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1. It is well known that, if φ{u) is integrable, then

(1.1) ί φ(u) du = o(l) as

0

and that this can not be improved, that is, for any given function £(t)
tending to zero with i, there exists an integrable function φ{u) such that
the relation

(1.2) Ψiu) du > a(t)

0

holds for infinitely many values of t tending to zero.
We shall show by example that (1.1) cannot be improved even when

the Fourier series of <P(u), supposed even, converges at u — 0. More
precisely we shall prove the following

THEOREM 1. For any given function S(t) tending to zero with t, there
exists an integrable function f{i) such that the Fourier series of f(t) converges
at t = x and

(1.3) \J <PJLu) dv ^β(t)

for infinitely many values of t tending to zero, where

- f{x 4- u) + f(x -u)- 2fix).

On the other hand it is known [3] that:

(*) // we denote by σ^ix) the n-th Cesaro mean of the β-th order of the

Fourier series of an integrable function f(t), and if

(1.4) σ£(*) -fix) = <W-fi) asn->™,

where β > 7 > — 1, then we have

(1.5) ΦΛ(t) = oϋ**?-*) as t -> 0

for a > 1 4- 7, where φa(t) is the a-th integral of ψjj).

As a special case of this result we have the following theorem, and we

shall give its simple proof.

THEOREM 2. Let fix) be an integrable function and let sn(x) be the n-th
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partial sum of the Fourier series off(x). If

(1.6) sΛ(x) -f(x) = 0(1/tfl) as n -> oo

for 0 < 7 < 1, then we have

» ( ) fa = o{ί1+y) as n -> oo.(1.7) I

Further we shall show that Theorem 2 is best possible, that is,

THEOREM 3. Let Sit) be given such that £(t)/t1+y^>0 as 2->0, and let
0 < 7 < 1. Then, there exists an integrable function f(t) such that (1. 6) holds
for t = x and that

(1.8)

/or infinitely many t tending to zero.
Finally we prove the Theorem (*) is best possible, that is,
THEOREM 4. Let β>y > - 1 and let S(t) be given such that

0 as £->0. Then there exists an integrable function f(t) such that (1.4) holds
for t = x and that
(1.9) | Φ . ( « | £ £ ( O
άα/ifc /br infinitely many t, tending to zero, where oc > 1 4-γ.

2. Proof of Theorem 1. Without loss of generality we can suppose
that x = 0, and we shall find an even function f(t) — Φx(f).

Let us take a monotone vanishing sequence {tnj,tn > 0 (n = 1,2, )
and two sequences of positive numbers {««}, {vny such that

(2.1) 2 £(*«) < °°> »*/«» Ψ °> *»/*» "> ° as w -> cxD

and that the intervals

(tn — Mn, ί« + *>n) (W = 1, 2, . . . . )

are mutually disjoint and contained in (0, rt).

Consider the sequence of sets

(2. 2) An = (A - «„, /Λ - V«)U(ίn + »», ̂ n + Wn) (n = 1, 2, )

which are mutually disjoint. Let us define an even function fit) as follows:

(2. 3) fit) = -.-^-y if / € Δn (n = 1, 2, . .)
In — I

and /(/) = 0 elsewhere in (0, π), where {cn} is a sequence of positive numbers
which will be determined later.

We have

/ \f(t)\dt = V c s I — —
J 7* J tn->
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CO

= 2 2 * A. log |=-.

Hence if
00

(2.4) Σ c Λ ί, l o g ^ <oo,

the function /(/) defined above is integrable.

Now, we have

(2.5)

~ 2 c« I ίs*n m*n c ° s ™tt ~ t * ) + c o s wιί» s'in m^ *%

dt.

If we suppose that
oo

(2.6) 2d<co,

then the last sum of (2.5) tends to zero as w-> oc, by the uniform conver-
gence of the sum and the Riemann-Lebesgue theorem. Hence the Fourier
series of f(t) converges to zero at / = 0 under the condition (2.6).

On the other hand we have

An tn-Un tn+Vn

and

f(t)dt ~CnJ u-t
dt

= <•„{/„ log-^=- -(« ,-» , ) }

Hence, if
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(2.7)

and if

(2.8)

then we have

t - Vt) < -fCntn
i=n+l

/(«)

2 Cntnlog^ > ί ( W

'.t+ f fit)

oo

:cntn loS-^- - 2 2

After the sequences {ίn} and {cn} are determined such that 2 S(tn) < oo
and that (2.6) holds, we may suppose that the sequences {un} and {vn}
satify the additional relations (2.7) and

\ cn tn log -£=- =

that is,

Then the conditions (2.1), (2.4), (2.6), (2.7) and (2.8) are satisfied. The
theorem is thus completely proved.

3. Proof of theorem 2. We may suppose that /(/) is even and x =. 0.
Then f(t) = <px(0 and put sn = sn(0). Let the Fourier series of f(t) be

supposing Λo = 0. Then we have

(3.1)
- /

f(u) du = nt 5« Δ sin nt

Now,

(3.2) sin (W + 1) sin nt — n sin (w 4- l)t

n n(n + 1 )

sin nt — sin (n -f l sin nt

therefore we have easily
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(3.3) Δ - ^ — J ^ Ctn-1 (C: constant)

for all t in (0, π) and for all n.

On the other hand, for 0 <^nt<^^j-(< ~) we have

I (n + 1) sin nt — n sin (n +
= \nsinnt -f sin nt — n sin nt cost —
= \n sin nt(l — cos £) H- (sin nt — n sin 0 + w sin ί(l — cos nt) |
< Ci{w -nt °P + (w3ί3 + ?tf3) + ?2ί w2ί'2}

where G and C2 are constants independent of n and /. It holds then

(3.4) I Δ~^\ ^C2nt*

Dividing the last sum of (3.1) we write

Then we have by (3.4)

and by (3.3)

( oo

» = Lτε/4«

Combining these results we get
φ(t) = θ(f+«)

which is the required.
4. Proof of Theorem 3. Let {£M} be a positive monotone vanishing

sequence such that the relations

(4.1)

hold for infinitely many integers n. This definition may be conceived by
the condition on the given function £(t).

Let

(4. 2) /(/) - 2 ε* i^Γ (0 < 7 < 1).

The series (4.2) converges uniformly, and then we have

SnW -/ίθ) = 2 -ife- = O (-ir) a S «->°°

which is one of the required condition.
On the other hand we have, substituting (4.1),
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(4.3) J ψ»(u)du = 2 J {/(«) - /(O)} rfw
0 0

= 2^-~- {^inkt - kt)

= 2(| + JsJ-/+/
say. In the sum /, since kt — sin kt i> k?tδ/12,

[lit] . ^ [l/ί]

(4.4) | / | = 2 V ^ —

By I sin kt — kt\ gΞ 2ftί in the sum /, we get

tt 5) I/I S 2 Σ |w- S -f
fc = [l/ίl+l Λ /

Hence if [1//] is an integer which fulfills the conditions (4.1), we have
from (4.3), (4.4) and (4.5)

M du^ I 7| - I/I 2: ^

Thus the condition (1.8) holds for infinitely many t with £ -> 0.

5. Proof of Theorem 4. We shall begin by the case β > 0. Let
£(t)/tΛ+β-y, and we may suppose without loss of generality that *?(f)ψθ as-
t -» 0, and that # = 0. By the inequality β — 7 > 0, there is an integer M
not smaller than β — 7. Put β — 7 = δ and

Γ(M+2)

Since 17* ->0 as Λ->OO, we can find a sequence of integers {nk} such
that

- δ) Γ(α -t- M + 2f Vn*

(£=1,2, . . . . ) .

Let {η'v} be a sequence such that

(5.4) v'9**Vik for «*-i< ^ S % (fe= 1,2, . . . .

then obviously ^ ψ 0 ( i / - > 00).
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We shall define a function f(t) by

(5.5) ΐ X ^

and we shall prove that this function is the required.
We have

(5.6) /(0) - s.(0) = 2 ^ J a = VLO (-£-) = o (-V
1/ = W + ]

as w -> 00 ? and hence immediately

as /2 -> 00 ? which is one of the required conditions.
Now we get

Φa(t) = i4y / ( t ~ uY~ι ( 2 -$*
i) " = 1

For i/ ^ f ~x we have

(5. 7) - I (t — w)*-1 (cos 1^ - 1)

= 2 I (t ~u)«-1 sin*-ψ-du
ϋ

S2 Γ (ί-fί

and we have also

(5.8) I (t - w)*-1 (cos vu~\)du g 2 I
0 00

If we put

- « ) d u

4 ^ J (ί-«)- I«( lf+ϊ)-1
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then by (6.7) we get for small t

{ID. y; I Λ i _ Γ(fiC) ^ v^6 4M+ji 2)v τ

> Γ(M + 2)
= 4MΓ(a + M + 2)

> J
- ' 24M(M + 1 - δ)Γ(ά 4- M + 2)

and by (5.8) we get for small t

(5.10) lil^τ|y 2 -#r | * -

If we put ί = 1/%, we have, by (6.1)—(6. 4),

vim = ̂  = ̂  = v*(Vn*) = ̂ 7*ίί)

1 - δ)Γ(α + M + 2 )

~ Vnk+l ~ Vnk+1

1ΛM4-2)

aSV(ct)Γ(M 4- 2)
2 4 i i + 2(M 4-1 - S)ϊ\a 4- Λf 4- 2) ^

and hence we get easily from (6. 9) and (6.10)

\K\ >

and

for sufficiently small t. Thus we conclude that

for f = 1/tiir, k being sufficiently large.
In the case β > 0 Theorem was thus proved.
We shall now consider the case β < 0. We have 0 < β — γ = δ < 1.

As in the former case we get easily

/(0) ~ skφ) = rfc+i(0) ΞΞ rfc+1 = o((k 4- l)"δ).

Remembering rx = /(0), we have
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= j r {2
[n/2|

say. Then

r l n ί 2 ]

and

- O(Λ-^-1-δΛβ+1)= O{n~8).

From these estimations we get

σ2(0) - / ( 0 ) - O(wδ) =

The estimation of φΛ(f) is the same as in the former case.

Thus the theorem was completey proved.

6. Remarks. The theorems 1 and 3 will be shown by using examples

of the type used by one of the authors [2,3]. An example of the Paley

type [1] may be also used for the proof of Theorem 3.
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