ANALYTIC FUNCTIONS STAR-LIKE OF ORDER p IN ONE DIRECTION

Toshio Umezawa

(Received July 11, 1952).

1. Introduction. Recently A. W. Goodman and M. S. Robertson [1] have studied typically-real functions of order p which were defined as follows:

A function

$$
\begin{equation*}
f(z)=\sum_{n=0}^{\infty} b_{n} z^{n} \tag{1.1}
\end{equation*}
$$

is said to be a member of the class $T(p)$, if in (1.1) the coefficients b_{n} are all real and if either (I) $f(z)$ is regular in $|z| \leqq 1$ and $\Im f\left(e^{i \theta}\right)$ changes sign $2 p$ times as $z=e^{\theta}$ traverses the boundary of the unit circle, or (II) $f(z)$ is regular in $|z|<1$ and if there is a $\rho<1$ such that for each r in $\rho<r<1$, $\Im{ }^{\circ} f\left(r e^{\theta}\right)$ changes $\operatorname{sign} 2 p$ times as $z=r e^{i \theta}$ traverses the circle $|z|=r$.

Concerning the above class of functions A. W. Goodman [2] has obtained the following result:

Let

$$
\begin{equation*}
f(z)=z^{\prime}+\sum_{n=q+1}^{\infty} b_{n} z^{n} \tag{1.2}
\end{equation*}
$$

be a function of the set $T(p)$. Suppose that in addition to the q-th order zero at $z=0$, the function $f(z)$ has exactly s zeros, $\beta_{1}, \beta_{2}, \cdots, \beta_{s}$, such that $0<\left|\beta_{i}\right|<1, j=1,2, \ldots, s$. Finally let the non-negative integer t be defined by

$$
\begin{equation*}
q+s+t=p \geqq 1 \tag{1.3}
\end{equation*}
$$

and let $m=[(t+1) / 2]$. Then

$$
\begin{equation*}
\left|b_{n}\right| \leqq B_{n}, \quad n=q+1, q+2, \ldots \tag{1.4}
\end{equation*}
$$

where $B_{1 b}$ is defined by

$$
\begin{align*}
F(z) & =\frac{z^{q}}{(1-z)^{2 q+2 s}}\left(\frac{1+z}{1-z}\right)^{2 m} \prod_{j=1}^{s}\left(1+\frac{z}{\left|\beta_{j}\right|}\right)\left(1+z\left|\beta_{j}\right|\right) \tag{1.5}\\
& =z^{\imath}+\sum_{n=q+1}^{\infty} B_{n} z^{n}
\end{align*}
$$

When t is odd or when $t=0, F(z) \in T(p)$ and the inequality (1.4) is sharp.
Now in the present paper we shall introduce wider classes of functions, to be defined precisely in § 2, whose coefficients are not necessarily real, proving that inequalities similar to (1.4) can be obtained.

For the special case when $t=0$ in (1.3) the above work has already
been done by the present author. [3]
2. Preliminary considerations.

Lemma 1. Let

$$
\begin{equation*}
w=f(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \tag{2.1}
\end{equation*}
$$

be regular for $|z| \leqq 1$ and have $p(\geqq 0)$ zeros in $|z| \leqq 1$, no zeros on $|z|=1$. Then there exists a point $\zeta(|\zeta|=1)$ for which the following equality holds
$\arg f(-\zeta)=\arg f(\zeta)+p \pi$.
This lemma was proved in [3].
Definition 1. The straight line $f(\zeta) \circ f(-\zeta)$ is said to be the diametral line of $f(z)$ when ζ satisfies Lemma 1.

The special case of Lemma 1 and Definition 1 we owe to S. Ozaki [4] and N. G. DeBruijn [5]

Lemma 1'. Let (2.1) be a function regular for $|z| \leqq 1$, and $f(z) \neq 0$ on $|z|$ $=1$. Then there exists at least one diametral line of $f(z)$ in the w-plane.

Definition 2. Let $f(z)$ be regular for $|z| \leqq 1$ and let C be the image curve of $|z|=1$. If C is cut by a straight line passing through the origin in $2 p$, and not more than $2 p$ points, then $f(z)$ is said to be star-like of order p in the direction of the straight line. This set of functions is denoted by $S^{1}(p)$.

Especially when the direction of star-likeness of order p is that of the diametral line of $f(z), f(z)$ is said to belong to the class $D(p)$.

The idea of being star-like in one direction was introduced by M.S. Robertson [6] and also extended to general p by him [7], [8]. And $D(1)$ was studied in [4], [5] and generalized in [3].

Lemma 2. Let $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ be $a_{\text {a }}^{-1}$ member of the class $S^{1}(p)$ or $D(p)$.
Further let $f(z)$ have s zeros $\beta_{1}, \beta_{2}, \ldots, \beta_{s}$ such that $0<|\beta|<1,, \quad j=1.2$. \cdots, s. Then the function $F(z)$ defined by

$$
F(z)=f(z) g(z), g(z)=2^{s} / \prod_{j=1}^{s}\left(z-\beta_{j}\right)\left(1-\bar{\beta}_{j} z\right)
$$

is also a member of the class $S^{1}(\boldsymbol{p})$ or $D(p)$, respectively.
Proof. Regularity of $F(z)$ in $|z| \leqq 1$ is evident. Now we easily see that

$$
g\left(e^{i \theta}\right)=1 / \prod_{j=1}^{s}\left|e^{i \theta}-\beta_{j}\right|^{2} .
$$

Hence $\arg F\left(e^{i \theta}\right)=\arg f\left(e^{i \theta}\right)$ for every θ. Consequently if $f(z) \in S^{1}(p)$ or $D(p)$, then $F(z) \in S^{1}(p)$ or $D(p)$, respectively.

Definition 3. The harmonic function $V(r, \theta)$ is said to have a change
of sign at $\theta=\theta_{j}$ if there exists an $\varepsilon>0$ such that for $0<\delta<\varepsilon$

$$
\begin{equation*}
V\left(r, \theta_{j}+\delta\right) V\left(r, \theta_{j}-\delta\right)<0 . \tag{2.3}
\end{equation*}
$$

Note that in (2.3) r is constant.
Definition 4. $\Im f(z)=V(r, \theta)$ is said to change sign q times on $|z|=r$ if there are q values of $\theta, \theta_{1}, \theta_{2}, \ldots, \theta_{q}$ such that
(a) inequality (2.3) holds for each $\theta_{j}, j=1,2, \ldots, q$,
(b) $\theta_{j} \neq \theta_{k}(\bmod 2 \pi)$ if $j \neq k$,
(c) if θ_{s} is any value of θ for which $V(r, \theta)$ has a change of sign then for one of the $\theta_{j}, j=1, \ldots, q \theta_{\mathrm{s}} \equiv \theta_{i}(\bmod 2 \pi)$.

Lemma 3. If $V_{1}(r, \theta)$ and $V_{2}(r, \theta)$ both have a change of sign at θ_{j}, then the product $V_{1}(r, \theta) V_{2}(r, \theta)$ does not have a change of sign at θ_{j}. If $V_{1}(r, \theta)$ has a change of sign at θ_{j}, and if $V_{i}(r, \theta)$ does not have a change of sign at θ_{j} then the product has a change of sign at θ_{j}.

The above two definitions and Lemma 3 were used in [1].
Lemma 4. Let $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n},\left|a_{0}\right|=1$, be regular in $|z| \leqq 1$ and $\mathfrak{F} f\left(r e^{\theta}\right)$ change sign $2 p$ times on $|z|=r$ for r near 1. Further let $f(z)$ have no zeros in $|z|<1$. Then

$$
\begin{equation*}
f(z) \ll\left(\frac{1+z}{1-z}\right)^{p+1} \tag{2.4}
\end{equation*}
$$

Proof. Since $f(z)$ is free of zeros in $|z|<1$, there is a function $h(z)$ $=(f(z))^{1 / p+1}$ such that $h(z)=\sum_{n=0}^{\infty} \alpha_{n} z^{n},\left|\alpha_{3}\right|=1$, is regular and has no zeros in $|z|<1$. We shall see that for $|z|<1, \mathfrak{R} r e^{i \alpha} h(z) \geqq 0$ with a proper choice of α.

Since $h(z)$ is free of zeros on $|z| \leqq 1$ by the above assumption, if we take a branch of $\arg h\left(r e^{i \theta}\right), \arg h\left(r e^{i \theta}\right)$ is a one-valued continuous function in the interval $0 \leqq \theta \leqq 2 \pi$. Hence for our purpose it is sufficient to show that $\operatorname{Max}_{0 \leq \exists \leq 2 \pi} \arg h\left(r e^{i \theta}\right)-\operatorname{Min}_{r \leq \theta \leq 2 \pi} \arg h\left(r e^{\cdot \theta}\right) \leqq \pi$ which means $h\left(r e^{i \theta}\right)$ lies on a half plane.

Let us suppose that the above inequality does not hold. Then we have

$$
\operatorname{Max}_{0 \leq \theta \leq \angle \pi} \arg f\left(r e^{\prime \theta}\right)-\operatorname{Min}_{0 \leq \theta \leq 2 \pi} \arg f\left(r e^{i \theta}\right)>(p+1) \pi
$$

since $\arg f(z)=(p+1) \arg h(z)$. Hence $f(z)$ changes sign at least $p+1$ times on the arc of the circle $z=r e^{\prime \theta}, \theta_{1} \leqq \theta \leqq \theta_{2}$, where $\arg f\left(r e^{i \theta_{1}}\right)=\operatorname{Min}_{0 \leqq \theta \leqq z \pi} \arg$ $f\left(r e^{i \theta}\right)$ and $\arg f\left(r e^{i \theta_{2}}\right)=\operatorname{Max}_{0 \leq \theta \leq \leq \pi} \arg f\left(r e^{i \theta}\right)$. But $f(z)$ has no zeros, so that on the full circle $z=r e^{i \theta},-\pi+\varepsilon<\theta \leqq \pi+\varepsilon, \Delta \arg f(z)=0$. Therefore on the full circle $f(z)$ must change sign at least $2(p+1)$ times. This contradicts to our assumption.

Hence $R e^{\iota a} h(z) \geqq 0$. By Carathéodory's Theorem, $h(z) \ll(1+z) /(1-z)$ and
hence (2.4) is proved.

3. On the class $S(p)$.

Theorem 1. Let

$$
\begin{equation*}
f(z)=z^{q}+\sum_{n=q+1}^{\infty} a_{n} z^{n} \tag{3.1}
\end{equation*}
$$

be a function of the set $S^{1}(p)$. Suppose that in addition to the q-th order zero at $z=0$ the function $f(z)$ has exactly s zeros, $\beta_{1}, \beta_{2}, \ldots, \beta_{s}$ such that $0<$ $\left|\beta_{j}\right|<1, j=1,2, \ldots, s$. Finally let the non-negative integer t be defined by

$$
\begin{equation*}
q+s+t=p \geqq 1 \tag{3.2}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left|a_{n}\right| \leqq A_{n}, \quad n=q+1, q+2, \ldots, \tag{3.3}
\end{equation*}
$$

where A_{n} is defined by

$$
\begin{align*}
F(z) & =\frac{z^{2}}{(1-z)^{2 q^{2}+2 s}}\left(\frac{1+z}{1-z}\right)^{2 t+1} \prod_{j=1}^{s}\left(1+\frac{z}{\left|\beta_{j}\right|}\right)\left(1+z\left|\beta_{j}\right|\right) \tag{3.4}\\
& =z^{1}+\sum_{n=q+1}^{\infty} A_{n} z^{n}
\end{align*}
$$

Proof. Let us put

$$
\begin{equation*}
E(z)=f(z) \cdot z^{s} / \prod_{j=1}^{i}\left(z-\beta_{i}\right)\left(1-\bar{\beta}_{j} z\right) \tag{3.5}
\end{equation*}
$$

then by Lemma $2 E(z) \in S^{1}(p)$, since $f(z) \in S^{1}(p)$ and

$$
\begin{equation*}
(-1)^{s} \prod_{i=1}^{s} \beta_{i} E(z)=z^{q+s}+\alpha_{q+s+1} z^{q+s+1}+\ldots=\psi(z) \in S^{1}(p) . \tag{3.6}
\end{equation*}
$$

We wish now to show that

$$
\begin{equation*}
\psi(z) \lll \frac{z^{q+s}}{(1-z)^{2 q+2 s}}\left(\frac{1+z}{1-z}\right)^{2 t+1} \tag{3.7}
\end{equation*}
$$

For the purpose it will be sufficient to assume that the direction of starlikeness of order p is that of the real axis since otherwise we may consider $e^{\prime a} f(z)$ with a proper choice of α. Then by our hypothesis $\Im \Psi(z)$ changes sign $2 p$ times on $|z|=1$, i. e. at $\theta_{j}(j=1,2, \ldots, 2 p)$.

Let

$$
\begin{equation*}
\varphi(z)=(-1)^{q+s+1} \exp \left(-\frac{i}{2} \sum_{k=1}^{2(q+s)} \theta_{s_{k}}\right) \cdot \prod_{k=1}^{2(1+s)}\left(e^{2 s_{k}}-z\right) / z^{q+s} \tag{3.8}
\end{equation*}
$$

where $\theta_{s_{k}}(k=1,2, \ldots, 2(q+s))$ are chosen arbitrarily from $\theta_{s}(s=1,2, \ldots$, $2 p$) then

$$
\begin{equation*}
\phi\left(e^{i \theta}\right)=-2^{2(q+s)} \prod_{k=1}^{2(q+s)} \sin \frac{\theta_{s_{k}}-\theta}{2} . \tag{3.9}
\end{equation*}
$$

Hence $\psi\left(e^{i \theta}\right)$ changes $\operatorname{sign} 2(q+s)$ times on $|z|=1$, i. e. at $\theta_{s_{k}}(k=1,2, \ldots$, $2(q+s))$.

Let

$$
\begin{equation*}
G(z)=\psi(z) \varphi(z)=e^{i \theta}+\sum_{n=1}^{\infty} \gamma_{n} z^{n} \tag{3.10}
\end{equation*}
$$

then $G(z)$ is regular for $|z| \leqq 1$ and $G(z)$ has no zeros in $|z|<1$. Moreover by Lemma $3 \Im G\left(e^{i \theta}\right)$ changes sign $2 p-2(q+s)=2 t$ times on $|z|=1$. Furthermore $G\left(e^{i \theta}\right)$ touches the real axis at the origin $2(q+s)$ times as z moves along $|z|=1$. It should be noticed that $G\left(e^{\ell \theta}\right)$ does not touch the real axis at the other points. Hence $\mathfrak{\Im} G\left(r e^{i \theta}\right)$ for r near 1 changes sign more than $2 t$ times in general. It does not, however, change sign more than $4 t$ times. This fact can be seen as follows. The image region of $|z| \leqq 1$ under $G(z)$ contains a part of the real axis $(0+x, 0-x)$ for properly small x, at most t times since $\mathfrak{j} G\left(e^{i \theta}\right)$ changes sign $2 t$ times. If we consider $\mathscr{I} G\left(r e^{i \theta}\right)$, the points of contact stated above are removed and new changes of sign appear at most $2 t$ in the neighbourhood of the origin. Hence $\Im G\left(r e^{i \theta}\right)$ changes sign at most $4 t$ times on $|z|=r$ for r near 1 . Consequently by Lemma 4,

$$
\begin{equation*}
G(z) \ll\left(\frac{1+z}{1-z}\right)^{2 t+1} \tag{3.11}
\end{equation*}
$$

On the other hand from (3.10) we have

$$
\psi(z)=\boldsymbol{G}(z) / \boldsymbol{\varphi}(z)=\boldsymbol{z}^{q+\boldsymbol{s}} \boldsymbol{G}(z) /(-1)^{q+s+1} \exp \left(-\frac{i}{2} \sum_{k=1}^{2(q+s)} \theta_{s_{k}}\right) \prod_{k=1}^{2(1+s)}\left(e^{i \theta_{s_{k}}}-z\right)
$$

which is dominated by

$$
\begin{equation*}
\frac{z^{7+s}}{(1-z)^{2(q+s)}}\left(\frac{1+z}{1-z}\right)^{2 t+1} \tag{3.12}
\end{equation*}
$$

since we have (3.11).
From (3.4) and (3.5) we have

$$
f(z)=\psi(z) \prod_{i=1}^{s}\left(z-\beta_{i}\right)\left(1-\bar{\beta}_{\iota} z\right) / \prod_{i=1}^{s} \beta_{\imath} z^{s}
$$

which is dominated by

$$
\frac{z^{z}}{(1-z)^{2(\alpha+s)}}\left(\frac{1+z}{1-z}\right)^{2 t+1} \prod_{i=1}^{s}\left(1+\frac{z}{\left|\beta_{i}\right|}\right)\left(1+\left|\beta_{i}\right| z\right)=F(z)
$$

since we have (3.12).
q.e.d.

Corollary 1. Let $f(z)$ satisfy the condition of Theorem 1, and let $F(z)$ be given by (3.4), then for $0 \leqq r<1$

$$
\left|f^{(0)}\left(r e^{i \theta}\right)\right| \leqq F^{(J)}(r), \quad j=0,1,2, \ldots \ldots
$$

This is a trivial consequence of Theorem 1, since all the coefficients in $F(z)$ are positive.
4. On the class $\boldsymbol{D}(p)$.

Theorem 2. Let

$$
\begin{equation*}
f(z)=z^{q}+\sum_{n=9+1}^{\infty} a_{n} z^{\prime} \tag{4.1}
\end{equation*}
$$

be a function of the set $D(p)$. Suppose that in addition to the q-th order zero at $z=0$, the function $f(z)$ has exactly s zeros, $\beta_{1}, \beta_{2}, \ldots, \beta_{s}$ such that $0<\left|\beta_{j}\right|<1, j=1,2, \ldots, s$. Finally let t be defined by

$$
\begin{equation*}
q+s+t=p \geqq 1 \tag{4.2}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left|a_{n}\right| \leqq C_{n}, \quad n=q+1, q+2, \ldots, \tag{4.3}
\end{equation*}
$$

where C_{n} is defined by

$$
\begin{align*}
F(z) & =\frac{z^{z}}{(1-z)^{2 q+2 s}}\left(\frac{1+z}{1-z}\right)^{2 t} \prod_{j=1}^{s}\left(1+\frac{z}{\left|\beta_{j}\right|}\right)\left(1+z\left|\beta_{j}\right|\right) \tag{4.4}\\
& =z^{\prime}+\sum_{n=q+1}^{\infty} C_{n} z^{n} .
\end{align*}
$$

Proof. Although we can complete this proof by a slight modification of the method used in $\S 3$, some notes must be added.

Employing the notations in §3, we have by Lemma 2, $E(z) \in D(p)$ and $\psi(z) \in D(p)$.

Now we wish to show that

$$
\psi(z) \ll \frac{z^{7+s}}{(1-z)^{2 q+2 s}}\left(\frac{1+z}{1-z}\right)^{2 t} .
$$

For the purpose it will be sufficient to assume that the diametral line in which direction $\psi(z)$ is star-like of order p is $\psi(1) \circ \psi(-1)$, since otherwise we may consider $\psi(\zeta z)=g(z)$ for which $g(1) \circ g(-1)$ is the diametral line.

Let $\psi(1)=w=|w| e^{-i a}$ then by our hypothesis $\mathfrak{s} e^{i a} \psi\left(e^{i \theta}\right)$ changes sign at $\theta_{s}(s=1,2, \ldots, 2 p)$ where, in particular, $\theta_{1}=0, \theta_{j}=\pi(1<j \leqq 2 p)$.

Defining $\varphi(z)$ as in $\S 3$, in particular, with $\theta_{s_{1}}=\theta_{1}=0, \theta_{s_{l}}=\theta_{j}=\pi$, we have

$$
\begin{aligned}
& \psi(z)=e^{-i a} G(z) / \varphi(z) \\
= & -e^{-i a} G(z) /\left(1-z^{2}\right)(-1)^{i+s} \exp \left(-\frac{i}{2} \sum_{k \neq 1, l}^{i(1+s)} \theta_{s_{k}}\right) \prod_{k \neq l, l}^{2(\eta+s)}\left(e^{i \theta s_{k}}-z\right) z^{-(1+s)}
\end{aligned}
$$

which is dominated by

$$
\left(\frac{1+z}{1-\frac{z}{z}}\right)^{2 t+1} \cdot \frac{1}{1-z^{2}} \cdot \frac{z^{q+s}}{(1-z)^{2(q+s-1)}}
$$

since we again have $G(z) \ll\left(\frac{1+z}{1-z}\right)^{t+1}$. Hence we have (4.3) by the same way as in Theorem 1.
q.e.d.

Obviously we can obtain a corollary similar to the one in §3. But we refrain from describing it.

Corollary 2. Let $f(z)$ in the form (3.1) be regular for $|z| \leqq 1$ and assigned with the same zeros as in Theorem 2. Suppose that $f(z)$ satisfies one. of the following conditoons.
i) $f(1)=$ real and $f(-1)=$ real and $\Im f\left(e^{i \theta}\right)$ changes sign $2 p$ times on $|z|=1$.
ii) All the coefficients are real and $3 f\left(e^{i \theta}\right)$ changes sign $2 p$ times on $|z|$ $=1$.
Then (4.3) holds.
Proof. i) In this case the diametral line of $f(z)$ is evidently the real axis and star-like of order p in this direction by our hypothesis which proves the corollary by using Theorem 2.
ii) This is a direct consequence of the preceding i).
5. Classes of functions related to $S^{1}(p)$ or $D(p)$.

Definition 5. Let $f(z)$ be regular for $|z| \leqq 1$ and C be the image curve of $|z|=1$. Let, further, P be the orthogonal projection of $f\left(e^{i \theta}\right)$ onto a straight line. Then P will move on the straight line both positively or nagatively when θ varies from 0 to 2π. If P changes its direction of movement $2 p$ times varies from 0 to 2π, then $f(z)$ is said to be convex of order p in the direction when θ which is perpendicular to the straight line. This set of functions is denoted by $K^{1}(p)$ and has been studied by M.S. Robertson [9] recently. Especially if, when we represent $f(z), z f^{\prime}(z)$ in the same plane, the straight line is parallel to a diametral line of $z f^{\prime}(z)$, then $f(z)$ is said to be a member of $F(\boldsymbol{p})$.

Lemma 6. $f(z)$ is a member of the class $K^{1}(p)$ or $F(p)$ if and oniy if $z f^{\prime}(z)$ belongs to the class $S^{1}(p)$ or $D(p)$, respectively.

This is a generalization of M.S.Robertson's Lemma, and for $F(p)$ and $D(\boldsymbol{p})$ was proved in [3]. Analogous proof can be made for $K^{1}(p)$ and $S^{1}(p)$.

Theorem 3. Let

$$
\begin{equation*}
f(z)=z^{\prime}+\sum_{n=q+1}^{\infty} a_{n} z^{n} \tag{5.1}
\end{equation*}
$$

be a function of the set $F(p)$. Suppose that in aldition to the q-th order critical points at $z=0$, the function $f(z)$ has exactly s critical points at α_{1}, $\alpha_{2}, \ldots, \alpha_{s}$, such that $0<\left|\alpha_{j}\right|<1, j=1,2, \ldots, s$. Finally let t be defined by $q+s+t=p \geqq 1$. Then

$$
\begin{align*}
\left|a_{n}\right| & \leqq q C_{n} / n, & & n=q+1, q+2, \ldots, \tag{5.2}\\
\left|f\left(r e^{i \theta}\right)\right| & \leqq q \int_{0}^{r} \frac{F(r)}{r} d r & & \text { for } r<1, \tag{5.3}\\
\left|f^{\prime}\left(r e^{i \theta}\right)\right| & \leqq q F(r) / r & & \text { for } r<1, \tag{5.4}
\end{align*}
$$

where $C_{n}, F(r)$ are defined by

$$
\begin{align*}
F(z) & =\frac{z^{2}}{(1-z)^{2++2 s}}\left(\frac{1+z}{1-z}\right)^{2 t} \prod_{j=1}^{s}\left(1+\frac{z}{\left|\alpha_{j}\right|}\right)\left(1+z\left|\alpha_{j}\right|\right) \tag{5.5}\\
& =z^{\ell}+\sum_{n=q+1}^{\infty} C_{n} z^{n} .
\end{align*}
$$

Proof. Since $f(z) \in F(p)$

$$
\frac{1}{q} z f^{\prime}(z)=z^{q}+\frac{1}{q} \sum_{n=q+1}^{\infty} n a_{n} z^{n} \in D(p)
$$

by Lemma 6. By using Theorem 2 we have (5.2) and (5.4). By integrating along a radius we have

$$
\left|f\left(r e^{i \theta}\right)\right|=\left|\int_{0}^{z} f^{\prime}(z) d z \leqq \int_{0}^{r}\right| f^{\prime}\left(r e^{\prime \theta}\right) \left\lvert\, d r \leqq q \int_{n}^{r} \frac{F(r)}{r} d r\right. \text { for } r<1
$$

which completes the proof.
Remark. A theorem for $K^{1}(\boldsymbol{p})$ analogous to the above one can be derived by using Theorem 1 and Lemma 6. But we do not arrange it here.

Corollary 3. Let $f(z)$ in the form (5.1) be regular for $|z| \leqq 1$ and assigned with the same critical points as in Theorem 3. Suppose that $f(z)$ satisfies one of the following conditions.
(i) $f^{\prime}(1)=$ real, $f^{\prime}(-1)=$ real, and $f(z)$ is convex of order p in the direction of the imaginary axis.
(ii) In (5.1) the coefficients are all real and $f(z)$ is convex of order p in the direction of the imaginary axis.
Then (5.2), (5.3) and (5.4) hold.

References

〔1〕 A. W. Goodman and M. S. Robertson, A class of multivalent functions, Trans. Amer. Math. Soc., 70(1951), 127-136.
[2] A. W. Goodman, Typically-real functions with assigned zeros, Proc. Amer. Math. Soc., 2(1951), 349-357.
[3] T. Umezawa, A class of Multivalent Function with Assigned Zeros, Proc. Amer. Math. Soc., 3(1952)813-20.
[4] S. OZAKI, On the theory of multivalent functions II, Sci. Rep. Tokyo Bunrika Daigaku, 4(1941), 45-78.
[5] N. G. DeBruifn, Ein Satz über schlichte Funktionen, Nederl. Akad. Wetensch., 44(1941), 47-49.
[6] M.S. Robertson, Analytic functions star-like in one direction, Amer. Journ. of Math., 58(1936), 465-472.
[7] M.S. ROBERTSON, A representation of all analytic functions in terms of functions with positive real parts, Ann. of Math., 38(1937), 770-783.
[8] M.S. Robertson, The variation of the sign of V for an analytic function $U+i V$, Duke Math. Journ., 5(1939), 512-519.
[9] M.S. Robertson, A coefficient problem for functions regular in an anulus, Canadian Journ. of Math. 4(1952)407-423.

Gumma University, Maebashi.

