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In the former paper?, I have proved the following extension of Bloch’s
theorem :

THEOREM 1. Let w = f(z) be meromorphic in |z2| < 1 and
[ £0)]
1+ | /0))*
Then the Riemann surface F generated by w = f(z)ﬁ:on the w-sphere contains

a schiicht spherical disc, whose radius is = py >0, where po is a constant
independent of f(2).

In this paper, I shall apply this theorem to normal family.

= 1.

THEOREM 2.® Let Dy, -- .-, D, (@ = 3) be ¢ disjoint simply connected domains
on the w-sphere and 1 < m; < o be positive integers or o, such that
q

> —1/my) >2.

i=1

Let w = f(2) be mermorphic in |z| < R and F be the Riemann surface generated
by w = f(2) on the w-sphere. If every simply connected island of F, which lies
above D; is of multiplicity = m;>, then

1+ A0 7] x
R = ) N . é 7
=Trol I+ /0 = R
where « is a constant, which depends on D, ---., Dq only.

q

Proor. It can be proved easily that if 2(1 — 1/my) > 2, then

i=1

. q

4)) >0 —-1/m)—2=1/42,
i=1
where the minimum value 1/42 is attained, when m, =2, m,=3, m; =7,
My = -+ =My = 1.
First suppose that
) ‘lf(Olh =1
1+ 1A0)[*
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3) mi=oo means that there is no island of F above D:.
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We it
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Lir) = f Areel . rap O<r<R),
1 __1fae®))

Stry = f f ( Tk ) ¢ didg O<7<R),
then
®) (L)) < 22°r ‘%‘rl’l.

By Ahlfors’ theorem?,
D,

so that

hence by (3),

q

there exists a constant % >0, which depends on

, D, only, such that

Lir)
Z}(l ~1m) <2+ hgry,
2 Lv)
= 21 —1/m)—2<h Str)
dS(r)

so that if R>1,

27%h?

\S(f))‘ = (B S 2xtr — O0O=<r<R),

T ase) _ 2k 1

R
logR=f£<
J 7

& Sy = & SO

By Theorem 1, S(I) =4, >0, where A, is a constant. Hence
R < exp(27?h*[8%hy) = k.

“@

(4) holds evidently, if R<1.

In the general case

/€0

® T+ 7o =%
we put z = x/a, F(x) = f(z), then |F(0)|/@ + |F(0)[*) =1, so
that by (4)
£ _ 1+ /0
© Rs o =" o1

which holds evidently,
proved.

if |£(0)]/(1 + 1/0)]2) = 0. Hence our theorem is

Let 2z be:any point in |z] < R, then

4) L.AHLFORS, Zur Theorie der Uberlagerungsflichen. Acta Math., 65(1935).
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o) =7 (B2

satisfies the condition of Theorem 2, so that
1P€0)] < X

1+ |20* = R
Since #(0) = f(z), #'(0) =f(XR* — |z|*)/R?, we have
_1f@) xR
@ AR aF S R-pa

Hence

THEOREM 3.% Let f(z) be meromorphic in |2] < R and satisfy the condition
of Theorem 2, then the family {f(2)} is normal.

Almost all criteria on normal family can be deducéd from Theorem 3.

THEOREM 4.9 Let w = f(z) be meromorphic in |z2] < R and the Riemann
surface F generated by w = f(z) on the w-sphere is a covering surface of a
closed Riemann surface ® of genus p =2, then

1+ [/ 11 (0)] K
R = N ) * é D
= "Tro)l 1+A0)* = R
where « is a consltant, which depends on ® only.

ProoF. Let L(r), S(r) have the same meanings as the proof of Theorem

2 and 7 be the number of sheets of . Then by Ahlfors’ fundamental
theorem on covering surfaces”,

pH(r) = %S(r) — BL(r), p*(r)= Max (o(r), 0),

where py, = 2(p — 1) is the Euler’s characteristic of & and p(r) is that of the
Riemann surface F, generated by w=/(2) 0=|2]<7)and >0 is a
constant, which depends on ¢ only. Since F, is simply connected, p*(7)
=0, hence .

S(r) < ”Th L(7).

0

From this we can prove the theorem similarly as Theorem 2.
Similarly as Theorem 3, we have

THEOREM 5.9 Let F(x,y) =0 be an algebraic curve of genus p =2 and
x = x(2), y=3(2) be uniformizing functions, which are meromorphic in a
domain D, then the family {x(z)}, {¥(2)} are normal in D.
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