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Several extensions of the Plancherel formula to unimodular locally-
compact groups have been proposed under some restricted conditions by
R. Godement, F. I. Mautner, I. E.Segal and the Russian mathematicians. »
These of Mautner [7,82 and Segaί [12] were established by the use of the
reduction theory of J. von Neumann [10], therefore the separability con-
ditions of groups seem to be essential, and their results are somewhat
measure-theoretic. On the other hand,Godement [3] has obtained a Plancherel
formula by the method analogous to abelian groups, that is,by constructing
the Radon measure on the set of characters. His method seems to be more
elegant. But he assumed that R s (the definition will be stated below) is of
the finite class, and this condition is considerably strong (cf. [3 Theorem
61).

The object of this paper is to give an extension of the Plancherel
formula to arbitrary unimodular locally compact groups mostly along the
Godement method Our main tool is the ^-operation of arbitrary rings of
operators defined in the previous papers [13,14Ί. In Godement's paper [3].
the algebra L of continuous functions with compact supports on the group
played an essential role. We replace this algebra L by the algebra (Rζ)F of
the bounded linear operators defined by the bounded elements with some
properties. But in the case of the abelian groups, our results do not coincide
to the well-known Plancherel formula Therefore, if Rv is of the finite class,
the Godement method is more natural than ours for this purpose. But it is
interest that, if we assume Hs being of the finite class, we obtain the factor
decomposition of Rv as shown in the previous paper [15].

This method of the factor decomposition of rings of operators will
give a suggestion for the general one.

As remarked in the previous paper [15], in the double unitary represen-
tation of a group by a central Radon measure of the positive type (the
definitions will be given below, § 1), our R£ is the maximal Hubert algebra
introduced by H.Nakano-\ man can easily see that our treatments are also

1) Numbers in brackets refer to the bibliography at the end of the paper. As for
the complete bibliography related to this topic, see Mackey [6]. As the Russian papers
are not yet available in this country, we omit them.

23 For the notions of Hubert algebras, see U5] or H. Nakano, Hubert algebras,
Tόhoku Math. Journ.,2C 1950), 4-23, O. Takenouchi, On the maximal Hubert algebras, ibid

3(1951),123-131.
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available to the arbitrary maximal Hubert algebras, but we shall not discuss
them explicitly.

Finally, we are very much indebted to Professor M. Kondo in the Tokyo
Metropolitan University for his many valuable suggestions. The author
extends his hearty thanks to him.

1. Double unitary representations.
Let G be a unimoduϊar locally compact group, which need not be

separable. Following Godement [3],
DEFINITION 1.1. A double unitary representation (abr. d. u. r.) of G is

a structure {£>, US,V,,S} satisfying the following conditions;
a) | ) is a Hubert space,
b) s->Us,s->Vs are two continuous unitary representations of G on £>,

such that
UsVt = VtUs for s, t € G,

c) S is an involution in £>3) such that
F,= SUtS~\ for t € G.

In the sequel we shall discuss only the following case : let μ be a central
Radon measure of the positive type on G, that is, μ is a Radon measure
satisfying

(1.1) ff*g(s)dμ(s) = fg*f(s)dμ(s) for /, g e L,

(1.2) f7*f(s)dμ(s) > 0 for / € L,

where L is an algebra of continuDUs functions with compact supports on G

f(s) =/(s"*1); f*g(s) = lf(t)g(t~ιs)dt; dt is a Haar measure on G. Then it is

known that we can define a d.u.r. of G by such a measure ([3 p.lβ]). For
the latter use we shall sketch the construction.

Put

(1.3) u(/χ) = [ / € ! - ; f7*f(s)dμ(s) = 0 ],

then, as u(μ) is a two-sided ideal in the algebra L, we obtain a quotient
algebra l»(μ) = li/n(μ). Denote the canonical mapping of L on L/u(/χ.) by
/->f (/A). The expression :

(1.4) < f (μ), g(μ) > = I g*f(s)dμ(s)-P
is an inner product on L(μ), therefore, by completion with this inner
product we obtain a Hubert space Q(μ) in which Ί->(μ) is dense. If we define
the involution S and unitary operators Us(μ),Vs(μ) by

3) The involution .S is such ai operator on ξ) that S
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<1.5) Sf(fi) = ϋμ) for / € I-,

<1.6) Us(μ)f(μ) = £5*f(μ), V^μfflμ) = f * £ r V ) for / € L,

where £,*/(*) ^f(s-H), f*Ss-i(t) -fits), then it may be clear that the struc-
ture {©(/x-), E/«(μ,), Fs(μ.),S} is a d.u.r. The above obtained d. u . r . will be
called a d. u. r. by μ, and hereafter we omit the notation (μ). If μ = £ (that
is,a measure + 1 on the unit e of G), we say the above d.u.r. is regular.
Mautner and Segal discussed only the regular case.

The d.u.r . by μ is studied by Godement in detail, so refer to [ 3 ; Chap
I. § 1. H. The principal resu]ts4 ) [3 Theorem 1] can be stated as follows:

THEOREM 1.1. In the d. u. r. {©, Us, Vs, S} by μ, let R* and R 7 be the

W ^algebras5) generated in ξ) by Us and Vs, respectively; then we obtain
<R7 = R?, (R'7 = Rs.

Therefore, denote by R* the set of all bounded linear operators com-
mute with Us,Vs, then we obtain R = R β n R d ι t h a t is, R* is the center of
R and Rίl.

DEFINITION 1.2. If we define the Uf and Vf by

<1.7) Uf = fUsf(s)ds, Vf = fvjis- i)Λ, for / € L,

then it is well-known that these U/,Vf are the bounded linear operators on
ξ) and that they satisfy the relation:

(1.8) Ufg - Vgf = /*g for g(g € L).

Therefore we can define the operator Ux, Vx for any x € £> by

(1.9) Uxf = VfK, Vxf = ί//x, for f(fe D;

if these operators £/» and F^ are bounded, then we say that x is a bounded
element.

For the bounded elements of $, the following facts are known (cf. [3;
Chap I. § 1]):

LEMMA 1.1. 1°. 7 / x is bounded, then Sx is also bounded and

αio; vsx = v»*. Us* = ux*.
2° Ux and Vx are related by

a. li) vSx = suxs, Us* = SF.S.
3° Ux e Rs, F^ <E R*1; (/" A € Rs (or € Rrf), ^ ^ Λ Λ X IS α/sc? bounded and

(1.12) Aί/^ = ΣΛto, (-4F. = F ^ ;

<1.13) UXA = ί/^* ,̂ (VXA = FAI^X).

4° L^ί RJ (Rg) ^ ί/^ s^ί of all Ux (Vx) for the bounded x, then RjJ (RJ)

4) As we use only these fundamental properties in this paper, our treatment is
also available to the maximal Hubert algebras; see [15].

53 By W*-algebra we shall mean a weakly closed operator algebra in a Hubert
space, and by C*-algebra a uniformly closed one, in the terminology of Segal
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is a two-sided ideal in Rs (Rcl) and (strongly) dense in Rs (R(i).

5° For the bounded x,y, the product:

(1.14) x * y = Uxy = Vyx

is well-defined and x * y zs α/so # bounded element in ξ>, satisfying

(1.15) £7^ = UM» Vx y = F.F*.

In this meaning, we shall call this RQ, or <£>0* the s e t of corresponding
elements of <£), the bounded algebra of the d.u. r.

DEFINITION 1.3. If e £ $ is bounded and U* is a projection, we call t/e
*a bounded projection in the d. u.r. 6 ) As be easily seen, C/"β is a projection if
and only if Se = e and e * e = e. This suggests the following definitions:
an bounded element x is called self-adjoint (abr. s. a.) tif Sx = x, and
idempotent if x*x = x.

LEMMA 1.2. // P is a non-zero projection in Rs, then there exists a non-
zero s.a. bounded element in the range of P.

PROOF. AS P Φ O and L is dense in <£), there exists an element f € L
such that PfΦO. By 3° and 5° of Lemma 1.1, Pf, SPf and so Pf *SPf are
bounded. Pf*SPf is the required one. Because, Pf*SPf = UpfSPf =
PUjSPf, implies Pf*SPf is in the range of P. By the equation S(Pf*SPf)
= SUpj{SS)SPf = VPfPΐ = Pf*SPf, i t is s.a. 'Finally we shall show that it

is non-zero. If we assume that Pf * SPf be zero, then Vp^SPfg = 0 for any
g € L, therefore we have

< Vrjvspfg, g > = < Vpfg, Vpfg > =0 for g € L;
it is easily seen that this implies Pf = 0, thus we obtain the contradiction.

Then we have the following theorem by the quite similar manner tα
[12; Theorem 2~]; we omit the proof.

THEOREM 1.2. Every projection in Rs is the least upper bound of the
bounded projections which it bounds.

LEMMA 1.2. For any bounded element x, Ux is approximated uniformlv
by the linear combinations of bowided projections, say UPn. And the same
time, x is approximated (strongly) by the linear combinations of the
corresponbing s. a. idempotent elements.

This lemma was given by Segal in the proof of [12; Theorem 4].

2. ^-operations in W*-algebras.
We consider a general W*-algebra M on a Hubert space £), and denote

its center by M*. The ^-operation in a W*-algebra M has been introduced
by Dixmier YV\ under the condition that M is of the finite class, and this
notion is extended to an arbitrary ΫF*-algebra in the previous papers [13,14].

We say that a projection P € M is finite if a projection Q € M, P ~
Q <; P implies Q ~ P, and infinite in the other case. If the unit element

6) This is no others than the finite projection in the termniology of Segal [12].
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/ € M is finite, M is said to be of the finite class, and otherwise of the
infinite class. As mentioned in the previous paper [13Ί, M is generally a
direct sum of three TF*-algebras, M7, M ί and Mpί, say; Mf is of the finite
class, M* and TNLpί are of the infinite class; in Mέ, every central projection
is infinite but contains a finite projection in it, and M p ί is the other case.
Especially N£pi is called of the purely infinite class. Hereafter we assume
that M contains no direct summand of the purely infinite class.

By a central envelope Z of a projection P € M, we mean the least
central projection containing P. Then there exists a system of finite
projections EΛ such that corresponding central envelopes ZΛ are mutually,
orthogonal and span the unit /. Denote E = 2 © ^ , then E is also finite
C14; Lemma 1.1] we shall call this E the generalised unit of M. In general,
any projection P ^ M is decomposed in a following way with respect to
the generalised unit E [14; Lemma 1.2]:

where E«~E^ E?<E*-<E O > μ), and Fμ-<E« has no comparable part to
the remainders. If the above expression (2.1) ends up with finite terms and
every A< is finite, we say P is E-finite; if a operator A € M be contained
in some E-finite projection P, that is, AP = PA ~ A, then we say A is E-
finite. With these definitions the results in the previous paper [14; Theorem
2] can be stated as follows:

THEOREM 2.1. For any E-finite A £M,we can define a mapping A-^ A7

€Ξ M' satisfying the following properties:
( i ) A € M' implies A' = A,
ίii) («i) ' ; = a A*,
(iii) (A + By -A" +B' ,
(iv) (AB)' = (βil)' ,
(iv) For any (not necessarily E-finite) C € M*, (C-4)* = CA*,
(v) If A is s. a. and A > 0, ίλ^Λ A^ is s. Λ. #w<i A^ > 0,
(v) If A is s.a., A ;> 0 βwrf A* = 0, ί̂ ^̂  A = 0,
(vi) (A*y =(A^)*,

But this £-operation depends on the choice of the generalised unit of
M; if there exists another finite projection E' € M, of which central
envelope spans the unit 7, we can define another mapping A-^A^' for any
E-finite operator A with respect to this E'. Suppose that E! be E-finite,
then any E'-finite operator becomes also E-finite: two operations A* and A*'
are related by

(2.2) A*' = (£'* )":A*.

We have defined the £-operation for any finite (not necessarily E-finite)
operators in [14j, but we shall not use this generalized notion in this
paper.
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Now return to the case of the d. u. r. of G by μ. When R is of the
finite class, there exist the interesting relations between the ^-operation of
Hs and the elements of Hubert space or the structure of G; these facts are
discussed in detail by Godement [3; Chap. IΊ. Finally we shall note an
important

LEMMA 2.1. Any bounded projection in R5 is finite in the sense of the
W*-algebra.

PROOF. Let Uβ be a bounded projection in Rs, and let P be a projection
in Rs such that P^Uβ, P~Ue. Then there exists a partially isometric
operator Wζ R5 such that WW* = P, and W*W = Uβ. P = WW*Ue = Uπm&
evidently this implies WW*eΦθ. As W and W* are partially isometric,
j|e :| = || WW*e\\; WW*e is an image of e by the projection WW* = P, so
that e = WW*e or we have P = Uβ. This completes the proof.

Thus we can see that Rs has no direct summand of the purely infinite
class, by Theorem 1.2, and that the above theorem is available for Rς.

3. Traces on ^-algebras.
By ^-algebra we shall mean, as usual, an algebra which has an

operation A* satisfying 1° (a A + βBf = άA* + βB*, 2° (AB)* = B *Aie,
3° A** = A.

DEFINITION 3.1. A linear functional σ on a ^-algebra A is called a
state if σ(A"A)>0 for A € A, and a £r#c£ if it is a state and satisfies
σ(AB) = σ(BA) for A,B^A. A trace (or state) is said to be bounded if
there exists a constant M such that
(3.1) I σ(A) I < Mσ(A *A), for A € A.

The double unitτry representations of a x-algzbra by the trace if or the
definition of the d. u. r.7 ) of a ^-algebra, see [15; Definition 3.13) have been
already discussed by Nakamura [9]. He treated only a C*-algebra with the
unit element, but most part of his results holds true in the case of a
• -̂algebra with a trace, (cf. also [_2; Chap. II]).

Next we shall prove the following generalization of Lemma 15 of £3],
which is also interest in the theory of the W* algebras.

THEOREM 3.1. L?t M be a W*-algebra without a part of the purely
inίnite class, ani let M F be a *-algebra generated by the E-finite operators
in M. Then there exists a maximal two-sided ideal in ΉLF\ moreover, there
exists a one-to-one correspondence between the maximal two-sided ideals and
the maximal ideals in M*.

First, we shall prove some lemmas.

LEMMA 3.1. Let m be a two-sided ideal in M^, and let in* be the image
of m by the ^-operation, then m* is an ideal in M*.

7) It must be noted here that in this case, UΆ is not necessarily a unitary operator,
but it satisfies only the relation UA*=UA*.
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PROOF. If A, B e m*, then A + 5 6 m ^ , t t A ζ m * are evident. Let
T e M', A € m. then TA* = (ΓA)* by Theorem 2.1. (iv/3), and TA
€ M>, so TA* € m*. Thus it is sufficient to prove that m* Φ M*. Suppose
m* = M*, then it implies that the unit / 6 m*, or it implies that there exists
a projection E' 6 m such that E'^E, by the definition of the £-operation. But,
generally, if a projection P is contained in a two-sided ideal m, and if a
projection Q~**P, then Q € m. Indeed, denote by W the partially isometric
operator which gives the equivalence Q~P, then W and its adjoint W*
are contained in MF because W and IF* are contained in an E-finitep rojection
P[}Q. Thus we obtain Q = QQ = WW*WW* = WPW* € m. By this fact, any
E-finite projection is contained in m and we obtain m = MF this is a con-
tradiction.

LEMMA 3.2. Let n be an ideal in M*, then

(3.2) m = {A € M> (AT/ € n /or #// T € M^}

is β two-sided ideal in M f .

PROOF. If A,B € m, then A + B, a A € m are evident. Let A 6 m,
S € Mf, then we obtain AS, SA e m; because, for any T e Mf, fAST)*
€ n and (SATf = (ATS/ € π. m =f= MF is as follows: the unit /<£ n, so
that for the generalized unit Z£, I — E* = (££)* $ n, therefore we obtain
E $ m.

PROOF OF THE THEOREM. Let n be a maximal ideal in M*, then m,

given by (3.2) is a two-sided ideal in MF. Let there exists a two-sided
ideal m' containing m, then (M')* is an ideal in M* by Lemma 3.1. Sup-
pose a maximal ideal Uj in M* containing (m// , and denote by mi the
two-sided ideal in M F given by (3.2) for n^ Then m i m ' g m i is clear,
so that n£ni and we have n = ni as n is maximal. Therefore we obtain
m = m', that is, m is maximal. Thus we see that there is a maximal two-
sided ideal in M^, and it corresponds to the maximal ideal in M*.

Conversely, let m be a maximal ideal in M^, and suppose that the cor-
responding m* is not maximal in M*. Then there is a maximal ideal n
containing m* properly. Consider the two-sided ideals m' and πi! in M*,
given by (3.2) for m* and n, respectively, then clearly m ^ m ' S m . But
there exists a AζMF such that A* € n — m*, therefore there exists a B
€ M* such that BA* £ m*, this implies A € mi — m'; this fact contradicts
the maximality of m. Thus we obtained the proof.

By the above argument, we see that A is contained in the maximal m
'if and only if {ATf ζ m' for all T € M^.

As we have defined the ^-operation for the ^-algebra M f in § 2, put

(3.3) f(A) = f'(A*) for A € M^,

where / ' is a trace on M*, then we obtain a trace on M^.
Now let m be a maximal two-sided ideal in Mf, then m* is a maximal

ideal in M* it is well-known that in M* there exists the one-to-one cor-
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respondence between the maximal ideals and the characters, and they
are related by the condition: A € m* if and only if X'(A) = 0, for a character
Xr. Therefore, by the above remark, we obtain that A € m if and only if
X\(ATy ) = 0 for all T € MF by (3.3), A € m is equivalent to X(AT) = 0
for all T € M/. That is, A € m is equivalent to X(A*A).- 0,by the Schwarz
inequality. Thus, the maximal two-sided ideal in M/ is characterised by
the trace, introduced by the character of M*. In this sense, we shall call
such a trace a character of MF. Then the following theorem is
obtained:

THEOREM 3.2. There exists a one-to-one correspondence between the

characters X of MF and the characters X of M* , and they are related by

(3.4) ' X(A) = X'(A*).

4. An extension of the Planeherel formula.
Consider again the d. u. r. of G by the central Radon measure of the

positive type a. Because Rs has no part of the purely infinite class, as
remarked in §2, Rs is a direct sum of two W*-algebras : of the finite class
CR*Y and of the infinite class (Rs)\ As the generalized unit E of Rs, we
take E = If® 2 © UβΛ, where V = Zo is the unit element of (R»y, and Uβ"
are the bounded projection defined by eΛ; the possibility of this choice is
due to Theorem 1.2. Let the corresponding central envelopes be ZΛ, then
the unit element /* of (Rsy is spanned by ZΛ. This system {Zo; UeΛ,Z<*} will
be called the defining system of the ίj operation. In (RSY, we can also take
some system of bounded projections Uββ such that Σ θ ^ β 0 Σ Θ ^ Λ = E,
and define a ^-operation with respect to this system, then we can discuss
the both parts by the unified method. But such £-operation has some patho-
logical properties as shown in [14; §3], so it is preferable to treat as heer.

As be well-known, the set of all characters of R* is a compact (totally-

disconnected) space Ω in the weak topology; by the above partition If3.nd P of

the unit / the space ίΐ is decomposed into the direct sum of two compact spaces

ί y and ίϊ*, say. By Theorem 3.2, there is the one-to-one correspondences

between the characters of R>, generated by the E-ήnite operators in Rs,

and the characters of R* . If we introduce the weak topology in the set of

the characters of R*., then by (3.3), we obtain a homeomorphism between

them, because ί l is compact; denote by X the set of characters of B.%, then

X becomes compact and X = X7φXA, each of which corresponds to Ωί

and ίP, respectively. In each R£, = Z*R' (a * 0), any E-finite operator is

defined by a bounded element in £>, but this is not the case in (Rs)f. Ther-

efore it is convenient to introduce the %-algebra (RS

Q)F, generated by the in-

finite operators in RJ, (see, § 1); we shall denote by ($0)F the set of the

corresponding element of ξ> to the operators in (RJ)**. It is clear that (RJ)/

= (RJ)£ and (RSY = (RJ)i . Now let us contract the character X in X to
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and consider this as a trace σx on (RJV; if we introduce also the weak
topology in the set of the traces on (RI)F, then the mapping %->crx is con-
tinuous, and X is compact, so that the image X of X is also compact;
omit the trace σ^O on (R^>, then we obtain a locally compact space X.

Clearly, X = X 7 ® X', and X1 = X1; thus we obtain a locally compact space,
which plays a role of the dual object of the Plancherel formula.

As σ € X is a trace on the ^-algebra CR*0)F, we obtain a d. u. r. as stated
in § 3. That is, u(σ) = {Ux; σ(Ux*Ux) = 0} is a two-sided ideal in (RJ>,
therefore we obtain a canonical mapping Ux->x{σ) to the quotient algebra.
Put
(4.1) < x(σ), y(σ) > =σ(Uy* U*),

this is an inner product on the quotient algebra; by completion with this
inner product we obtain a Hubert space £>(σ). To construct the d.u. r., it
is sufficient to put
(4. 2) U*(σ)y(σ) = **y(σ), Vx(σ)y(σ) = y*x(<r),

U.3) S(x(<r)) = ίSxXσ).
These reasons are quite analogous to the one sketched in § 1 for the d. u. r.
of the group; for detail, see Nakamura £9]. Thus we can correspond to each
σ 6 X a Hubert space $(σ). Since we have introduced in X the weak topology,
for each U* € (RjjV, <r{Ux) is a continuous function with respect to σ: the
vector-function xfσ), defined on X to <£)(GΓ), is continuous; by the construction
mentioned above, the set of x(σ) is dense in each ©(σ), so that the vector-
functions x(σ) form a fundamental family of the continuous vector-functions
Λ in the sense of Godement [2; Chap. III].

If σ € X approches to the infinity, then evidently xfσ)->0; thus the
vector-function x(σ ) has an analogous property with the ordinary Fourier
transform. Now our object is to generalize the Plancherel theorem in the
following form:

THEOREM 4.1. Let G be a unimodular locally compact group, and let a
d. u. r. {£>, Us, V8, S} be constructed by a central Radon measure of the positive
type iJL on G. Then there exist a locally compact space X and a measure μ on
X, possessing the following properties:

a) for any x ,y €

<4.4) < x, y > = I < x(<r), y( σ ) > dμ{σ),
J
X

b) ξ> is isomorphic to h\.

Here we shall freely use the notion of the continuous sums of the Hubert
spaces proposed by Godement [2]8,> but some generalizations are necessary.

83 The notion of the continuous sum of Banach spaces was already discussed by
Kondo [4- 5] and his results are stronger than Godement's in some points, but the latters

seems to be more suited to our purposes.
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DEFINITION 4.1. We call the fundamental family of the continuous vector-
functions (la famille fondamentale de champs de vecteurs continus) the set Λ
of the vector-functions on X, satisfying the following axioms: (AΊ): A is a li-
near subspace of the space of all the vector-functions defined on X; (A2): for any
X € A, the scalar function f[x(σ)[| is continuous on X; (A3); for any <r € X,
the x(σ) (x € A) are dense in &(σ). And we say that a vector-function x on
*X is continuous in a point σ0, if for any € > 0, there exist a neighborhood
V of σ0 and a y <E Λ such that || x(σ) - y(σ) [| < £ for any σ € F.

DEFINITION 4.2.9) We say that a vector-function x is squarely-summable

(with respect to A and μ), if j < x(σ-), x(<τ) > dμ(σ) < +00 and for any S > 0,
x

>there exists a continuous y such that I / I) x(<τ) — y(σ) ψ dμ (σ)| 1 / 2< S.
V -v /

The set of these vector-functions, modulo the null-set, and denned the
norm by

= ί / < Xίσ), X(σ j > dμ{σψ\'(4. 5) || |

will be denoted by L;v. Then we can easily see that L;v forms a Hubert
«pace with the above norm.

5. Proof of Theorem 4.1.
The aim of our proof is to construct a Radon measure μa on each

compact (or locally compact) set Γa, which gives the required formula with
respect to the elements of φQ)F; and then to extend these measures μΛ to a
.measure μ on the whole space X and to all elements of §. Here ΓΛ denotes
the subset of X, which corresponds to the defining system ZΛ. In the part
of the finite class, this problem is reduced to the theorem 3.1 of C15H,
because Z0©0

 i s a maximal Hubert algebra of the finite class. Therefore it
is sufficient to consider only the part of the infinite class. We will reduce
the proof to the case of the finite class: this is an analogous procedure to
the construction of the £-operation in a TF*-algebra of the infinite class,
discussed in H14],

Let F(σ) be a continuous function on X', then it corresponds to an
operator t/> € R*, because X6 is isomorphic to the Boolean space of (W )';
moreover we can take a U» € (RS

Q)F such that F(σ) = σ{Ux) on Γα by the
definition of the ^-operation. As shown in Lemma 1 of [13], ZΛ W is
isomorphic to the R^j). where R<v^ is the all A € R* such that AUea = UeΛ-
A ~ A, and this is a W"-algebra of the finite class on the Hubert space
U* £). Now we shall show

9) Godement considered only the Radon measure μ on X,but our measure μ is not
^necessarily a Radon measure. So we need this formally generalized definition.
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LEMMA 5.1. A necessary and sufficient condition that a Ux should be in*
R(^«) is that x should be in UeccV^.

PROOF. Assume that x € UβΛVβJ), then E/^F^x = x, or U^^U*, =Ux,.
this implies UΛΛU* = U» and UMe<* = UeΛUu6VeΛx = ϊ/eΛϊ/* = E/», that is, ί/*
€ R(crβα5). Conversely if ί/* € RVe*)» then clearly we obtain t/^x = x,
and FβΛx = X; this complete the proof.

The above lemma shows that the elements x corresponding to JJ% €
R*( reform the maximal Hubert algebra (UeΛVβΛ$)o in UeΛVeΛ& So that we
can apply the results of [15] to the part of Ue^Vβ^; as the ^-operation is
defined in (Ueΰ6VeΛ&)0, for each σ(UJ), x € (UeΛVeΛξ>), if we take a real
σ(W λ y € (UβΛVeΛ$), such that σ(£/ζ) = σ(Wx)σ(Wy) and put
(5.1) / - ί c r ί ^ ) ) = <x*,y> > ,
where x̂  is the projection of x to (UβVβΛQy (0-5; Theorem 2. ID), we obtain.

a Radon measure μΛ on ΓΛ such that

(5. 2) /β(σ(£/ί )) = jσ(Wχ )dμΛ(σ) -

or by the same reasons to [15], we obtain

L E M M A 5.2. For x , y ζ (Uβ(ΛVeΛξ»o and UF<=:Z«W,

(5. 3) < χ ; UFγ > = / < χfσ ), y(σ) > F W rf/iΛ(σ).

But there exists an x> not necessarily in C/;ΛFeΛ £>, but σίt/)* =σ(t/ti) o n

ΓΛ. Therefore we will assume that if Uv € Rs
(p)? P^Uecύ, then a t/,,, re-

quired in (5.1), should be taken in the same RV) I n this assumption, we
have

LEMMA 5.3. The positive linear functional Ia on the space of the con-
tinuous functions of ΓΛ is well-defined by the relation (5.1).

PROOF. First, let E-finite projections P and Pλ be equivalent with the
partially isometric operator W; let Ux and UX1 be contained in P and Pi
respectively, and assume t/£ = t/j^. Then, if we denote the x̂  and x* the
images of the ^-operation defined in PSPS& and PΊSPiSξ> resp., we have
x^ = W*SW*Sx*x. In fact by [13; Lemma 1], we have U»> = PU* and
Uai = PjUh = P3C/J Therefore, if *E/a,1* Tf = W*PiWU** = Pί/^ = C4*.
Evidently, this implies x* =• W*SW*SxS . As Tf *SflP*S is partially iso-
metric, and as it is sufficient to consider the above case by the definition
of the ^-operation [14; § 2], we obtain the proof.

Summarizing the mentioned above, we see

LEMMA 5.4. Let x, y € Φoh, and let F be a continuous function on X,.
then we have a unique Radon measure μa on Γa such that
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(5. 4) < Z*, UFY > = I < X(σ), yίσ) > fW)dμΛ(σ).

Now we shall extend the Radon measure μ,a constructed above on each

Γα to a regular measure /* on the whole space X. But this will be done by

the well-known extension theorem of measures10); let S be a ring, generated

by the compact sets contained in some Γα, that is, S € S if and only if S
is the following form: S = U Sa>, Sα,ι£ Γα and compact; if we put

ι = l
n

•(5.5) A(S)= ~ΣμJSa,,),

then μ becomes a σ-finite measure on S, so that we have a unique σ-finite
measure μ on the σ-finite ring S, generated by S.

Let x be a bounded element in #, then it is evident that the set of
CO

a € A such that Z α χ Φ θ is at most countable, say αt; x = V z α ί x . Further-
t = l

more, let Ux be £-finite, and denote ΦΓJσ) the characteristic function of
Γα, then we can easily see that φΓa(σ)σ(Ux) = σ{ZJJx) = σ(Uzav), so that
a € A such that φΓ(x(σ)σ{U-x) φ θ are at most countable. Hence σ{Ux)
becomes measurable for the above μ, and

(5.6) fσ(Uv*U*) Fϊσjdμiσ) = 2 Ϊ<?(Uy*Ux)F(σ)dμaί(σ)

x L~

Thus we obtain

LEMMA 5.5. For bounded x, y € £>, which give the E-finite operators Ux

and Uy, we have

'(5.7) < X, UFY > = I < X(σ), y(σ) >
x

But there exist bounded elements of |), which give the not necessarily
infinite operators. First we note

LEMMA 5.6. Any s. a. idempotent element e € £> is the (strong) limit of
the elements of £

PROOF. It is sufficient to consider in the part of the infinite class. As
Ue is a bounded projection, it is finite in the sense of W*-algebras (Lemma
2.1); Ue is decomposed in the following form by [14; Theorem V\:

103 See Halmos, Measure Theory, (19ί?0) Especially Theorem A of p. 54.
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(5. 8) Ue =
ί - l ΐ = l

oo

where Qt are the central projections such that / = 2 ' © ^ » a n c* every UQ^

oo

is E-finite. The (5.8) means that e = 2©*e, because e = UeQ =
ί = l ί=l

, and the fact that UQj(, is E-finite, implies Qfθ €(£>u)*t Thus the proof

is completed.
Combining the above lemma and Lemma 1. 3, we see that every bounded

element x is the (strong) limit of some elements yn €Ξ (£>OIEJ, that is, Φ0)F

is dense in f).
Consider now the linear subspace 2Jί of £>, constructed by the elements

of the form:

(5. 9; x = UF&I 4- + UFnXn, x» € (35O>, F* € L(X),
then by (5.7), we can associate to such an x a vector-function
(5.10) X(σ) = Fi(σ)Xiίσ) + . . . + Fn(σ)Xn(σ).

Evidently, this vector-function is continuous and has a compact support on,
X; by the formula (5.7) and the fact that the correspondence F-^UF is-
multiplicative, we have

(5.11) < x,y > = Γ < x(cr), y(σ) > d/kσ)
x

for any x , y 6 9)ϊ.
On the other hand, any continuous vector-function on X is the uniform,

limit of the vector-functions of the form (5.10) on every compact set of
X. n ) Therefore the vector-functions (5.10) are dense in L̂ v; so that we have
the isomorphism between the closure of d)l in © and the space L'̂ . It remains
to prove that s))l is dense in £) and that this isomorphism gives the transfor-
mation x to x(σ-) for x € ΦO)F, defined previously in §4.

If F(σ-) € LΓX) converges to 1 uniformly on every compact set, then

lim < Uix, y > =lim / < x(Vj, y(σ) > F(σ)dμ(σ)r

X

= ί < X(σ),y(σ) >dμ(σ)= < X,y > for X,y€(£o)z< .
X

Therefore, x€(C%)^ is the weak limit of the elements of the forms UtX.->
ΦQ)F is dense in © (Lemma 5.6; and W is the linear subspace of ξ), so we
obtain the first part of the above statesments. So that the vector-function.

W) See [2; Chap. HI prop. 6]. This proposition does not depend on the measure.
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F(σ)x(σ) converges uniformly to x(σ) on X, therefore the above isomorphism
transforms x to x(σ). Thus the proof is completed.

6. Some remarks.
Firstly, as mentioned in § 2, our £-operation depends on the choice of

the generalised unit element, or the defining system of the ^-operation. We
discuss here these circumstances.

Let E' be such another, and assume that E' be E-finite. Then any E'-

finite operator A is also £-finite we obtain by (2. 2)

(6.1) σE>{A) = σE(E'YλσE{A),

where σE and σE' is the one, defined by the same character of R*, as
described in § § 3 and 4. It should be noted that σE(E')~ι may be infinite
for some <r, but σE(E')~ισE{A) is well-defined, because A is contained in
some E'-finite projection (see [14; §3]]) and it is clear that the dual space
X is uniquely determined for any generalized unit element ( § 4). By the
relation (6.1) and the uniqueness of the Radon measure and the extension
of the σ-finite measure, we obtain the following formula for any x,y, which
define the E'-finite operators Ux and Uv, respectively:

(6. 2) < x, y > = ί < x(σ), y(σ) > σ(E')dμ(σ).

x

But this formula gives the isomorphism of £) and L~v for the measure σ(E')

dμ(σ), thus we obtain

THEOREM 6.1. If wε take a fixed generalized unit element E of Rs as
the basis, then for any another ganeralized unit element, which is E-finite,
our Plancherel formula becomes in the following form-.

(6.3) < x, y > - ί < xθ), yM > a(σ)dμ(σ),

X

where a(σ) is a {generalized) continuous function on X, which depends only
on the generalized unit element; the dual locally compact space X and the
measure μ are unique.

But arbitrary two generalized unit elements are not necessarily com-
parable; in this case we do not know the unicity of the measure μ in the
above sense.

Next, let us assume that Rs be of ttie finite class, then the decomposition
obtained in Theorem 4.1 gives the irreducible one of the W*-algebras Rs

or R\ proved in [15]. Because Us € R*, Vs € Ra, we obtain the unitary
operators Us(σ) and Vs(σ). We can easily verify that the system {£>(σ), Us
(σ), Vs(σ),S} becomes the d. u.r. of the given group G. Moreover, if we
assume that G is separable, then the Hubert space ξ> becomes separable,
and Rs is also separable in the weak topology. Denote the W*-algebras
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generated by U*(σ) and V,(σ), by Rs(σ) and Rf7(σ), respectively, and consider

a decomposable operator A^TA(σ), permutable with R*(σ), then A € Rd,

that is, ί/^σ) = TA(σ), a. e. and t/Λ(<r) € RV) ; where R V ) denotes the
W*-algebra generated by the image of the elements in Ra. This fact implies
.Rϊσ)' = RV), a. e. Similarly R(1(σ)f = RVJ, a. e. By these facts and the
Theorem 5. 2 of [151, we obtain

THEOREM 6.2. Assume that Rs be of the finite class, and G be separable.

Then the double unitary representations, obtained by the decomposition in

Theorem 4.1, is irreducible a.e.
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