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The present note contains a specialization of a theorem due to H. A.
Dye [4]. He shows, among others, that a theorem of the Radon-Nikodym
type is true for some states on a certain JF*-algebra of the finite type. In
the present note, the states may be restricted to the traces. Thus, our
theorem will be much restricted than that of Dye. However, it will be
proved, under a suitable condition, the resulting Radon-Nikodym derivative
shall be contained in the center of the algebra. And, it will be used in the
proof the classical Radon-Nikodym theorem. More precisely, the classical
Rodon-Nikodym theorem will be proved under a special circumstance. This
method of the proof may clarify and justify the generalized formulation of
Dye in the connection of the classical theorem.

For the proof, an excellent tactic of K.Yosida [16] and M. K. Fort [5]
will be employed. The existence of the centering in a W*-algebra of finite
type, which is due to J. Dixmier [3], becomes our principal weapon. The
notion of order-continuity, originally due to G. Birkhoff [2], will be used
to avoid the separability restriction of the algebra.

The body of the present note contains the materials of the following
order: 1. Definitions and the notation, 2. Complete additivity of traces, 3.
Order-continuity of traces, 4. Statement of the theorem, 5. Reduction to the
center, 6. Proof of the heorem, 7. A comment to unbounded case, and the
references.

1. Let R be a ring of operators in the sense of F. J. Murray and J. von
Neumann [11] or a W*-algebra in the sense of I.E.Segal. We may assume
throughout this note R is of finite type in the sense of J. Dixmier [3] and
acts on a separable Hubert space H. (The separability of His not necessary
for our proof. Alternatively, the σ-finiteness of R in the sense of Dye is
sufficient. Even, these enumerability assumption can be avoided with the use
of order-continuity of traces, cf. Section 3). The most remarkable property
of a W*-algebra of finite type is the existence of the centering: An operation
defined on the algebra taking the center elements as its value, #->#' satisfies
the following relations it is additive, homogeneous, positive, and

(i i i)

<1.1.3) xe Z implies x* = x,

•where Z denotes the center of the algebra. These are established by
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J. Dixmier [3].

A trace τ is a linear functional on i?(as a Banach space, the operator

bound as its norm), which is positive, normalized and central in the sense:

(1.2.1)

(1.2.2)

(..2,3) T(xy) = τ(yx).

A useful characterization of traces is (cf. R.Godement [6], Y. Misonou and
M. Nakamura [10]), in the connection with the centering,

(1.2.4) τ(*) = τ(x>),

that is, the values of a trace are determined on the center completely. A
trace will be called a character of the algebra if it can not be described as
a non-trivial convex combination of traces. The collection X of all characters
of the algebra will be called the character space with its weak* topology as
functionals on the algebra. It is known, the character space is compact
and homeomorphic to the structure space or the spectrum of the center
(i.e., the maximal ideals with the Stone topology). The correspondence will
be given as follows:

(1.3) M - {x: X(xx*)=> 0}.

It is also known, that the above correspondence give a homeomorphism of
the character space and the spectrum of the algebra (i. e., the set of all-
maximal ideals with the Stone topology). These are contained in [3] or
[10]. The character will be characterized as a trace having

(1.4) X(x*yί) = X{x<)X(yt),

i. e., it is multiplicative on the center, and conversely.
As an application of the Gelf and-Neumark-Arens theorem (cf. e. g ,

Arens[l]), the center Z of the algebra is isometrically isomorphic with
the space of all continuous functions on the character space X. Hereafter,
we may identify them. We may also use, for the convenience, the
notation X(x) instead of x(X).

Since a trace T acts on the center Z as a linear functional, by the well-
known theorem of Riesz-Markhoff-Kakutani (cf. S. Kakutani [7]), there
exists a regular measure dr with total measure one on X allowing the
integral representation:

(1.5) τ(*)=

where the integration ranges over the whole X. (We may assume this except the-
contrary stated.) By the help of (1.2.4), the relaiton (1.5) can be extended
without the restriction on x, i. e., (1.5) holds for all x in R.

Let L be the lattice of all projections of the algebra. L forms a
complemented and also ortho-complemented modular lattice (Moreover, L.
forms a continuous geometry in the sense of J. von Neumann [13]. However,



THE RADON-NIKODYM THEOREM ETC. 277

the continuity of the lattice operations is not necessary for us). By a
theorem of I. Kaplansky [9], it is easy to verify that a trace τ is a modular
function (in the sense of G. Birkhoff [2]), i. e., for any p and q in L,
(1.6) r(p V q) + τ(p /\q)= τ(p) + τ(q).

Furthermore, let K be the elements of L which are belonging also to the
center of the algebra. The elements of K will be often called central
projections. By a theorem of J. von Neumann [13], K is the center of L
and forms a complete Boolean algebra. By the function representation on
X, the central projections correspond to the characteristic functions of open-
closed sets of X and conversely. By the help of (1.5), (1.2.4) and (1.1.2),

(1.7) τ(ex)= I X(x)dτ(X),

E

where E is an open-closed set in X having e as its characteristic function.
The separability of the underlying space will be used in the following

form:
(1.8) A set of mutually orthogonal projections of R is at most countable.
This property is termed by H. A. Dye as σ-finiteness. We shall assume this
through the sections, except the contrary explicitly stated.'

2. Following to H. A. Dye, a trace T will be called completely additive
provided that

(2.1)

whenever pt is a set of mutually orthogonal elements of L. Although dr is
completely additive on all Borel sets of X, it is not true on the lattice of
all open-closed sets. For example, it is not hard to verify the following
situation: Let (m) be the Banach algebra of all bounded sequences of complex
numbers, (m) is the space of all bounded continuous functions of all naturaL
numbers N. (cf. S. Kakutani and M. Nakamura [8]). The character space

V

X{m) of (m) is the Cech compacting M of N. It is known that (m) is a
W*-algebra. Then an ideal point X of Af(i. e., X € M— N) is not completely
additive. For, let en be the characteristic functions of the set {1,2, ,ή},
then 1 = v»*i, and X(et) = 0 for all /. More generally, it holds :

PROPOSITION 1. A character of an abelian W*-algebra is completely
additive if and only if it is an isolated point of the character space.

PROOF. Sufficiency is obvious. To prove the converse, suppose the
contrary. Let E be the complement of X in X. By (1. 8), E contains at
most enumerable disjoint open-closed sets. Let {e,} be the characteristic
functions of a maximal collection of such sets. Since X is not isolated,
Σi£ί = 1. On the other hand, X{et) vanishes for each i.

COROLLARY. // all traces of a W""-algebra of finite type is completely
additive, then it is the direct sum of finite number of finite factors.
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An example of a completely additive trace is the wave function:

(2.2) ω(χ) = (φχ,φ), ϊ| φ || = 1,

if it was already a trace. More generally, a sequentially strongly continuous
trace is completely additive. Conversely, Dye [4 p. 248] showed that a
completely additive state (hence, trace) is sequentially strongly continuous:

(2.3) #»-># (strongly) implies τ{xn)^τ(x).
However, it does not need, in the below, such stronger property. It needs
in the following weaker statement:

PROPOSITION 2. L?t zn be a positive elements of the center with zn<^zn+1.
ΐf\\z,t\\ is bounded by a constant, then it converges strongly to an element z
of the center. And, if r is completely additive, then τ(zH) converges to r(z).

In the other words, T is sequentially order-continuous on the center.
We shall prove this in the following sequence of lemmas, one of which is
a specialization of a lemma of Dye, another due to Y. Misonou, and
the first of them is a consequence of results due to I. Kaplansky [9]. In
the next proposition we do not need the separability. To make it clear, we
shall state them in the terms of ATF*-algebra of I. Kaplansky.

PROPOSITION 3. A uniformly closed ideal of an AW*-algebra is generated
by the projections which belong to the ideal.

PROOF. Let / be an ideal which is uniformly closed. In a C*-algebra,
by a theorem due to Segal [14], an ideal is generated by its positive
elements, we shall show that each positive x can be uniformly approximated
by a finite linear combination of projections of /. Consider a maximal
abelian subalgebra A including x. A is an A0/*-algebra, too. A is
represented as the space of all continuous functions on a compact Y, in
which the lattice of all open-closed sets is complete. Hence the closure £Ί
of the set {t; x(t) > £} is open-closed. x{t) ^ £ on it and x(t) <Ξ £ otherwise.
Let En be the closure of {t; x(t) > n&} and let en be its characteristic
function. Then, it is easy to see, that

ίl x—ΣιnβiII S £.
Since each βι is a multiple of x, e, belongs to /. This is the required.

Following proposition is communicated by Y. Misonou in conversation.
His proof differs from ours.

PROPOSITION 4 (MISONOU). // a trace τ defined on a W*~algebra R is
completely additive, then the kernel I of' τ :
(2.4) / = { * ; τ(##*)= 0}

is a principal ideal generated by a central projection I — e, i. e., I = (1 — e)R.
Hence I is weakly closed.
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PROOF. Let / be the annihilator of /. By a theorem of I. Kaplansky, /
is an ideal with / = Re where e is a central projection. Let {£*} be a
maximal family of mutually orthogonal projections of /, and p = Σ«& € /.
If q is a projection which is orthogonal to p, by the above Proposition 3,
^ belongs t o / , \.e.,q<*e. Hence p— 1 — e. This and Proposition 3 show
the statement.

For the above e, by its definition, we have

<2.5) τ(p) = 0 implies p(l - e) = p.

Such e will be called the carrier projection of r in the sense of Dye
[4 p. 246]. Hence, we have

PROPOSITION 5. The carrier projection of a completely additive trace is
central.

It is to be noted, that Proposition 5 can be proved more simply and
directly from a theorem of lattice theory due to G. Birkhoff [2 p. 73]. Since T
defines a modular functional on L, the vanishing points of τ form a
neutral ideal of L. Then (1.8) and complete additivity imply that the ideal
is principal. Hence the generating element is central.

LEMMA 1. Let A be an abelian W* -algebra and τ be a completely additive
trace of A. Then eϋery first category set of character space X of A is a
null-set with respect to dτ.

PROOF. TO prove this, it needs to prove that τ(S) vanishes where S is
a nondense closed set. By (1.8), the exists a sequence {En} of closed-open
sets whose join is X — S and assuming that {Z?Λ}is mutually disjoint. Let
en be the coresponding projection of En. Then 1 = Σe ί # Hence τ(X— S) = 1
and τ(S) = 0.

PROOF OF PROPOSITION 2. The first half of the statement is a known
fact about operators (cf. Sz. Nagy [15j). To prove the remainder, we may
assume this, i. e., zn converges strongly to z. For each n, let

Fn = fU{%; Zm(7Q S *(*) - 1/w},

then Fn is closed and contains no non-void open set, whence it is non-
dense. Hence F = \JnFn is a set of first category and equals to {X;limnX(zn)
=t= X(z)}. Therefore, by Lemma 1, zn converges to z on X almost everywhere
with respect to Jr. Consequently, it implies, by Fatou's lemma, τ{zn)
converges to τ(z).

3. Since the separability of the underlying space and the property
{1.8) is too restrictive, it will be hoped to find a condition which makes to
generalize the Radon-Nikodym Theorem for an arbitrary W*-algebra of
finite type. This is possible if the traces receive somewhat more stronger
restriction. In this section, we wish to discuss it briefly.

A trace T of a W*-algebra R(without separability assumption) is said
to be order-continuous if
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(3.1) 0<xa^x implies τ(xa)->τ(x),

where xa^x means the order convergence of the phalanx xa defined on a
directed set D: i. e., {xa} is an abelian family of non-negative elements of
R with Xa^Xβ for a^β(oί D), and x is their least upper bound. (It is
sufficient for our purpose to assume that (3.1) holds in the center only).
Obviously, an order-continuous trace is completely additive, and it holds
Proposition 2 automatically. Moreover, Proposition 4 and 5 are still true for
order-continuous case. Proofs may be carried out with a few verbal change
(It is to be mentioned, that Proposition 5 is a consequence of the Hahn-
Birkhoff decomposition theorem of vector lattices (cf., G. Birkhoff [2 72~}9

M. Nakamura 022).

4. THEOREM. Let R be a W*-algebra of finite type acting on a Hilbert
space H, and let T be a trace of R. Suppose that R and T satisfy one of the
following three conditions:
(4.1) R is σ-finite and r is completely additive
(4.2) H is separable and T is completely additive
(4.3) T is order-continuous.
If another trace σ of R satisfies

(4.4) 0 ^ σ ^ KT,

where K is a constant. Then there exists essentially unique positive element
a in the center 7t of the algebra satisfying the following relations:

(4.5) 0 < « S K,

and for an arbitrary element x in R,

(4.6) σ(x) - τ(xa).

Moreover, let X be the character space of R, σ allows the integral represen-
tation :

(4.7) σ(x) = f X(x)X(a)dτ(X),

where the integration ranges over X and dr is the regular measure on X
induced by the trace T. Resulting a will be called the Radon-Nikodym deriva-
tive of σ with respct to T, and will be denoted by a = dσjdτ.

5. We shall examine the theorem under the condition (4.2), since Jthe
other cases can be proved with a few modification. First at all, it is easy to
deduce that (4.4) implies the complete additivity of σ. Therefore, by the
classical Radon-Nikodym Theorem, we have

(5.1) σ{e) = J/tX)dτiX) - f e(X)J(X)dτ(X),

where π s a central projection land / is the "(classical) Radon-Nikodym
derivative. It is easy to deduce from (4.4), /(%) is essentially bounded by
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K.

In (5.1), if / is continuous, then there exists an element a of Z which
satisfies (4.5) and

(5.2) σ(e) - ί X(e)X(a)dτ(X) = ίX{ea) dτ{X) = τ(eβ).

From this, we have, by (1.7), (1.1.2) and (1.2.4), that the computation

CΓ(ΛΓ)= ίx(x)dσ(X)^ f X(x)X(a)dr(X) = f X(x* a)dτ(X) = ίX(xa)dτ(X) = T(Λ»)

shows (4.6) and (4.7). Therefore, the key point of the proof of the theorem
is to show that the Radon-Nikodym derivative / is unique and continuous
on X (except the equivalence). We show this in the next section, following
the line of K. Yoshida and M. K. Fort.

6. Proof is divided into some lemmas.

LEMMA 2 Suppose that

(6.1) D = {z; 0 ̂  z € Z, e € K implies τ{ez) S σ(e)}.

Then D is (i) a directed set, (ii) inductively ordered, and (iii) there exists a

maximum element z in D {except equivalence).

PROOF, (i) is clear. Ad (ii), let C be a simply ordered subset of D.
Let μ be sup{τ(2);z€C}. μ <Ξ tc by (4.4). Choose {zt} such that

(6. 2) Zn S *n+i € C, τ(Zi)->μ.

zn converges strongly to c of Z By Proposition 2 (or order-continuity),
τ(&εM) converges to τ{ec). Hence τ(c) = μ, and T(#C) <; σ(£), or c € D. Let £
be an arbitrary element of C. Since we can assume zt <: & for all i, we
can also assume c S ^, whence by μ == τ(c) S τ(6) gjw we have τ(6; = /x.
Therefore 0 < τ{b — «) = μ — μ •= 0 shows & = c almost everywhere. This
shows (ii). Now, (iii) is an immediate consequence of (i) and (ii).

LEMMA 3. // 0 < π <Ξ KT, then there exist an e of K and a positive a such
thai

(6.3) π(p) > aτ(p)

for all p of K with

PROOF. Let p(p) = nip) — ocτ(p), then the Hahn-decomposition yields

(6.4) p(p) ̂  0, i. e., σ(p) ̂  aτ{p) for e > p e K.

Hence, there exist a positive a and non-zero e, since otherwise ?r vanishes
identically.

LEMMA 4. (5.2) ts satisfied by a of Lemma 1.

If τ(/>fl) Φ σ(ί) for some /> of K. put ar(£) = σ{p) — τ(ίβ). By Lemma 1
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and (4.4),

0 ^ π(p) S σ(p)
Let e be the element of K described in Lemma 2. Then p <; e implies

σ{p) - τ(pa) = τr(p) > aτ(p) 5 τ{ap).

If p<l — e, τ(pe) = 0. Hence tf£ belongs to £> with τ(μe) > 0. Thus,

σ(e) > τ(*α) + τ(α^) = τ{ea + ate) > τ(ea).

Hence a + 2 > a and contradicts to the maximality of a.
It is not hard, without using the integral computation, (5.2) implies

{4.6). Since each x of Z is approximated uniformly with linear combinations
of central projections.

It is to be remarked, that the proof is purely algebraical. No spacial
restriction is used except the separablity. Our method essentially
bases on the following facts: (i) Existence of the centering, (ii) lattice
completeness of the center, and (iii) order-continuity of traces. Hence, it
is not impossible to extend the theorem to a certain hypercentral C*-algebra
(with restrictions on the center). But, it is uncertain how useful this
remark is.

7. To extend the theorem, without assuming (4.4), it requires some
other concepts. For an analogy to the classical theorem of Radon-
Nikodym, we shall introduce the absolute continuity of traces following to
H. A. Dye: A trace σ is absolutely continuous with respect to a trace T if

(7.1) p € L and τ{p) = 0 imply σ{p) = 0.

In this case, as expected, resulting derivative a will be unbound, and so
τ(ea) will lose its mean. In this section, we shall outline this case.

«
LEMMA 5. ///(%) is a non-negative function defined for almost every

points of X and measurable with respect to a spectral measure de(X), then
the set M of all elements ξ with

(7.2) j \f(X)Vd\ξe{X)Ϋ< H-cx.

is a dense linear set, and then there exists a non-negative operator a satisfying

<7.3) (fflM7)= ff(X)d(ξe(XX v)

for every ξ and η in M.

Since the proof is similar to that of usual case, we shall omit it. (cf.
B. v. Sz. Nagy [lb p. 44j). We shall write such a as usual

(7. 4) a = ff(X) de(X).

I f σ i s a b s o l u t e l y c o n t i n u o u s w * J " ' ' '" " " r and r are



THE RADON-NIKODYM THEOREM ETC. 283

completely additive, and if R is of .finite type, then the classical Radon-

Nikodym Theorem yields

(7.5) σ(e)^ ff(X)e(X)dτ(X),

where / is the Radon-Nikodym derivative. Within the equivalence, we can

choose, / is continuous (allowing infinity), non-negative, integrable, and

vanishes whenever X lies in an open-closed set with τ-measure zero. Let

de(X) be the spectral measure defined by the central projections of R.

Then / satisfies the conditions of Lemma 5. Therefore a of (7.5) exists.

For this a, if we define

(7.6) τ{xa) = j X(x) f(X) dτ(X),

then τ(xa) exists for all x of R, and it is linear on R. Using this, we can

also prove (4.6) and (4.7) in this case. Thus,

PROPOSITION 6. / / σ and T are completely additive traces of W*-algebra

of finite type, and if σ is absolutely continuous with respect to T, then (4.6>

is true in the sense defined above.

This is, clearly, a specialization of Dye's theorem.
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