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Introduction

For a series 2 Λ» denote by cr* the n-th Cesaro mean of order a

(a > -1) , i.e.,

o

where

A Λ = (n -f a\ {a + l)(a + 2 ) . . . . (a + n) _ n«
n \ n J nl ~ Γ(α> ϊ) "

If the series

n=0

converges, we say that the series 2£ an is absolutely Cesaro summable with
order a or briefly summable | C, a \.

Various theorems concerning this summability of orthogonal series and
of Fourier series were obtained by many authors. One of them is the
following F. T. Wang's theorem [51

THEOREM A.(i) // the series

(1) Σ (*£+*£) (log^)1+e

is convergent for some £ > 0, then the trigonometric series
CO

(2) 2 (a» c o s n x ~^~ &n s m nχ)
n = i

fs summable \C,a\ for almost every x, where a > 1/2 ,
(ii) // the series

(3) ^K-\-K)(logn)^
n = ι

is convergent for some S > 0 , /fee/ί the series (2) is summable |C,1/2| for
almost every x.

(iii) IfO<a< 1/2, βwrf t/ the series
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11 = 1

is convergent for some £ > 0, then the series (2) is summable \C,OL\ for almost
every x.

F. T. Wang showed by a counter example that one cannot suppress the
number £ > 0 in the proposition (iii), but he said nothing about the suppre-
ssion of £ in the results (i) and (ii).

In Part I of this paper we shall complete this theorem by showing that
the number £ > 0 is indispensable in the propositions (i) and (ii).

Further we shall give some sufficient conditions for the summability,
from which we may deduce easily the Wang theorem.

In Part II we shall treat the Fourier series. For a function f{x) of L1

(0,2 7τ) the summability \C,Ϊ\ of its Fourier series ^ C / J is not in general
of local property, that is, the summability \C, 1| of @[/H at a point x = x0

is not completely decided by the behaviour of f(x) in the neighbourhood of
xOi but from the total behaviour in the interval (0, 2 π) (cf. [1]).

On the other hand this summability is of local property under certain
restriction of the functions. Prof. Sunouchi and the Author proved the
following theorem [3,4j.

THEOREM B. For a function f(x) € Lp(0,2 π), (p > 1), suppose that

(5) (j-1 |/(Λb + u) + /(*, - u) -2f(xo)\*duyP = O ((log ~- J
ΰ

as t -> 0, for some £ > 0. Then the Fourier series of f(x) is summable 1C,1|
at the point x = #0

In this theorem the condition (5) depends only on the behaviour of f(x)
in a neighbourhoDd of x0, and one see that the sutnirability |C, 1| is of
local property for the function of D\p > 1).

We shall give an extension of this result and some related theorems.
In what follows we use KΛ,KZ1 to denote positive constants inde-

pendent of variable (x, t)f (x, n) or (t, n).

Part I. Metric theorems on orthogonal series

1. We shall begin by proving the following theorem.

THEOREM 1. Let {cPn(x)} be an orthonormal system defined in the interval
(a,b) and let a > 0. // the series

(i. i) Σ U M Σ «»- k + «•<-'** f + 2 '*:'
n=Λ L f c = l J »=1

converges, then the orthogonal series
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(1.2) 2«»^»(*)
n = \

is summable \C}cc\ for almost every x.

PROOF. Let σ%(x) be the n-th Cesaro mean of order a of the series
(1.2), that is,

1 "

Then easily we have

n+i

2

Hence by the Schwarz inequality we get

2 l»ϊ+i(*)-«»

The last expression is finite by the hypothesis and immediately we get
the theorem.

COROLLARY 1. Let K p ^ 2 and let 1/p + 1/q = 1.
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(1.5)

(1.6)

Hypotheses: (£ > 0)

(1.4) 2 Kl"(log«)"

0 < a < 1/q,

(1.7)

(1.8)

(1.9)

2
/έ = l

0 < a < lip,

' 1 " 1 4 " 6 < OO,

<

Conclusions :

For almost every x, the

series (1.2) £s summάble

\C,a\ (a >l/q);

\C,l/g\;

\C,a\

\C,a\ (a

\C,1/Pl;

\C,a\.

PROOF. In (1. 3) we use the Holder inequality and the Hausdorff-Young
inequality. Then we obtain

1) ^

r c' ii/'/
^ V (b - β)'/» |σ +1(*) - σl{x)\" dx

By the Holder inequality, the first term of the last expression is
majorated by:

The ί-th power of this expression is not greater than
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± »

if

On the other hand the series

Σ \an\

?? 1

is not greater than

ί f

ί f

l(i
Consequently we deduce, by the above estimations, the first three

propositions of the corollary.
The last three may be obtained from Theorem 1 by the repeated use

of the Holder inequality. q. e. d.

In the corollary, if we put p = q = 1/2. we get the Wang theorem A.
For the case of general p and q instead of 2, one may also obtain

analogous conditions to that of Theorem 1, which implies Corollary and
forms an extension of Theorem 1.

2. Let now {rn(x)} be the Rademacher system. For the series

(2.7)

instead of general orthogonal series, an inverse of Theorem 1 will be
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established.

THEOREM 2. Suppose that, for a set of positive measure Ea(0,1), the
series (2.1) is summable \C,oc\ (a > 0). Then the series (1.1) converges.

For the proof we need a lemma.

LEMMA 1. Given a set of positive measure Ea(0,1), there exist a positive
constant B = B{E) and a positive integer N = N(E) such that for any sequence
few;} it holds the inequality:

(2.2) f cnt
dx>B(j? ^ (n > N).

( 2 c ^ ^ r j X x ) dχ)1/2( f 1 2 C n

This is essentially known as the Khintchine inequality, but for the
sake of completeness we sketch the proof.

By the Holder inequality

(2.3) /

And by the Khintchine inequality

(2.4) j | 2 < V ^
E k = X

On the other hand, we get

(2. 5) ί \2l cn,k rk(x)) dx = |E | 2 c- k + ^1 c«>̂  ̂ ,J I r*Jίx)rj(x) dx = I + J/ ( 2 ^ . ^ ^ ) ) dχz=z l̂ i 2CΊ* 4'
say. Then we have

2 c«,ic».Λ f 2 rli{x)r}{x)dx * ).

The second factor of the right hand side becomes smaller when we
take N = N(E) sufficiently large in virtue of the Bessel inequality. For such
n, we get

i/i £-§• \E\ ( 2 ^ ^

This and (2. 5) imply that

(2.6)

From (2.3), (2.4) and (2.6) we get

λ -.V
24,,
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from which we may deduce the required. q.e. d.

To prove Theorem 2, we may assume that the series (2.1) is summable
\C,a\ uniformly in E, that is, we may put

A*h ak
<2.7) I VJ ά

Consider the integer N = N(E) founded in Lemma 1 and replace aL,
4Z2, , ax-ι by zeros. This replacement has no influence in the inequality
(2.7), if we take another constant Ko instead of K8, since the series under
the integral sign does not varies but an absolutely and uniformly convergent
series. Now applying Lemma 1 we obtain

Repeating the same reason we may replace N by 1, and using the
asymptotic formulas of Af we complete the proof.

3. We shall show that one cannot be allowed the suppression of £ > 0
in Theorem A following the Paiey and Zygmund argument [cf. 6, p. 125].

LEMMA 2. Let An{x) = an cos nx + bn sin nx(n =̂ 0,1,2, ) and let a > 0.

If the series

<3
1/s . ^ I A , ( * ) |

converges in a set of positive measure E, then the series

<3.:

converges. Conversely the convergence of (3. 2) implies that of (3.1) for almost
every x.

PROOF. Both series (3.1) and (3. 2) are of positive terms and hence it is
sufficient to prove that

11

E fc=0 fc=ϋ

a s n -> oo, or more simply that

/ •

as k -> oo, which will be evident.

LEMMA 3. // ί/je ser/^s (3.2) converges, then almost all series of
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(3.3) aύ + 2 =t (Λ>*cos /M: +

#r£ summable \C,a\ for almost every x, and if the series (3.2) diverges, then
almost all series (3. 3) are non-summable \C,a\ for almost every x.

PROOF. Since we established Theorem 2 and Lemma 2 it remains to
follow the Paley and Zygmund argument. q. e. d.

Now we are in a position to prove the following

THEOREM 3. (i) There exists a trigonometric series

(3.4) 2 c* c o s nx

such that the series

(3.5) 2 cl lo% n

converges, and that the series (3. 4) is non-summable \C,a\ for almost every
x with any large cc.

(ii) There exists a series (3.4) ivhich is non-summahle |C,1/2| for almost
every x, such that the following series converges :

(3.6) Σ

PROOF, (i) Put

an = —r=π Λ—\ (w = 0,1, 2, . . . .)
\/ n log n log log n

where we understand an to be zero if the right hand side is negative or
lose its sense. Then

2 *,ϊ
The first term of (3.2), suppose a > 1 and &„ = 0 (w = 1, 2, ."...), is

equal to

NP 1 ΓN? k>2(n — k -\- l)ac«-i

00 ^ Γ

2(log w log log w)a f^

Ίl/ίi

~*λ

 nl+cc 1°S w log log n
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~ w log n log log w

Hence, by Lemma 3, with a suitable choice of a sequence of signs,
putting

cn = ±aa (Λ = 0,1,2, ....)»

we conclude the existence of the required series.
(ii) Similarly as above we put

a" ^ ΛΪT^OόgΛp^loglogn) (/i = 0,1,2, . . . . ) .

Then

and the first term of (3. 2) with a = 1/2 is equal to

V-J- ΓN^ JP{n-k+ I)-1

(log log *) a J

= CXD.

~ n log n log log n

Therefore we get the conclusion by the similar reason as in the proof
of (i). q. e. d.

Part II. Summability \C, a\ of Fourier series at a point

4. We first establish an extension of Theorem B. In the sequel we
write, for an integrable function fix),

φx(t) = f{χ + t) + fiX -t)~ 2fix),

and

φ«»>(f) = / \<p,{u)\*du.
0

We see by the Holder inequality that

\ t **κ

if 0 < r < s.
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THEOREM 4. For a function f(x) e Lp(0,2τr) (p > 1), suppose that

(4.1) Φ<?Kt) = O(U| (log(( J( -)"*) (£ >0)

as t -> 0. T t o , //" l//> - 1< α < 0 and if k < l / | α | ,

(4. 2) 2 I σl(x) - /(^) I τ = θ(w (log n)~A

<7S n -> oo, where or*(x) is the n-th (C,<x) mean of the Fourier series of fix).

The case α = 0 is Theorem B and if a > 0 the theorem will be evident
with any k > 0.

LEMMA 4. Denote by Gn{x) the n-th (C,a) mean of the series

G;(*) = σSί*> + K(x),

2 1 S i n ( ( w + T

(2 8 in |-) 1 + β

and \Gn(x)\ ^Kvm, \h*(x)\ ^KVλn^χ-\

This lemma is due to Hardy and Littlewood [_2~].

PROOF OF THEOREM 4. Suppose in the proof, as we may, that p <2,
and hence by 1/p — 1 < a < 0 we have

*- p - l < -\a\

If (4. 2) is proved for some exponent k, then, as we see by the Holder
inequality, it remains true for any positive exponent less than k. Therefore
we may assume that

(4.3) 2Sj4lS*< -,!,-.

Since

σm(χ)-~ /(#)= / *P*(t)Gn(t) dt,
0

we deduce by the Minkowski inequality that

\i/fc
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: ( i | f ΓΓ + ( i f •••••')"

•(iiΛ ί
= / ( ] ) 4- 7(2) 4- 7(:i)

say, where /S < 1 is a fixed positive constant.
By Lemma 4, we have

- / f1

2(J

)-*ewfc+1)= 0(w (log wΓ
To estimate 7̂-> we divide it into two parts:

<p£t)g*u)dt\ + φ,{t)K(t)dt

say. In P%\ observing that

we have easily by the Hausdorff-Young inequality

since & ;> 2. From (4.3),
parts we have

(1 4- oc)k > 1, hence by integration by

/ 7
(2) = O ( i

4- dt

«k' J tu+*>v'
4

(log w)- t /eYM'

= θίnι'k (log n)-\
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Applying Lemma 4 again, we get

n l/Λ

i 2Λ / Γ v
= \ 2 O\n-\\ofζ n)~e ri2 + (log n)~e I t~2dt\

= ^ 2 O^logΛ)"*8) = O^logΛ)"^.

For tfp we repeat the similar estimation:

say, then

β
ilnβ

since — α + Λ^ + β/k < 1/k by β < 1

Combining the above estimations we obtain easily

W = 2 K W -/U)lfc = oίΛ(iog ̂ )-
nι=n ^

Therefore, if n is any integer, supposing 2 y $ w < 2V+1, we have
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2 \<{x) - f(x^

This completes the proof of Theorem.

In the condition (4.1) the function log(l/|/ |) may be replaced by other
decreasing functions of suitable order. For example, we state the following
result without proof, since the proof may be done along the same line as
that of Theorem 4.

COROLLARY 2. For a function fix) € D\p > 1), if 1/p - 1< a < 0 and if
k< l / | α | , then, at every point x where Φ[p)(t) = o{t) we have

.4) Km \ 2 I σ*(x) ~ f(x) Ik = 0.

We shall add the following result which is a boundary case of Theorem 4.

COROLLARY 3. / / f(x) € Lp(p > 1) and if

. — 1,£ — 1 j g α < 0,
n

(4.5) 2 K W ~/WΓ/Iα| =

PROOF. In the proof of Theorem 4, we must only estimate P^2) and
P£p. In the estimation of P\p, observing (1 -f a)kr = 1, we get

™ = O / V ^ d o g w)-^* + ^2-* ̂ ' - i (log w)-A/e+1Y;l

from which we get

The similar equality holds for i*5 ) remembering .—-. 1^0, and we

complete the proof.

5. We shall now study the absolute summability.

THEOREM 5. If fix) € Lp(p > 1) and if, for some 8 > 0.

(5 1) Φ?W = O (11\ (log TTp)"*"')
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as £->0, at a point x, then the Fourier series off(x) is summable \C,r\
(r > ljp) at the point.

PROOF. Let us assume (5.1). By the well known formula we get

n

say. We may assume that 1/p < r < 1. From (5.1) we deduce by the usual
calculation that

< ( * ) - / ( * ) = O( (log rc)"1-^),

from which we have

N r c = l

Hence it remains us to prove the convergence of S2. By the Holder
inequality we have

co . 1 / \

where δ > 0 and k > 1 will be determined later (l/£ + l/kf = 1).
By the Abel transformation we obtain

(log n)-«i+./

by Theorem 4, if l//> - 1 < r - 1 < 0 and if k < 1/(1 - r). Now we take S
and ^ such as

(5.5) £S - MX + 6/p) < - 1 , ft < 1/(1 - r) and δftf > 1.

For example we can set, as easily checked,

Then the first factor in the last side of (5.3) is finite, and the second is,
by (5.4),
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= 0(1) + 0(1) = 0(1),

and we obtained S, < oo. This proves the Theorem.

From Theorem 5 we see that, for any function € Lp(p > 1) the sum-

mability \C,r\ (r >l/p) is of local property. It will be remarkable that,

for a function Lι, the summability \C, 1| is not necessarily of local property

[11

The Author expresses his hearty thanks to Mr. Shigeki Yano who gave

many essential remarks and suggestions to the Author.
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