NOTES ON FOURIER ANALYSIS (XLIX): SOME NEGATIVE EXAMPLES

S. Izumi, N. Matsuyama and T.Tsuchikura

(Received March 18, 1953)

1. It is well known that, if $\varphi(u)$ is integrable, then

$$
\begin{equation*}
\int_{0}^{\prime} \varphi(u) d u=o(1) \quad \text { as } t \rightarrow 0 \tag{1.1}
\end{equation*}
$$

and that this can not be improved, that is, for any given function $\varepsilon(t)$ tending to zero with t, there exists an integrable function $\varphi(u)$ such that the relation

$$
\begin{equation*}
\left|\int_{0}^{t} \varphi(u) d u\right| \geqq \varepsilon(t) \tag{1.2}
\end{equation*}
$$

holds for infinitely many values of t tending to zero.
We shall show by example that (1.1) cannot be improved even when the Fourier series of $\varphi(u)$, supposed even, converges at $u=0$. More precisely we shall prove the following

Theorem 1. For any given function $\varepsilon(t)$ tending to zero with t, there exists an integrable function $f(t)$ such that the Fourier series of $f(t)$ converges at $t=x$ and

$$
\begin{equation*}
\left|\int_{0}^{t} \varphi_{x}(u) d v\right| \geqq \varepsilon(t) \tag{1.3}
\end{equation*}
$$

for infinitely many values of t tending to zero, where

$$
\phi_{x}(u)=f(x+u)+f(x-u)-2 f(x) .
$$

On the other hand it is known [3] that:
(*) If we denote by $\sigma_{n}^{\beta}(x)$ the n-th Cesàro mean of the β-th order of the Fourier series of an integrable function $f(t)$, and if

$$
\begin{equation*}
\sigma_{n}^{\beta}(x)-f(x)=o\left(n^{\gamma-\beta}\right) \quad \text { as } n \rightarrow \infty \tag{1.4}
\end{equation*}
$$

where $\beta>\gamma>-1$, then we have

$$
\begin{equation*}
\Phi_{\alpha}(t)=o\left(t^{\alpha+\beta-\gamma}\right) \quad \text { as } t \rightarrow 0 \tag{1.5}
\end{equation*}
$$

for $\alpha>1+\gamma$, where $\Phi_{a}(t)$ is the α-th integral of $\varphi_{x}(t)$.
As a special case of this result we have the following theorem, and we shall give its simple proof.

Theorem 2. Let $f(x)$ be an integrable function and let $s_{n}(x)$ be the n-th
partial sum of the Fourier series of $f(x)$. If
(1.6) $\quad s_{n}(x)-f(x)=o\left(1 / n^{\gamma}\right) \quad$ as $n \rightarrow \infty$
for $0<\gamma<1$, then we have

$$
\begin{equation*}
\int_{0}^{t} \varphi_{x}(u) d u=0\left(t^{1+\gamma}\right) \quad \text { as } n \rightarrow \infty \tag{1.7}
\end{equation*}
$$

Further we shall show that Theorem 2 is best possible, that is,
Theorem 3. Let $\varepsilon(t)$ be given such that $\varepsilon(t) / t^{1+\gamma} \rightarrow 0$ as $t \rightarrow 0$, and let $0<\gamma<1$. Then, there exists an integrable function $f(t)$ such that (1.6) holds for $t=x$ and that

$$
\begin{equation*}
\left|\int_{0}^{t} \varphi_{x}(u) d u\right| \geqq \varepsilon(t) \tag{1.8}
\end{equation*}
$$

holds for infinitely many t tending to zero.
Finally we prove the Theorem (*) is best possible, that is,
Theorem 4. Let $\beta>\gamma>-1$ and let $\varepsilon(t)$ be given such that $\varepsilon(t) / t^{\alpha+\beta-\gamma} \rightarrow$ 0 as $t \rightarrow 0$. Then there exists an integrable function $f(t)$ such that (1.4) holds for $t=x$ and that
(1.9)

$$
\left|\Phi_{a}(t)\right| \geqq \varepsilon(t)
$$

holds for infinitely many t, tending to zero, where $\alpha>1+\gamma$.
2. Proof of Theorem 1. Without loss of generality we can suppose that $x=0$, and we shall find an even function $f(t)=\varphi_{x x}(t)$.

Let us take a monotone vanishing sequence $\left\{t_{n}\right\}, t_{n}>0(n=1,2, \ldots)$ and two sequences of positive numbers $\left\{u_{n}\right\},\left\{v_{n}\right\}$ such that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \varepsilon\left(t_{n}\right)<\infty, v_{n} / u_{n} \downarrow 0, u_{n} / t_{n} \rightarrow 0 \quad \text { as } n \rightarrow \infty \tag{2.1}
\end{equation*}
$$

and that the intervals

$$
\left(t_{n}-u_{n}, t_{n}+v_{n}\right) \quad(n=1,2, \ldots)
$$

are mutually disjoint and contained in ($0, \pi$).
Consider the sequence of sets

$$
\begin{equation*}
\Delta_{n}=\left(t_{n}-u_{n}, t_{n}-v_{n}\right) \cup\left(t_{n}+v_{n}, t_{n}+u_{n}\right) \quad(n=1,2, \cdots) \tag{2.2}
\end{equation*}
$$

which are mutually disjoint. Let us define an even function $f(t)$ as follows:

$$
\begin{equation*}
f(t)=\frac{c_{n} t}{t_{n}-t} \text { if } t \in \Delta_{n} \quad(n=1,2, \ldots) \tag{2.3}
\end{equation*}
$$

and $f(t)=0$ elsewhere in $(0, \pi)$, where $\left\{c_{n}\right\}$ is a sequence of positive numbers which will be determined later.

We have

$$
\int_{0}^{\pi}|f(t)| d t=\sum_{n=1}^{\infty} c_{n} \int_{\Delta_{n}} \frac{t}{t_{n}-t} d t
$$

$$
=2 \sum_{n=1}^{\infty} c_{n} t_{n} \log \frac{u_{n}}{v_{n}}
$$

Hence if

$$
\begin{equation*}
\sum_{n=1}^{\infty} c_{n} t_{n} \log \frac{u_{n}}{v_{n}}<\infty \tag{2.4}
\end{equation*}
$$

the function $f(t)$ defined above is integrable.
Now, we have

$$
\begin{gather*}
\int_{0}^{\pi} f(t) \frac{\sin m t}{t} d t=\sum_{n=1}^{\infty} c_{n} \int_{\Delta_{n}} \frac{\sin m t}{t_{n}-t} d t \tag{2.5}\\
=\sum_{n=1}^{\infty} c_{y_{0}} \int_{\Delta_{n}}\left\{\sin m t_{n} \cos m\left(t-t_{n}\right)+\cos m t_{n} \sin m\left(t-t_{n}\right)\right\} \frac{d t}{t_{n}-t} \\
=\sum_{n=1}^{\infty} c_{n} \cos m t_{n} \int_{\Delta_{n}} \frac{\sin m\left(t-t_{n}\right)}{t_{n}-t} d t \\
=2 \sum_{n=1}^{\infty} c_{n} \cos m t_{n} \int_{v_{n}}^{u_{n}} \frac{\sin m t}{t} d t
\end{gather*}
$$

If we suppose that

$$
\begin{equation*}
\sum_{n=1}^{\infty} c_{n}<\infty \tag{2.6}
\end{equation*}
$$

then the last sum of (2.5) tends to zero as $m \rightarrow \infty$, by the uniform convergence of the sum and the Riemann-Lebesgue theorem. Hence the Fourier series of $f(t)$ converges to zero at $t=0$ under the condition (2.6).

On the other hand we have

$$
\int_{\Delta_{n}} f(t) d t=c_{n} \int_{t_{n}-u_{n}}^{t_{n}-v_{n}} \frac{t}{t_{n}-t} d t-c_{n} \int_{t_{n}+v_{n}}^{t_{n}+u_{n}} \frac{t}{t_{n}-t} d t=2 c_{n}\left(u_{n}-v_{n}\right)
$$

and

$$
\begin{aligned}
\left|\int_{t_{n}-u_{n}}^{t_{n}} f(t) d t\right| & =c_{n} \int_{t_{n}-u_{n}}^{t_{n}-v_{n}} \frac{t}{t_{n}-t} d t \\
& =c_{n}\left\{t_{n} \log \frac{u_{n}}{v_{n}}-\left(u_{n}-v_{n}\right)\right\} \\
& \geqq c_{n} t_{n} \log \frac{u_{n}}{v_{n}} .
\end{aligned}
$$

Hence, if
(2.7)

$$
\sum_{i=n+1}^{\infty} c_{i}\left(u_{i}-v_{i}\right)<\frac{1}{4} c_{n} t_{n} \log \frac{u_{n}}{v_{n}}
$$

and if

$$
\begin{equation*}
\frac{1}{2} c_{n} t_{n} \log \frac{u_{n}}{v_{n}} \geqq \varepsilon\left(t_{n}\right) \tag{2.8}
\end{equation*}
$$

then we have

$$
\begin{aligned}
\left|\int_{0}^{t_{n}} f(u) d u\right| & =\left|\sum_{i=n+1}^{\infty} \int_{\Delta_{i}} f(t) d t+\int_{t_{n}-u_{n}}^{t_{n}} f(t) d t\right| \\
& \geqq c_{n} t_{n} \log \frac{u_{n}}{v_{n}}-2 \sum_{i=n+1}^{\infty} c_{i}\left(u_{i}-v_{i}\right) \\
& \geqq \frac{1}{2} c_{n} t_{n} \log \frac{u_{n}}{v_{n}} \\
& \geqq \varepsilon\left(t_{n}\right) .
\end{aligned}
$$

After the sequences $\left\{t_{n}\right\}$ and $\left\{c_{n}\right\}$ are determined such that $\sum \varepsilon\left(t_{n}\right)<\infty$ and that (2.6) holds, we may suppose that the sequences $\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$ satify the additional relations (2.7) and

$$
\frac{1}{2} c_{n} t_{n} \log \frac{u_{n}}{v_{n}}=\varepsilon\left(t_{n}\right)
$$

that is,

$$
\frac{u_{n}}{v_{n}}=\exp \binom{2 \varepsilon\left(t_{n}\right)}{c_{n} t_{n}} .
$$

Then the conditions (2.1), (2.4), (2.6), (2.7) and (2.8) are satisfied. The theorem is thus completely proved.
3. Proof of theorem 2. We may suppose that $f(t)$ is even and $x=0$. Then $f(t)=\varphi_{x}(t)$ and put $s_{n}=s_{n}(0)$. Let the Fourier series of $f(t)$ be

$$
\sum_{n=1}^{\infty} a_{n} \cos n t
$$

supposing $a_{0}=0$. Then we have

$$
\begin{equation*}
\Phi(t)=\int_{0}^{t} f(u) d u=\sum_{n=1}^{\infty} a_{n} \frac{\sin n t}{n}=\sum_{n=1}^{\infty} s_{n} \Delta \frac{\sin n t}{n} . \tag{3.1}
\end{equation*}
$$

Now,

$$
\begin{align*}
\Delta \frac{\sin n t}{n} & =\frac{(n+1) \sin n t-n \sin (n+1) t}{n(n+1)} \tag{3.2}\\
& =\frac{\sin n t-\sin (n+1) t}{n+1}+\frac{\sin n t}{n(n+1)} .
\end{align*}
$$

therefore we have easily

$$
\begin{equation*}
\left|\Delta \frac{\sin n t}{n}\right| \leqq C_{t n^{-1}} \quad(C: \text { constant }) \tag{3.3}
\end{equation*}
$$

for all t in $(0, \pi)$ and for all n.
On the other hand, for $0 \leqq n t \leqq \frac{\pi}{4}\left(<\frac{\pi}{2}\right)$ we have

$$
\begin{aligned}
& |(n+1) \sin n t-n \sin (n+1) t| \\
& =|n \sin n t+\sin n t-n \sin n t \cos t-n \cos n t \sin t| \\
& =|n \sin n t(1-\cos t)+(\sin n t-n \sin t)+n \sin t(1-\cos n t)| \\
& \leqq C_{1}\left\{n \cdot n t \cdot t^{2}+\left(n^{3} t^{3}+n t^{3}\right)+n t \cdot n^{2} t^{2}\right\} \\
& \leqq C_{2} n^{3} t^{3},
\end{aligned}
$$

where C_{1} and C_{2} are constants independent of n and t. It holds then

$$
\begin{equation*}
\left|\Delta \frac{\sin n t}{n}\right| \leqq C_{2} n t^{3} \quad\left(0 \leqq n t \leqq \frac{\pi}{4}\right) \tag{3.4}
\end{equation*}
$$

Dividing the last sum of (3.1) we write

$$
\Phi(t)=\left(\sum_{n=1}^{[\pi / 4]}+\sum_{n=[\pi|4| t]+1}^{\infty}\right) s_{n} \Delta \frac{\sin n t}{n} \equiv I+J .
$$

Then we have by (3.4)

$$
I=o\left(\sum_{n=1}^{|\pi / 4 t|} \frac{n t^{3}}{n}\right)=o\left(t^{3} \cdot t^{-(2-\alpha)}\right)=o\left(t^{1+\alpha}\right),
$$

and by (3.3)

$$
J=o\left(\sum_{n=[\pi \mid t t]+1}^{\infty} \frac{1}{n^{\alpha}} \frac{t}{n}\right)=o\left(t^{1+\alpha}\right) .
$$

Combining these results we get

$$
\Phi(t)=o\left(t^{1+\alpha}\right)
$$

which is the required.
4. Proof of Theorem 3. Let $\left\{\varepsilon_{n}\right\}$ be a positive monotone vanishing sequence such that the relations

$$
\begin{equation*}
24 \varepsilon_{n}^{1+\gamma}=\varepsilon\left(\frac{1}{n}\right), \quad \varepsilon_{n+\cdots} \leqslant \frac{\gamma}{120} \varepsilon_{n} \tag{4.1}
\end{equation*}
$$

hold for infinitely many integers n. This definition may be conceived by the condition on the given function $\varepsilon(t)$.

Let

$$
\begin{equation*}
f(t)=\sum_{k=1}^{\infty} \varepsilon_{k} \frac{\cos k t}{k^{1+\gamma}} \quad(0<\gamma<1) \tag{4.2}
\end{equation*}
$$

The series (4.2) converges uniformly, and then we have

$$
s_{n}(0)-f(0)=\sum_{k=n+1}^{\infty} \frac{\varepsilon_{k}}{k^{1+\gamma}}=o\left(\frac{1}{n^{\gamma}}\right) \quad \text { as } n \rightarrow \infty
$$

which is one of the required condition.
On the other hand we have, substituting (4.1),

$$
\begin{align*}
\int_{0}^{t} \varphi_{0}(u) d u & =2 \int_{0}^{t}\{f(u)-f(0)\} d u \tag{4.3}\\
& =2 \sum_{k=1}^{\infty} \frac{\varepsilon_{k}}{k^{2+\gamma}}(\sin k t-k t) \\
& =2\left(\sum_{k=1}^{[1 / t]}+\sum_{k=[1 / t]+1}^{\infty}\right) \equiv I+J
\end{align*}
$$

say. In the sum I, since $k t-\sin k t \geqq k^{3} t^{3} / 12$,

$$
\begin{align*}
|I| & =2 \sum_{k=1}^{[1 / t]} \varepsilon_{k} \frac{k t-\sin k t}{k^{2+\gamma}} \geqq \frac{1}{6} \sum_{k=1}^{[1 / t]} \varepsilon_{k} k^{1-\gamma} \tag{4.4}\\
& \geqq \frac{1}{6} t^{3} \varepsilon_{[1 / t ;} \frac{1}{2} \frac{1}{t^{2-\gamma}}=\frac{1}{12} \varepsilon_{11 / t)} t^{1+\gamma} .
\end{align*}
$$

By $|\sin k t-k t| \leqq 2 k t$ in the sum J, we get

$$
\begin{equation*}
|J| \leqq 2 \sum_{k=\left[1 / t t_{+1}\right.}^{\infty} \frac{2 \varepsilon_{k} t}{k^{1+\gamma}} \leqq \frac{5}{\gamma} \varepsilon_{[1 / t]+1} t^{1+\gamma} . \tag{4.5}
\end{equation*}
$$

Hence if $[1 / t]$ is an integer which fulfills the conditions (4.1), we have from (4.3), (4.4) and (4.5)

$$
\begin{gathered}
\int_{0}^{t} \varphi_{u}(u) d u \geqq|I|-|J| \geqq\left(\frac{1}{12} \varepsilon_{1 / t / 1}-\frac{5}{\gamma} \varepsilon_{11 / t]+1}\right) t^{t^{1+\gamma}} \\
\geqq \frac{1}{24} \varepsilon_{11 / t, t^{1+\gamma}}=\varepsilon(t) .
\end{gathered}
$$

Thus the condition (1.8) holds for infinitely many t with $t \rightarrow 0$.
5. Proof of Theorem 4. We shall begin by the case $\beta \geqq 0$. Let $\eta(t)=$ $\varepsilon(t) / t^{\alpha+\beta-\gamma}$, and we may suppose without loss of generality that $\eta(t) \downarrow 0$ as $t \rightarrow 0$, and that $x=0$. By the inequality $\beta-\gamma \geqq 0$, there is an integer M not smaller than $\beta-\gamma$. Put $\beta-\gamma=\delta$ and

$$
\begin{gather*}
\eta^{*}(t)=\frac{4^{M+1}(M+1-\delta) \Gamma(\alpha+M+2)}{\Gamma(M+2)} \eta(t), \tag{5.1}\\
\eta_{n}^{*}=\eta^{*}\left(\frac{1}{n}\right) . \tag{5.2}
\end{gather*}
$$

Since $\boldsymbol{\eta}_{n}^{*} \rightarrow 0$ as $\boldsymbol{n} \rightarrow \infty$, we can find a sequence of integers $\left\{\boldsymbol{n}_{k}\right\}$ such that

$$
\begin{gather*}
n_{1}=1, \quad \eta^{*} n_{k+1} \tag{5.3}\\
\vdots \frac{\alpha \delta \Gamma(\alpha) \Gamma(M+2)}{2 \cdot 4^{\alpha+2}(M+1-\delta) \Gamma(\alpha+M+2)} \eta_{n_{k}}^{*} \\
(k=1,2, \ldots) .
\end{gather*}
$$

Let $\left\{\eta_{v}^{\prime}\right\}$ be a sequence such that

$$
\begin{equation*}
\eta_{\nu}^{\prime}=\eta_{n_{k}}^{*} \quad \text { for } n_{k-1}<\nu \leqq n_{k}(k=1,2, \ldots), \tag{5.4}
\end{equation*}
$$

then obviously $\eta_{\nu}^{\prime} \downarrow 0(\nu \rightarrow \infty)$.

We shall define a function $f(t)$ by .

$$
\begin{equation*}
f(t)=\sum_{\nu=1}^{\infty} \eta_{v}^{\prime} \underset{\boldsymbol{\nu}^{1+\delta}}{\cos \nu t} \tag{5.5}
\end{equation*}
$$

and we shall prove that this function is the required.
We have

$$
\begin{equation*}
f(0)-s_{n}(0)=\sum_{\nu=n+1}^{\infty} \eta_{\nu}^{\prime} \frac{1}{\nu^{1+\delta}}=\eta_{n}^{\prime} O\left(\frac{1}{n^{\delta}}\right)=o\left(\frac{1}{n^{\delta}}\right) \tag{5.6}
\end{equation*}
$$

as $n \rightarrow \infty$, and hence immediately

$$
f(0)-\sigma_{n}^{\beta}(0)=o\left(n^{-\delta}\right)=o\left(n^{\gamma-\beta}\right)
$$

as $n \rightarrow \infty$, which is one of the required conditions.
Now we get

$$
\begin{aligned}
\Phi_{\alpha}(t) & =\frac{2}{\Gamma(\alpha)} \int_{\nu}^{t}(t-u)^{\alpha-1}\left(\sum_{\nu=1}^{\infty} \frac{\eta_{\nu}^{\prime}}{\nu^{1+\delta}}(\cos \nu u-1)\right) d u \\
& =\frac{2}{\Gamma(\alpha)} \sum_{\nu=1}^{\infty} \frac{\eta_{\nu}^{\prime}}{\nu^{1+\delta}} \int_{0}^{t}(t-u)^{\alpha-1}(\cos \nu u-1) d u
\end{aligned}
$$

For $\nu \leqq t^{-1}$ we have

$$
\begin{align*}
-\int_{0}^{t}(t & -u)^{\alpha-1}(\cos \nu u-1) d u \tag{5.7}\\
& =2 \int_{0}^{t}(t-u)^{\alpha-1} \sin ^{2} \frac{\nu u}{2} d u \\
& \geqq 2 \int_{0}^{t}(t-u)^{\alpha-1}\left(\frac{\nu u}{4}\right)^{M+1} d u \\
& =\frac{2 \nu^{M+1}}{4^{M+1}} \int_{0}^{t}(t-u)^{\alpha-1} u^{(I++2)-1} d u \\
& =\frac{2 \Gamma(\alpha) \Gamma(M+2)}{4^{M+1} \Gamma(\alpha+M+2)} \nu^{M+1} t^{\alpha+M-1}
\end{align*}
$$

and we have also

$$
\begin{equation*}
\left|\int_{0}^{t}(t-u)^{\alpha-1}(\cos \nu u-1) d u\right| \leqq 2 \int_{0}^{t} v^{\alpha-1} d v=\frac{2}{\alpha} t^{\alpha} \tag{5.8}
\end{equation*}
$$

If we put
$\Phi_{\alpha}(t)=\frac{2}{\Gamma}(\alpha)\left(\sum_{\nu=1}^{[1 / t)}+\sum_{\nu=11, t \mid+1}^{\infty}\right) \frac{\eta_{\nu}^{\prime}}{\nu^{1+\delta}} \int_{0}^{t}(t-u)^{\alpha-1}(\cos \nu u-1) d u \equiv K+L$,
then by (6.7) we get for small t

$$
\begin{align*}
|K| & \geqq \frac{2}{\Gamma(\alpha)} \sum_{\nu=1}^{i 1 / i]} \frac{\eta_{\nu}^{\prime}}{\nu^{1+\delta}} \frac{2 \Gamma(\alpha) \Gamma(M+2)}{4^{M+1} \Gamma(\alpha+M+2)} \nu^{M+1} t^{\alpha+M-1} \tag{5.9}\\
& \geqq \frac{\Gamma(M+2)}{4 M \Gamma(\alpha+M+2) \eta_{(1 / t / 1}^{\prime} t^{\alpha+M+1} \sum_{\nu=1}^{[1 / t]} \nu^{M-\delta}} \\
& \geqq \frac{\Gamma(M+2)}{2 \cdot 4^{M I}(M+1-\delta) \Gamma(\alpha+\bar{M}+2)} \eta_{\lfloor 1 / t]}^{\prime} t^{\alpha+\delta}
\end{align*}
$$

and by (5.8) we get for small t

$$
\begin{align*}
&|L| \leqq \frac{2}{\Gamma(\alpha)} \sum_{\nu=[1 / t]+1}^{\infty} \frac{\eta^{\prime \nu}}{\nu^{1+\alpha}} \frac{2}{\alpha} t^{\alpha} \tag{5.10}\\
& \leqq \frac{4}{\alpha \bar{\Gamma}(\alpha)} \eta_{[1 \mid t]+1} t^{\alpha} \sum_{\nu=[1 / t]+1}^{\infty} \frac{1}{\nu^{1+\delta}} \\
& \left.\leqq \frac{8}{\alpha \delta \Gamma(\alpha)} \varepsilon^{\prime} \right\rvert\, 1 / t t^{\prime}+1 \\
& t^{\alpha+\delta} .
\end{align*}
$$

If we put $t=1 / n_{k}$, we have, by (6.1)-(6.4),

$$
\begin{aligned}
\eta_{1 \mid 1[t]}^{\prime} & =\eta_{n_{k}}^{\prime}=\eta_{n_{k}}^{*}=\eta^{*}\left(\lambda / n_{k}\right)=\eta^{*}(t) \\
& =\frac{4^{N+1}(M+1-\delta) \Gamma(\alpha+M+2)}{\Gamma(M+2)} \eta(t), \\
\eta_{1 / l[\}+1}^{\prime} & =\eta_{n_{k}+1}^{\prime}=\eta_{n_{k}+1}^{*} \\
& \leqq \frac{\alpha \delta \Gamma(\alpha) \Gamma(M+2)}{2 \cdot 4^{\mu+2}(M+1-\delta) \Gamma(\alpha+M+2)} \eta_{n_{k}}^{*} \\
& =\frac{\alpha \delta(\alpha)}{8} \eta(t),
\end{aligned}
$$

and hence we get easily from (6.9) and (6.10)

$$
|K| \geqq 2 \eta(t) t^{a+\delta}
$$

and

$$
|L| \leqq \eta(t) t^{\alpha+\delta}
$$

for sufficiently small t. Thus we conclude that

$$
\left|\Phi_{\alpha}(t)\right| \geqq|K|-|L| \geqq \eta(t) t^{\alpha+\delta}=\varepsilon(t)
$$

for $t=1 / n_{k}, k$ being sufficiently large.
In the case $\beta \geqq 0$ Theorem was thus proved.
We shall now consider the case $\beta<0$. We have $0<\beta-\gamma=\delta<1$.
As in the former case we get easily

$$
f(0)-s_{k}(0) \equiv \boldsymbol{r}_{k+1}(0) \equiv \boldsymbol{r}_{k+1}=o\left((k+1)^{-\delta}\right) .
$$

Remembering $r_{1}=f(0)$, we have

$$
\begin{aligned}
& \sigma_{n}^{\beta}(0)-f(0)= \\
A_{n}^{\beta} & \left\{\sum_{k=1}^{n} A_{n-k}^{\beta} \frac{\eta_{k}^{\prime}}{k^{1+\delta}}-A_{n}^{\prime} r_{1}\right\} \\
= & \frac{1}{A_{n}^{\beta}}\left\{\sum_{k=1}^{[n \mid 2]} A_{n-k}^{\beta} \frac{\eta_{k}^{\prime}}{k^{1+\delta}}-A_{n}^{\beta} r_{1}\right\}+\frac{1}{A_{n}^{\beta}} \sum_{k=[n \mid[]]+1}^{n} A_{n-k}^{\beta} \frac{\eta_{k}^{\prime}}{k^{1+\delta}} \\
\equiv & P+Q
\end{aligned}
$$

say. Then

$$
\begin{aligned}
P & =\frac{1}{A_{n}^{\beta}}\left\{\sum_{k=1}^{\left[n| |^{2}\right]} A_{n-k}^{\beta}\left(\boldsymbol{r}_{k}-\boldsymbol{r}_{k+1}\right)-A_{n}^{\beta} \boldsymbol{r}_{n}\right\} \\
& =\frac{1}{A_{n}^{\beta}}\left\{-\sum_{k=1}^{[n / 2]} A_{n-k+1}^{\beta-1} \boldsymbol{r}_{k}-A_{n-|n| 2 \mid}^{\beta} \boldsymbol{r}_{i n \mid 2]+1}\right\}, \\
|P| & =O\left(\begin{array}{c}
1 \\
n^{\beta}
\end{array}\left\{\sum_{n=1}^{[n n \mid 2]} n^{\beta-1} k^{-\delta}+n^{\beta} n^{-\delta}\right\}\right) \\
& =O\left(n^{-\beta}\left\{n^{\beta-1} n^{1-\delta}+n^{\beta-\delta}\right\}\right)=O\left(n^{-\delta}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
|Q| & =O\left(n^{-\beta} n^{-1-\delta} \sum_{k=1}^{[n / 2]-1} A_{k}^{\beta}\right) \\
& =O\left(n^{-\beta-1-\delta} n^{\beta+1}\right)=O\left(n^{-\delta}\right) .
\end{aligned}
$$

From these estimations we get

$$
\sigma_{n}^{\beta}(0)-f(0)=O\left(n^{-\delta}\right)=O\left(n^{\gamma-\beta}\right) .
$$

The estimation of $\Phi_{\alpha}(t)$ is the same as in the former case.
Thus the theorem was completey proved.
6. Remarks. The theorems 1 and 3 will be shown by using examples of the type used by one of the authors [2,3]. An example of the Paley type [1] may be also used for the proof of Theorem 3.

References

〔1〕 R. E A. C. Paley, On the Cesàro summability of Fourier series and allied series, Proc. Cambridge Phil. Soc., 26(1929-30) p. 173-203.
[2] S. Izumi, Notes on Fourier analysis (XVl), Tôhoku Math. Journ., (2) 1(1949-50), p. 144-166.
[3] S. Izumi, Notes on Fourier analysis (XXXV), Tôhoku Math. Journ., (2) 1(194950), p. 285-302.

