta)}{\partial \nu} d s_{\zeta}+\int_{c_{2}} \frac{g(z, \zeta)}{\partial \nu} d s_{\zeta} \\
& =\arg \left(z-\zeta_{1}\right)-\arg \left(z-\zeta_{0}\right)+\int_{c_{1}} \frac{\partial \psi(z, \zeta)}{\partial \nu} d s_{\zeta}+\int_{c_{2}} \frac{\partial g(z, \zeta)}{\partial \nu} d s_{\zeta} . \tag{2}
\end{align*}
$$

Since the three terms other than $\arg \left(z-\zeta_{1}\right)$ on the right hand side of (2) are harmonic at $\zeta_{1}, h\left(z ; \zeta_{1}, \zeta_{2}\right)-\arg \left(z-\zeta_{1}\right)$ is harmonic at ζ_{1}. Similarly $h\left(z ; \zeta_{1}, \zeta_{2}\right)+\arg \left(z-\zeta_{2}\right)$ is harmonic at ζ_{2}. Now we divide C into N arcs of equal length Δs and $\xi_{k}(k=0,1, \cdots, N)\left(\xi_{0}=\zeta_{1}, \xi_{N}=\zeta_{2}\right)$ be the point of division and $e^{i \theta k}$ be a unit vector at ξ_{k}, which is orthogonal to C and put

$$
\begin{equation*}
u_{n}^{N}=u_{n}^{N}(z, \delta)=\sum_{k=1}^{N} \frac{g_{n}\left(z, \xi_{k}+\delta e^{i \theta k}\right)-g_{n}\left(z, \xi_{k}\right)}{\delta} \cdot \Delta s \quad(\delta>0) \tag{3}
\end{equation*}
$$

then

$$
\begin{equation*}
\lim _{\nu \rightarrow \infty} \lim _{N \rightarrow \infty} \lim _{\delta \rightarrow \infty} u_{n_{\nu}}^{N}=\int_{c} \frac{\partial g(z, \zeta)}{\partial \nu} d s_{\zeta}=h\left(z ; \zeta_{1}, \zeta_{2}\right) . \tag{4}
\end{equation*}
$$

Since $u_{n}^{N}=0$ on Γ_{n}, we have

$$
D_{F_{m}-\Gamma(F)}\left[u_{n}^{N}\right] \leqq \int_{\Gamma} \boldsymbol{u}_{n}^{N} \frac{\partial u_{n}^{N}}{\partial \nu} d s \quad(m<n),
$$

so that if we make succesively $\delta \rightarrow 0, N \rightarrow \infty, n=n_{\nu} \rightarrow \infty, m \rightarrow \infty$, we have

$$
D_{F-\Gamma(F)}[h] \leqq \int_{\Gamma} h \frac{\partial h}{\partial \nu} d s, \quad \text { q. e.d. }
$$

3. Osgood's theorem

Theorem 7. Let F be an open Riemann surface and a schlicht disc $F_{1}:|z| \leqq R_{1}$ be contained in F and let $F_{0}:|z| \leqq R_{0} \quad\left(0 \leqq R_{0}<R_{1}\right)$. Let $f(z)=\sum_{k=1}^{\infty} c_{k} / z^{k}$ be regular for $|z|>R_{0}$ and

$$
U(z)=\Re(f(z))=\sum_{k=1}^{\infty} \frac{a_{k} \cos k \theta+b_{k} \sin k \theta}{\boldsymbol{r}^{k}} \quad\left(z=r e^{i \theta}\right) .
$$

Then

$$
u(z)=\sum_{k=1}^{\infty} \frac{1}{(k-1)!}\left(a_{k} \frac{\partial^{k} g(z, 0)}{\partial \xi^{k}}+b_{k} \frac{\partial^{k} g(z, 0)}{\partial \xi^{k-1} \partial \eta}\right)^{3} \quad(\zeta=\xi+i \eta=0)
$$

converges uniformly in any compact domain, which lies outside F_{0}, hence $u(z)$ is harmonic in $F-F_{0}$ and $u(z)$ can be continued harmonically in F_{1}, such that $u(z)-U(z)=V(z)$ is harmonic in F_{1}. Let Γ be an analytic Jordan curve, which contains F_{0}, then the Dirichlet integral of $u(z)$ in $F-\Gamma(F)$ is finite, such that
3)

$$
\frac{\partial^{k} g(z, 0)}{\partial \xi^{k}}=\left[\frac{\partial^{k} g(z, \zeta)}{\partial \xi^{k}}\right]_{\zeta=0}, \frac{\partial^{k} g(z, 0)}{\partial \xi^{k-1} \partial \eta}=\left[\frac{\partial^{k} g(z, \zeta)}{\partial \xi^{k-1} \partial \eta}\right]_{\zeta=0}(\zeta=\xi+i \eta)
$$

$$
D_{F-\Gamma(F)}[u] \leqq \int_{\Gamma} u \frac{\partial u}{\partial \nu} d s
$$

That such a potential function exists (except the finiteness of the Dirichlet integral) was proved by Osgood. ${ }^{4)}$

Proof. Let for $z \in F_{1}, \zeta \in F_{1}$,

$$
g(z, \zeta)=\log \frac{1}{|z-\zeta|}+\psi(z, \zeta)
$$

then $\psi(z, \zeta)$ is harmonic in $z \in F_{1}, \zeta \in F_{1}$.
Since
if we put

$$
\begin{align*}
& u(z)=\sum_{k=1}^{\infty} \frac{1}{(k-1)!}\left(a_{k} \frac{\partial^{k} g(z, 0)}{\partial \xi^{k}}+b_{k} \frac{\partial^{k} g(z, 0)}{\partial \xi^{k-1} \partial \eta}\right), \tag{1}\\
& V(z)=\sum_{k=1}^{\infty} \frac{1}{(k-1)!}\left(a_{k} \frac{\partial^{k} \psi(z, 0)}{\partial \xi^{k}}+b_{k} \frac{\partial^{k} \psi(z, 0)}{\partial \xi^{k-1} \partial \eta}\right), \tag{2}
\end{align*}
$$

then

$$
\begin{equation*}
u(z)=U(z)+V(z) \tag{3}
\end{equation*}
$$

We shall prove that $V(z)$ converges in F_{1} uniformly.
Let $|\psi(z, \zeta)| \leqq K$ in $|z| \leqq R_{1},|\zeta| \leqq R_{1}$, then for $|z| \leqq R_{1}$,

$$
\begin{equation*}
\left|\frac{\partial^{k} \psi(z, 0)}{\partial \xi^{k}}\right| \leqq \frac{k!M}{R_{1}^{k}}, \quad\left|\frac{\partial^{k} \psi^{\prime}(z, 0)}{\partial \xi^{k-1} \partial \eta}\right| \leqq \frac{k!M}{R_{1}^{k}} \tag{4}
\end{equation*}
$$

where M is a constant. Since $\sum_{k=1}^{\infty} k\left(\left|a_{k i}\right|+\left|b_{k}\right|\right) / R_{1}^{k}<\infty, \quad V(z) \quad$ converges uniformly in F_{1}, so that $u(z)-U(z)=V(z)$ is harmonic in F_{1}. Let Δ be a compact domain in $F-F_{0}$, then Δ lies outside a certain disc $F:|\zeta| \leqq R$ ($R_{3}<R<R_{1}$) and

$$
\begin{equation*}
|g(z, \zeta)| \leqq K(\Delta), \quad z \in \Delta, \quad \zeta \in F^{\prime} \tag{5}
\end{equation*}
$$

Hence for $z \in \Delta$,

$$
\left|\frac{\partial^{k} g(z, 0)}{\partial \xi^{k}}\right| \leqq \frac{k!M}{R^{k}},\left|\frac{\partial^{k} g(z, 0)}{\partial \xi^{k-1} \partial \eta}\right| \leqq \frac{k!M}{R^{k}}
$$

hence $u(z)$ converges uniformly in Δ, so that is harmonic in Δ, hence $u(z)$ is harmonic in $F-F_{0}$. Let Γ be an analytic Jordan curve, which contains F_{0} in its inside. Let $F_{n} \rightarrow F$ be the exhaustion of F and $g_{n}(z, \zeta)=g_{n}(z, \xi, \eta)$ $(\zeta=\xi+i \eta)$ be the Green's function of F_{n}. We put for $\delta>0$,

[^1]\[

$$
\begin{aligned}
\Delta^{k} g_{n}=\Delta^{k} g_{n}(z, 0,0)= & g_{n}(z, k \delta, 0)-\binom{k}{1} g_{n}(z,(k-1) \delta, 0) \\
& +\binom{k}{2} g_{n}(z,(k-2) \delta, 0)-\cdots \pm g_{n}(z, 0,0) \\
\Delta_{1}^{k} g_{n}= & \Delta^{k-1}\left(g_{n}(z, 0, \delta)-g_{n}(z, 0,0)\right)
\end{aligned}
$$
\]

then

$$
\begin{equation*}
\lim _{\delta \rightarrow 0} \frac{\Delta^{k} g_{n}}{\delta^{k}}=\frac{\partial^{k} g_{n}(z, 0)}{\partial \xi^{k}}, \lim _{\delta \rightarrow 0} \frac{\Delta_{1}^{k} g_{n}}{\delta^{k}}=\frac{\partial^{k} g_{n}(z, 0)}{\partial \xi^{k-1} \partial \eta} \tag{7}
\end{equation*}
$$

We put

$$
\begin{equation*}
u_{n}^{N}=u_{n}^{N}(z, \delta)=\sum_{k=1}^{N} \frac{1}{(k-1)!}\left(a_{k} \frac{\Delta^{k} g_{n}}{\delta^{k}}+b_{k} \frac{\Delta_{1}^{k} g_{n}}{\delta^{k}}\right) . \tag{8}
\end{equation*}
$$

Since $u_{n}^{N}=0$ on Γ_{n}, we have

$$
D_{F_{m}-\Gamma(F)}\left[u_{n}^{N}\right] \leqq \int_{\Gamma} u_{n}^{N} \frac{\partial u_{n}^{N}}{\partial \nu} d s \quad(m<n) .
$$

If we make successively $\delta \rightarrow 0, n=n_{\nu} \rightarrow \infty, N \rightarrow \infty, m \rightarrow \infty$, we have

$$
D_{P-\Gamma(F)}[u] \leqq \int_{\Gamma} u \frac{\partial u}{\partial \nu} d s, \quad \text { q.e.d. }
$$

4. Potential functions with polar singularities

1. Let F be an open Riemann surface. If we put

$$
u(z)=\frac{\partial^{k} g(z, \zeta)}{\partial \xi^{k}}, \quad v(z)=-\frac{\partial^{k} g(z, \zeta)}{\partial \xi^{k-1} \partial \eta} \quad(\zeta=\xi+i \eta),
$$

then by Theorem 7, $u(z)$ and $v(z)$ have singularities

$$
\begin{aligned}
& (k-1)!\Re \frac{1}{(z-\zeta)^{6}}=\frac{(k-1)!\cos k \theta}{r^{6}}, \\
& (k-1)!\Im \frac{1}{(z-\zeta)^{6}}=\frac{-(k-1)!\sin k \theta}{\boldsymbol{r}^{i}},\left(z-\zeta=\boldsymbol{r} e^{i}\right)
\end{aligned}
$$

at $z=\zeta$. Let $\tau_{\zeta}^{k}(z), \tau_{\zeta}^{\prime k}(z)$ be the analytic functions of z, whose real parts are $u(z), v(z)$ respectively, such that

$$
\begin{equation*}
\tau_{\zeta}^{k}(z)=\frac{\partial^{k} g(z, \zeta)}{\partial \xi^{k}}+i(\quad), \tau_{\zeta}^{\prime k}(z)=-\frac{\partial^{k} g(z, \zeta)}{\partial \xi^{k-1} \partial \eta}+i(\quad) . \tag{1}
\end{equation*}
$$

Let α be an analytic Jordan curve on F, which is not homotop null, then by Theorem 6,

$$
\begin{equation*}
\omega_{\alpha}(z)=\frac{1}{2 \pi} \int_{\alpha} \frac{\partial g(z, \zeta)}{\partial \nu} d s_{\zeta} \tag{2}
\end{equation*}
$$

is harmonic on F, but is many valued, such that

$$
\begin{equation*}
\int_{\alpha^{\prime}} d \omega_{\alpha}(z)=1 \tag{3}
\end{equation*}
$$

where α^{\prime} is an analytic Jordan curve, which connects a point of α on one shore to the corresponding point on the opposite shore, the direction of ν being so chosen, that if we rotate it by an angle $\pi / 2$, it coincides with the direction of $d s_{\zeta}$.

Let $w_{\alpha}(z)$ be the analytic function, whose real part is $\omega_{\alpha}(z)$, such that

$$
\begin{equation*}
w_{\alpha}(z)=\frac{1}{2 \pi} \int_{\alpha} \frac{\partial g(z, \zeta)}{\partial \nu} d s_{\zeta}+i(), \quad \Re \int_{\alpha^{\prime}} d w_{\alpha}(z)=1 \tag{4}
\end{equation*}
$$

For a fixed z, let $\psi_{2}(\zeta)$ be the analytic function of ζ, whsoe real part is $g(z, \zeta)$, such that

$$
\begin{equation*}
\psi_{z}(\zeta)=g(z, \zeta)+i(\quad) \tag{5}
\end{equation*}
$$

Let z_{0} be a fixed point of F and we connect z_{0} to a point z by an analytic Jordan arc \boldsymbol{C} and let

$$
\begin{equation*}
h_{z}(\zeta)=\int_{z_{0}}^{z} \frac{\partial g(t, \zeta)}{\partial \nu} d s_{t} \quad\left(\zeta \neq z_{0}, \neq z\right), \tag{6}
\end{equation*}
$$

where we integrate on C and ν is the normal of C at t, such that if we rotate it by an angle $\pi / 2$, it coincides with the direction of $d s_{t}$.

Let $\boldsymbol{\psi}_{z}^{\prime}(\zeta)$ be the analytic function of ζ, whose real part is $h_{z}(\zeta)$, such that

$$
\begin{equation*}
\psi_{z}^{\prime}(\zeta)=\int_{z_{0}}^{z} \frac{\partial g(\boldsymbol{t}, \zeta)}{\partial \nu} d s_{t}+i() \tag{7}
\end{equation*}
$$

Then we can prove easily the following relations. ${ }^{5)}$
Theorem 8.

$$
\begin{align*}
& \Re\left(\frac{d^{l} \tau_{\zeta}^{k}(z)}{d z^{l}}\right)=\Re\left(\frac{d^{k} \tau_{z}^{l}(\zeta)}{d \zeta^{k}}\right), \Im\left(\frac{d^{l} \tau_{\zeta}^{k}(z)}{d z^{l}}\right)=\Re\left(\frac{d^{k} \tau_{z}^{\prime}(\zeta)}{d \zeta^{k}}\right), \\
& \left.\mathfrak{R}\left(\frac{d^{l} \tau_{\zeta}^{\prime k}(z)}{d z^{l}}\right)=\mathfrak{J}\left(\frac{d \tau_{z}^{l}(\zeta)}{d \zeta^{k}}\right), \mathfrak{s}\left(\frac{d^{l} \tau_{\zeta}^{\prime k}(z)}{d z^{l}}\right)=\mathfrak{s}\left(\frac{d^{k} \tau_{z}^{\prime \prime}(\zeta)}{d \zeta^{k}}\right) .\right\} \tag{I}\\
& \int_{\alpha} d \tau_{z}^{k}(\zeta)=2 \pi i \Re\left(\frac{d^{\pi} w_{\alpha}(z)}{d z^{k}}\right), \int_{\alpha} d \tau_{z}^{\prime k}(\zeta)=2 \pi i \Im\left(\frac{d^{k} w^{\alpha}(z)}{d z^{k}}\right) \text {. } \tag{II}\\
& \mathfrak{R}\left(\boldsymbol{\tau}_{\zeta}^{k}(z)\right)=\Re\left(\frac{d^{k} \psi_{z}(\zeta)}{d \zeta^{k}}\right), \quad \Re\left(\tau_{\zeta}^{\prime k}(\boldsymbol{z})\right)=\mathfrak{\Im}\left(\frac{d^{\pi} \psi_{2}(\zeta)}{d \zeta^{k}}\right) \text {. } \tag{III}\\
& \mathfrak{S}\left(\int_{z_{0}}^{z} d \tau_{\zeta}^{k}(t)\right)=\Im\left(\tau_{\zeta}^{k}(z)\right)-\Im\left(\tau_{\zeta}^{k}\left(z_{0}\right)\right)=\Re\left(\frac{d^{k} \psi_{z}^{\prime}(\zeta)}{d \zeta^{k}}\right), \tag{IV}\\
& \left.\mathfrak{J}\left(\int_{z_{0}}^{z} d \tau_{\zeta}^{\prime k}(t)\right)=\mathfrak{S}\left(\tau_{\zeta}^{\prime k}(z)\right)-\mathfrak{I}\left(\tau_{\zeta}^{\prime k}\left(z_{0}\right)\right)=\mathfrak{J}\left(\frac{d^{k} \psi_{z}^{\prime}(\zeta)}{d \zeta^{k}}\right) . \quad \right\rvert\,
\end{align*}
$$

[^2]Proof. By (1), \mid
$\mathfrak{\Re}\left(\frac{\boldsymbol{d}^{l} \tau_{\zeta}^{k}(z)}{\boldsymbol{d} \boldsymbol{z}^{l}}\right)=\frac{\partial^{l+k} g(z, \zeta)}{\partial x^{\imath} \partial \xi^{k}}, \Re\left(\frac{d^{l} \tau_{\tau}^{l}(\zeta)}{d \zeta^{i}}\right)=\frac{\partial^{l+k} g(\zeta, z)}{\partial \xi^{k} \partial x^{l}}(z=x+i y, \zeta=\xi+i \eta)$.
Since $g(z, \zeta)=g(\zeta, z)$, we have

$$
\mathfrak{R}\left(\frac{d^{\prime} \tau_{\zeta}^{k}(z)}{d z^{l}}\right)=\Re\left(\frac{d^{*} \tau_{z}^{\prime}(\zeta)}{d \zeta^{k}}\right)
$$

Similarly we can prove other relations of (I).
From (4) and $g(z, \zeta)=g(\zeta, z)$, we have

$$
\begin{equation*}
\int_{\alpha} \frac{\partial}{\partial \nu}\left(\frac{\partial^{k} g(\zeta, z)}{\partial x^{i}}\right) d s_{\zeta}=\int_{\alpha} \frac{\partial}{\partial \nu}\left(\frac{\partial^{k} g(z, \zeta)}{\partial x^{k}}\right) d s_{\zeta}=2 \pi \Re\left(\frac{d^{k} w_{\alpha}(z)}{d z^{(z}}\right) . \tag{8}
\end{equation*}
$$

Since

$$
\frac{\partial^{k} g(\zeta, z)}{\partial x^{k}}+i(\quad)=\tau_{z}^{k}(\zeta),
$$

the left-hand side of (8) is equal to $\frac{1}{i} \int_{\alpha} d \tau_{z}^{k}(\zeta)$, hence

$$
\int_{\alpha} d \tau_{z}^{k}(\zeta)=2 \pi i \Re\left(\frac{d^{k} w_{\alpha}(z)}{d z^{i}}\right) .
$$

Another relation of (II) and relations of (III), (IV) can be proved similarly.

5. Riemann-Roch's theorem

By means of Theorem 8, we can prove easily the following RiemannRoch's theorem.

Theorem 9. Let F be a closed Riemann surface of genus $p \geqq 1$ and $\mathfrak{d}=\frac{\mathfrak{p}_{1}^{m_{1}} \cdot \mathfrak{p}_{r}^{m_{r}}}{\mathfrak{q}_{1}^{n_{i}} \cdots q_{n_{s}}^{n_{s}}}\left(m_{\nu}>0, n_{\mu}>0\right)$ be a divisor, $m=\sum_{\nu=1}^{r} m_{\nu}-\sum_{\mu=1}^{s} n_{\mu} \quad$ being its total order. Let B be the number of (in the complex sense) linearly independent differentials on F, which are multiple of ib and A be the number of (in the complex sense) linearly independent one-valued analytic functions on F, which are multiple of $1 / \mathrm{s}$, then

$$
A=B+(m+1-p) .
$$

Proof. Let \mathfrak{p}_{ν} lie on $z=\zeta_{\nu}$ and \mathfrak{q}_{μ} lie on $z=z_{\mu}$. If ζ_{ν} or z_{μ} be a branch point of F, the differentiation in the following means that with respect to the local parameter. Let z_{0} be a point of F, which is different from ζ_{v}, z_{μ}. We take off z_{0} from F and for the open Riemann surface $F^{\prime}=F-\left(z_{0}\right)$, we consider the modified Green's function $g(z, \zeta)$ and other potential functions.

Then by Theorem 1, $g(z, \zeta)$ has a logarithmic singularity at z_{0} and by the remark of $\S 2, \tau_{\zeta}^{k}(z), \tau_{\zeta}^{\prime k}(z)$ are regular at z_{0}. Let $f(z)$ be a one-valued
analytic function on F, which is multiple of $1 / D$, then $f(z)$ can be expressed in the form:

$$
\begin{equation*}
f(z)=\sum_{\nu=1}^{r}\left[\alpha_{1}^{\nu} \tau_{\zeta_{\nu}}^{1}(z)+\beta_{1 \tau^{\nu}}^{\nu} \xi_{\nu}^{\prime}(z)+\cdots+\alpha_{m \nu}^{\nu} \tau_{\zeta_{\nu}}^{m \nu}(z)+\beta_{m \nu}^{\nu} \tau_{\zeta_{\nu}}^{\prime m_{\nu}}(z)\right]+(a+i b), \tag{1}
\end{equation*}
$$

where $\alpha_{i}^{\nu}, \beta_{i}^{\nu}, a, b$ are real constants. Let $\alpha_{1}, \cdots, \alpha_{2 p}$ be a set of canonical ring cuts of F, which makes F into a simply connected surface. We put $w_{h}(z)=w_{\alpha_{h}}(z)$, where $w_{\alpha_{h}}(z)$ is defined by (4) of $\S 4$.

Since $f(z)$ is one-valued, we have $\int_{\alpha_{h}} d f(z)=0$, so that by Theorem 8 (II),

$$
\begin{align*}
\sum_{\nu=1}^{r}\left[\alpha_{1}^{\nu} \Re\left(\frac{d w_{h}\left(\zeta_{\nu}\right)}{d \zeta_{\nu}}\right)\right. & +\beta_{1}^{v} \Im\left(\frac{d w_{n}\left(\zeta_{\nu}\right)}{d \zeta_{\nu}}\right)+\ldots+\alpha_{m_{\nu}}^{\nu} \Re\left(\frac{d^{m \nu} w_{h}\left(\zeta_{\nu}\right)}{d \zeta_{\nu}^{m \nu}}\right) \\
& \left.+\beta_{m_{\nu}}^{\nu} \Im\left(\frac{d^{m \nu} w_{k}\left(\zeta_{\nu}\right)}{d \zeta_{\nu \nu}^{, i v}}\right)\right]=0 . \quad(h=1,2, \cdots, 2 p) . \tag{2}
\end{align*}
$$

Since $f(\boldsymbol{z})$ is a multiple of $\mathfrak{q}_{1}^{n_{1}} \cdots \cdot \mathfrak{q}_{s}^{n s}$,

$$
\begin{align*}
& \sum_{\nu=1}^{r}\left[\alpha_{1}^{\nu} \Re\left(\tau_{\zeta_{\nu}}^{1}\left(z_{\mu}\right)\right)+\beta_{1}^{\Re} \Re\left(\tau_{\zeta_{\nu}}^{\prime \prime}\left(z_{\mu}\right)\right)+\cdots+\alpha_{m_{\nu}}^{\nu} \Re\left(\tau_{\zeta_{\nu}}^{m_{\nu}}\left(z_{\mu}\right)\right)+\beta_{m_{\nu}}^{\nu} \Re\left(\tau_{\zeta_{\nu}}^{\prime m \nu}\left(z_{i}\right)\right)\right]+a=0, \tag{3}\\
& \sum_{\nu=1}^{r}\left[\alpha_{1}^{\nu} \Im\left(\tau_{\zeta_{\nu}}^{1}\left(z_{\mu}\right)+\beta_{1}^{\nu} \Im\left(\boldsymbol{\tau}_{S_{\nu}}^{\prime 1}\left(z_{\mu}\right)\right)+\cdots+\alpha_{m_{\nu}}^{\nu} \Im\left(\tau_{\zeta_{\nu}}^{m \nu}\left(z_{\mu}\right)\right)+\beta_{m_{\nu}}^{\prime} \Im\left(\tau_{\zeta_{\nu}}^{\prime m_{\nu}}\left(z_{\mu}\right)\right)\right]+b=0,\right. \\
& \sum_{\nu=1}^{r}\left[\alpha_{1}^{\nu} \Re\left(\frac{d^{k} \tau_{\zeta_{\nu}}^{1}\left(z_{\mu}\right)}{d z_{\mu}^{k}}\right)+\beta_{1}^{\nu} \Re\left(\frac{d^{v} \tau_{\zeta_{\nu}^{\prime}}^{\prime}\left(z_{\mu}\right)}{d z_{\mu}^{k}}\right)+\cdots+\alpha_{m_{\nu}}^{\nu} \Re\left(\frac{d^{i} \tau_{\zeta_{\nu}}^{m_{\nu}}\left(z_{\mu}\right)}{d z_{\mu}^{k}}\right)\right. \\
& \left.+\beta_{m \nu}^{\nu} \Re\left(\frac{d^{*} \tau_{s_{\nu}^{\prime}} m_{\nu}\left(z_{\mu}\right)}{d z_{\mu}^{k}}\right)\right]=0, \tag{4}
\end{align*}
$$

$$
\begin{aligned}
& \left.\left.+\beta_{m \nu}^{\nu} \Im\left(\frac{d^{d} \tau_{\zeta_{\nu}^{\prime}}^{\prime m}\left(z_{\mu}\right)}{d z_{\mu}^{k}}\right)\right]=0 .\right) \\
& \left(\mu=1,2, \cdots \cdots ; k=1,2 \cdots n_{\mu}-1\right) .
\end{aligned}
$$

By Theorem 8 (I), (III), (IV), (3), (4) can be written in the following forms $\left(3^{\prime}\right),\left(4^{\prime}\right)$, where we normalize, such that

$$
\begin{align*}
\mathfrak{J}\left(\tau_{\zeta}^{k}\left(z_{0}\right)=0, \mathfrak{J}\left(\boldsymbol{\tau}_{\zeta}^{\prime \prime}\left(z_{0}\right)=0 \quad(\nu\right.\right. & \left.=1,2, \cdots, r ; k=1,2, \cdots, m_{\nu}\right) \\
\sum_{\nu=1}^{r}\left[\alpha_{1}^{\nu} \Re\left(\frac{d w_{h}\left(\zeta_{\nu}\right)}{d \zeta_{\nu}}\right)+\beta_{\nu}^{\nu} \mathfrak{S}\left(\frac{d w_{h}\left(\zeta_{\nu}\right)}{d \zeta_{\nu}}\right)+\cdots\right. & +\alpha_{m \nu}^{\nu} \Re\left(\frac{d^{m \nu} w_{h}\left(\zeta_{\nu}\right)}{d \zeta_{\nu}^{m \nu}}\right) \\
& \left.+\beta_{m_{\nu}}^{\nu} \Im\left(\frac{d^{m \nu} w_{h}\left(\zeta_{\nu}\right)}{d \zeta_{\nu}^{m \nu}}\right)\right]=0 . \tag{2}
\end{align*}
$$

$$
\begin{align*}
& \sum_{\nu=1}^{r}\left[\alpha_{1}^{\nu} \Re\left(\frac{d \psi_{z_{\mu}}\left(\zeta_{\nu}\right)}{d \zeta_{\nu}}\right)+\beta_{1}^{\nu} \Im\left(\frac{d \psi_{z_{\mu}}\left(\zeta_{\nu}\right)}{d \zeta_{\nu}}\right)+\cdots+\alpha_{m_{\nu}}^{\nu} \Re\left(\frac{d n_{\nu}^{n} \psi_{z_{z}}\left(\zeta_{\nu}\right)}{d \zeta_{\nu \nu}^{m_{\nu}}}\right)\right. \\
& \left.+\beta_{m_{\nu}}^{\nu} \Im\left(\frac{d^{m_{\nu}} \psi_{z_{\mu}}\left(\zeta_{\nu}\right)}{d \zeta_{\nu}^{m}}\right)\right]+a=0, \\
& \sum_{\nu=1}^{r}\left[\alpha_{1}^{\nu} \Re\left(\frac{d \psi_{z_{\mu}}^{\prime}\left(\zeta_{\nu}\right)}{d \zeta_{\nu}}\right)+\beta_{1}^{\prime} \mathcal{M}\left(\frac{d \psi_{z_{\mu}}^{\prime}\left(\zeta_{\nu}\right)}{d \zeta_{\nu}}\right)+\cdots+\alpha_{m_{\nu}}^{\nu} \mathfrak{P}\left(\frac{\left.d^{m_{\nu}} \psi_{z_{\mu}}^{\prime}{ }^{\prime} \zeta_{\nu}\right)}{d \zeta_{\nu}^{m}}\right)\right. \\
& \left.+\beta_{m_{\nu}}^{\nu} \Im\left(\frac{d^{m_{\nu}} \psi_{z_{\mu}}^{\prime}\left(\zeta_{\nu}\right)}{d \zeta_{\nu}^{m}}\right)\right]+b=0, \\
& \sum_{\nu=1}^{r}\left[\alpha_{1}^{\nu} \Re\left(\frac{d \tau_{z_{\mu}}^{k}\left(\zeta_{\nu}\right)}{d \zeta_{\nu}}\right)+\beta_{1}^{\nu} \Im\left(\frac{d \tau_{z_{\mu}}^{k}\left(\zeta_{\nu}\right)}{d \zeta_{\nu}}\right)+\cdots+\alpha_{m_{\nu}}^{\nu} \Re\left(\frac{d^{m_{\nu}} \bar{\tau}_{\tau_{\mu}}^{k}\left(\zeta_{\nu}\right)}{d \zeta_{\nu}^{\mu}}\right)\right. \\
& \left.+\beta_{m_{\nu}}^{\nu} \Im\left(\frac{d^{m_{\nu}} \tau_{\tau_{\mu}}^{k}\left(\zeta_{\nu}\right)}{d \zeta_{\nu \nu}^{m}}\right)\right]=0, \\
& \sum_{\nu=1}^{r}\left[\alpha_{1}^{\nu} \Re\left(\frac{d \tau_{2}^{\prime k}\left(\zeta_{\nu}\right)}{d \zeta_{\nu}}\right)+\beta_{1}^{\nu} \Im\left(\frac{d \tau_{z_{\mu}^{\prime}}^{\prime k}\left(\zeta_{\nu}\right)}{d \zeta_{\nu}}\right)+\cdots+\boldsymbol{\alpha}_{m_{\nu}}^{\nu} \Re\left(\frac{d^{m_{\nu}} \boldsymbol{\tau}_{z_{z}^{\prime k}}^{\prime k}\left(\zeta_{\nu}\right)}{d \zeta_{\nu}^{m}}\right)\right. \\
& \left.+\beta_{m_{\nu}}^{\nu} \mathfrak{\Im}\left(\frac{d^{m_{\nu}} \tau_{\tau_{\mu}^{\prime k}}\left(\zeta_{\nu}\right)}{d \zeta_{\nu}^{m_{\nu}}}\right)\right]=0, \quad \\
& \left(h=1,2, \cdots, 2 p ; \mu=1,2, \cdots, s ; k=1,2, \cdots, n_{\mu}-1\right) .
\end{align*}
$$

(2), (3^{\prime}), (4^{\prime}) is a system of homogeneous linear equations for $2\left(\sum_{\nu=1}^{r} m+1\right)$
unkown quantities $\alpha_{i}^{\prime}, \beta_{i}^{\prime}, a, b\left(\nu=1,2 \cdots \cdots, r ; i=1,2 \cdots \cdots, m_{\nu}\right)$. Let R be the rank of the matrix (\mathfrak{H}) formed with the coefficients, then the system has (in the real sense)

$$
\begin{equation*}
A^{\prime}=2\left(\sum_{\nu=1}^{r} m_{\nu}+1\right)-R \tag{5}
\end{equation*}
$$

linearly independent solutions, A^{\prime} is the number of (in the real sense) linearly independent one-valued analytic functions on F, which are multiple of $1 / 0$. Let $\left(\mathfrak{H}^{\prime}\right)$ be the transposed matrix of (\mathfrak{L}), then (\mathfrak{H}^{\prime}) has the rank R. Hence the following system of homogeneous linear equaltions (7), (8), (9) with the coefficients matrix (\mathfrak{Y}^{\prime}) for $2\left(\sum_{\mu=1}^{s} n_{\mu}+p\right)$ unknown quantities $a_{h}, b_{\mu}, b_{\mu}^{\prime}, c_{\mu}^{k}$, $c_{\mu}^{\prime k}\left(h=1,2, \cdots, 2 p ; \mu=1,2, \cdots, s ; k=1,2, \cdots, n_{\mu}-1\right)$ has (in the real sense)

$$
\begin{equation*}
B^{\prime}=2\left(\sum_{\mu=1}^{*} n_{\mu}+p\right)-R \tag{6}
\end{equation*}
$$

linearly independent solutions.

$$
\begin{align*}
\sum_{n=1}^{2 p} a_{h} \Re\left(\frac{d^{\lambda} w_{l}\left(\zeta_{\nu}\right)}{d \zeta_{\nu}^{\lambda}}\right) & +\sum_{\mu=1}^{s}\left[b_{\mu} \Re\left(\frac{d^{\lambda} \psi_{z_{\mu}}\left(\zeta_{\nu}\right)}{d \zeta_{\nu}^{\lambda}}\right)+b_{\mu}^{\prime} \Re\left(\frac{d^{\lambda} \psi_{z_{\mu}^{\prime}}^{\prime}\left(\zeta_{\nu}\right)}{d \zeta_{\nu}^{\lambda}}\right)\right] \\
& +\sum_{\mu=1}^{s} \sum_{k=1}^{n \mu-1}\left[c_{\mu}^{k} \Re\left(\frac{d^{\lambda} \tau_{z_{\mu}}^{k}\left(\zeta_{\nu}\right)}{d \zeta_{\nu}^{\lambda}}\right)+c_{\mu}^{\prime \kappa} \Re\left(\frac{d^{\lambda} \tau_{z_{\mu}}^{\prime \lambda}\left(\zeta_{\nu}\right)}{d \zeta_{\nu}^{\lambda}}\right)\right]=0 \tag{7}
\end{align*}
$$

$$
\begin{align*}
& \sum_{n=1}^{2 p} a_{h} \mathfrak{\mathcal { V }}\left(\frac{d^{\lambda} w_{h}\left(\zeta_{\nu}\right)}{d \zeta_{v}^{\lambda}}\right)+\sum_{\mu=1}^{s}\left[b_{\mu} \mathfrak{J}\left(\frac{d^{\lambda} \psi_{z_{\mu}}\left(\zeta_{\nu}\right)}{d \zeta_{\nu}^{\lambda}}\right)+b_{\mu}^{\prime} \mathcal{v}\left(\frac{d^{\lambda} \psi_{z_{\mu}}^{\prime}\left(\zeta_{r}\right)}{d \zeta_{v}^{\lambda}}\right)\right] \\
& +\sum_{\mu=1}^{s} \sum_{k=1}^{m_{\mu}-1}\left[c_{\mu}^{k} \mathfrak{j}\left(\frac{d^{\lambda} \tau_{z_{\mu}}^{k}\left(\zeta_{v}\right)}{d \zeta_{v}^{\lambda}}\right)+\boldsymbol{c}_{\mu}^{\prime k} \mathfrak{J}\left(\frac{d^{\prime} \tau_{z_{\mu}}^{k}\left(\zeta_{v}\right)}{d \zeta_{v}^{\lambda}}\right)\right]=0, \\
& \left(\nu=1,2, \cdots, r ; \lambda=1,2, \cdots, m_{\nu}\right) . \tag{8}\\
& \sum_{\mu=1}^{s} b_{\mu}=0, \quad \quad \sum_{\mu=1}^{\varepsilon} b_{\mu}^{\prime}=0 . \tag{9}
\end{align*}
$$

From (7), (8), we have

$$
\begin{align*}
& \sum_{h=1}^{2 p} a_{i \lambda} \frac{d^{\lambda} w_{h}\left(\zeta_{\nu}\right)}{d \zeta_{\nu}^{\lambda}}+\sum_{\mu=1}^{s}\left[b_{\mu} \frac{d^{\lambda} \psi_{z_{\mu}}\left(\zeta_{\nu}\right)}{d \zeta_{\nu}^{\lambda}}+b_{\mu}^{\prime} d^{\lambda} \frac{\psi_{z_{\mu}}^{\prime}\left(\zeta_{\nu}\right)}{d \zeta_{\nu}^{\lambda}}\right] \\
& +\sum_{\mu=1}^{s} \sum_{k=1}^{\eta_{\mu}-1}\left[\begin{array}{c}
c_{\mu}^{k} \\
d^{\lambda} \tau_{z_{\mu}}^{k}\left(\zeta_{\nu}\right) \\
d \zeta_{\nu}^{\zeta}
\end{array}+c_{\mu}^{\prime k} \frac{d^{\lambda} \tau_{z_{\mu}}^{*}\left(\zeta_{\nu}\right)}{d \zeta_{\nu}^{\lambda}}\right]=0 . \\
& \left(\nu=1,2, \cdots, r ; \lambda=1,2, \cdots, m_{\nu}\right) . \tag{10}
\end{align*}
$$

By Theorem 1 and (9), we see that the differential

$$
\begin{align*}
d v(\zeta)=\left[\sum_{h=1}^{2 p} a_{h} \frac{d w_{h}(\zeta)}{d \zeta}+\right. & \sum_{\mu=1}^{s}\left(b_{\mu} \frac{d \psi_{z_{\mu}}(\zeta)}{d \zeta}+b_{\mu}^{\prime} \frac{d \psi_{z_{\mu}}^{\prime}(\zeta)}{d \zeta}\right)+ \\
& \left.\sum_{\mu=1}^{s} \sum_{k=1}^{r_{\mu}-1}\left(c_{\mu}^{k} \frac{d \tau_{z_{\mu}}^{k}(\zeta)}{d \zeta}+c_{\mu}^{\prime k} \frac{d \tau_{z_{\mu}^{\prime}}^{\prime k}(\zeta)}{d \zeta}\right)\right] d \zeta \tag{11}
\end{align*}
$$

is regular at z_{0} and from (10), we see easily that $d v(\zeta)$ is a multiple of b. Hence B^{\prime} is the number of (in the real sense) linearly independent differentials, which are multiple of 0 .

From (5), (6), we have

$$
\begin{equation*}
A^{\prime}=B^{\prime}+2(m+1-p), \quad\left(m=\sum_{\nu=1}^{r} m_{\nu}-\sum_{\mu=1}^{s} n_{\mu}\right) \tag{12}
\end{equation*}
$$

Let A be the number of (in the complex sence) linearly independent one-valued analytic functions, which are multiple of $1 / 0$ and B be the number of (in the complex sense) linearly independent differentials, which are multiple of D, then we can prove easily ${ }^{6)} A^{\prime}=2 A, B^{\prime}=2 B$, so that

$$
A=B+(m+1-p)
$$

Hence our theorem is proved.
We remark that, since A^{\prime} is even number, we see from (5), that R is an even number.

Mathematical. Institute, Tokyo University.

[^3]
[^0]: 1) H. Weyi., Die Idee der Riemannschen Fläche, Berlin (1923). Hurwitz-Courant: Funktionentheorie, Berlin (1929).
 2) Heins, The conformal mapping of simply connected Riemann surfaces, Annals of Math., 50 (1949).
[^1]: 4) W.F. OsGOOD, Lehrbuch d. Funktionentheorie II_{2}, Leipzig u. Berlin (1932).
[^2]: 5) Weyi.,1.c. 1) p. 112-113.
[^3]: 6) WEYI., 1.c. 1) p. 99 .
