NOTES ON FOURIER ANALYSIS (XLIX): SOME NEGATIVE EXAMPLES

S. IZUMI, N. MATSUYAMA AND T. TSUCHIKURA

(Received March 18, 1953)

1. It is well known that, if $\mathcal{P}(u)$ is integrable, then

(1.1)
$$\int_{0}^{t} \varphi(u) \ du = o(1) \qquad \text{as } t \to 0,$$

and that this can not be improved, that is, for any given function $\mathcal{E}(t)$ tending to zero with t, there exists an integrable function $\mathcal{P}(u)$ such that the relation

(1.2)
$$\left|\int_{0}^{t}\varphi(u) \, du\right| \geq \varepsilon(t)$$

holds for infinitely many values of t tending to zero.

We shall show by example that (1.1) cannot be improved even when the Fourier series of $\mathcal{P}(u)$, supposed even, converges at u = 0. More precisely we shall prove the following

THEOREM 1. For any given function $\mathcal{E}(t)$ tending to zero with t, there exists an integrable function f(t) such that the Fourier series of f(t) converges at t = x and

(1.3)
$$\left|\int_{0}^{t} \varphi_{x}(u) \, dv\right| \geq \varepsilon(t)$$

for infinitely many values of t tending to zero, where

$$\varphi_x(u) = f(x+u) + f(x-u) - 2f(x).$$

On the other hand it is known [3] that:

(*) If we denote by $\sigma_n^{\beta}(x)$ the n-th Cesàro mean of the β -th order of the Fourier series of an integrable function f(t), and if

(1.4)
$$\sigma_n^{\beta}(x) - f(x) = o(n^{\gamma-\beta}) \qquad \text{as } n \to \infty,$$

where $\beta > \gamma > -1$, then we have

(1.5)
$$\Phi_{\alpha}(t) = o(t^{\alpha+\beta-\gamma}) \qquad \text{as } t \to 0$$

for $\alpha > 1 + \gamma$, where $\Phi_{\alpha}(t)$ is the α -th integral of $\varphi_{x}(t)$.

As a special case of this result we have the following theorem, and we shall give its simple proof.

THEOREM 2. Let f(x) be an integrable function and let $s_n(x)$ be the n-th

partial sum of the Fourier series of f(x). If (1.6) $s_n(x) - f(x) = o(1/n^{\gamma})$ as $n \to \infty$

for $0 < \gamma < 1$, then we have

(1.7)
$$\int_{0}^{t} \varphi_{x}(u) \, du = o(t^{1+\gamma}) \qquad \text{as } n \to \infty.$$

Further we shall show that Theorem 2 is best possible, that is,

THEOREM 3. Let $\mathcal{E}(t)$ be given such that $\mathcal{E}(t)/t^{1+\gamma} \rightarrow 0$ as $t \rightarrow 0$, and let $0 < \gamma < 1$. Then, there exists an integrable function f(t) such that (1.6) holds for t = x and that

(1.8)
$$\left|\int_{0}^{t} \varphi_{x}(u) du\right| \geq \mathcal{E}(t)$$

holds for infinitely many t tending to zero.

Finally we prove the Theorem (*) is best possible, that is,

THEOREM 4. Let $\beta > \gamma > -1$ and let $\mathcal{E}(t)$ be given such that $\mathcal{E}(t)/t^{\alpha+\beta-\gamma} \rightarrow 0$ as $t \rightarrow 0$. Then there exists an integrable function f(t) such that (1.4) holds for t = x and that

 $(1.9) \qquad |\Phi_{\alpha}(t)| \geq \mathcal{E}(t)$

holds for infinitely many t, tending to zero, where $\alpha > 1 + \gamma$.

2. Proof of Theorem 1. Without loss of generality we can suppose that x = 0, and we shall find an even function $f(t) = \mathcal{P}_x(t)$.

Let us take a monotone vanishing sequence $\{t_n\}, t_n > 0 \ (n = 1, 2, ...)$ and two sequences of positive numbers $\{u_n\}, \{v_n\}$ such that

(2.1)
$$\sum_{n=1}^{\infty} \mathcal{E}(t_n) < \infty, \quad v_n/u_n \downarrow 0, \quad u_n/t_n \to 0 \qquad \text{as } n \to \infty$$

and that the intervals

$$(t_n-u_n,t_n+v_n) \qquad (n=1,2,\ldots)$$

are mutually disjoint and contained in $(0, \pi)$.

Consider the sequence of sets

(2.2)
$$\Delta_n = (t_n - u_n, t_n - v_n) \cup (t_n + v_n, t_n + u_n) \qquad (n = 1, 2, \dots)$$
which are mutually disjoint. Let us define an even function $f(t)$ as follows:

(2.3)
$$f(t) = -\frac{c_n t}{t_n - t} \quad \text{if } t \in \Delta_n \qquad (n = 1, 2, \dots)$$

and f(t) = 0 elsewhere in $(0, \pi)$, where $\{c_n\}$ is a sequence of positive numbers which will be determined later.

We have

$$\int_{0}^{\pi} |f(t)| dt = \sum_{n=1}^{\infty} c_n \int_{\Delta_n} \frac{t}{t_n - t} dt$$

$$= 2\sum_{n=1}^{\infty} c_n t_n \log \frac{u_n}{v_n}.$$

Hence if
(2.4)
$$\sum_{n=1}^{\infty} c_n t_n \log \frac{u_n}{v_n} < \infty,$$

the function
$$f(t)$$
 defined above is integrable.

Now, we have

(2.5)
$$\int_{0}^{\pi} f(t) \frac{\sin mt}{t} dt = \sum_{n=1}^{\infty} c_n \int_{\Delta_n} \frac{\sin mt}{t_n - t} dt$$
$$= \sum_{n=1}^{\infty} c_n \int_{\Delta_n} \{\sin mt_n \cos m(t - t_n) + \cos mt_n \sin m(t - t_n)\} \frac{dt}{t_n - t}$$
$$= \sum_{n=1}^{\infty} c_n \cos mt_n \int_{\Delta_n} \frac{\sin m(t - t_n)}{t_n - t} dt$$
$$= 2 \sum_{n=1}^{\infty} c_n \cos mt_n \int_{v_n} \frac{\sin mt}{t} dt.$$

If we suppose that

$$(2.6) \qquad \qquad \sum_{n=1}^{\infty} c_n < \infty,$$

then the last sum of (2.5) tends to zero as $m \rightarrow \infty$, by the uniform convergence of the sum and the Riemann-Lebesgue theorem. Hence the Fourier series of f(t) converges to zero at t = 0 under the condition (2.6).

On the other hand we have

$$\int_{\Delta_n} f(t) dt = c_n \int_{t_n - u_n}^{t_n - v_n} \frac{t}{t_n - t} dt - c_n \int_{t_n + v_n}^{t_n + u_n} \frac{t}{t_n - t} dt = 2c_n(u_n - v_n),$$

and

$$\left|\int_{t_n-u_n}^{t_n} f(t) dt\right| = c_n \int_{t_n-u_n}^{t_n-v_n} \frac{t}{t_n-t} dt$$
$$= c_n \left\{ t_n \log \frac{u_n}{v_n} - (u_n-v_n) \right\}$$
$$\geq c_n t_n \log \frac{u_n}{v_n} .$$

Hence, if

(2.7)
$$\sum_{i=n+1}^{\infty} c_i(u_i - v_i) < \frac{1}{4} c_n t_n \log \frac{u_n}{v_n}$$

and if

(2.8)
$$\frac{1}{2} c_n t_n \log \frac{u_n}{v_n} \geq \varepsilon(t_n)$$

then we have

$$\left| \int_{0}^{t^{n}} f(u) \, du \right| = \left| \sum_{i=n+1}^{\infty} \int_{\Delta_{i}} f(t) \, dt + \int_{t_{n}-u_{n}}^{t_{n}} f(t) \, dt \right|$$
$$\geq c_{n} t_{n} \log \frac{u_{n}}{v_{n}} - 2 \sum_{i=n+1}^{\infty} c_{i}(u_{i}-v_{i})$$
$$\geq \frac{1}{2} c_{n} t_{n} \log \frac{u_{n}}{v_{n}}$$
$$\geq \varepsilon (t_{n}).$$

After the sequences $\{t_n\}$ and $\{c_n\}$ are determined such that $\sum \mathcal{E}(t_n) < \infty$ and that (2.6) holds, we may suppose that the sequences $\{u_n\}$ and $\{v_n\}$ satify the additional relations (2.7) and

$$\frac{1}{2}c_n t_n \log \frac{u_n}{v_n} = \mathcal{E}(t_n),$$

that is,

$$\frac{u_n}{v_n} = \exp\left(\frac{2\varepsilon(t_n)}{c_n t_n}\right).$$

Then the conditions (2.1), (2.4), (2.6), (2.7) and (2.8) are satisfied. The theorem is thus completely proved.

3. Proof of theorem 2. We may suppose that f(t) is even and x = 0. Then $f(t) = \varphi_x(t)$ and put $s_n = s_n(0)$. Let the Fourier series of f(t) be

$$\sum_{n=1}^{\infty} a_n \, \cos nt$$

supposing $a_0 = 0$. Then we have

(3.1)
$$\Phi(t) = \int_0^t f(u) \ du = \sum_{n=1}^\infty a_n \frac{\sin nt}{n} = \sum_{n=1}^\infty s_n \Delta \frac{\sin nt}{n}$$

Now,

(3.2)
$$\Delta \frac{\sin nt}{n} = \frac{(n+1)\sin nt - n\sin(n+1)t}{n(n+1)}$$
$$= \frac{\sin nt - \sin(n+1)t}{\sin nt} + \frac{\sin nt}{\sin nt}$$

$$=\frac{\sin nt-\sin (n+1)t}{n+1}+\frac{\sin nt}{n(n+1)},$$

.

therefore we have easily

46

(3.3)
$$\Delta \frac{\sin nt}{n} \leq Ctn^{-1}$$
 (C: constant)

for all t in $(0, \pi)$ and for all n.

On the other hand, for $0 \leq nt \leq \frac{\pi}{4} \left(< \frac{\pi}{2} \right)$ we have

 $|(n + 1)\sin nt - n\sin(n + 1)t|$ = $|n\sin nt + \sin nt - n\sin nt\cos t - n\cos nt\sin t|$ = $|n\sin nt(1 - \cos t) + (\sin nt - n\sin t) + n\sin t(1 - \cos nt)|$ $\leq C_1\{n \cdot nt \cdot t^2 + (n^3t^3 + nt^3) + nt \cdot n^2t^2\}$ $\leq C_2n^3t^3$,

where C_1 and C_2 are constants independent of n and t. It holds then

(3.4)
$$\left| \Delta \frac{\sin nt}{n} \right| \leq C_2 nt^3 \qquad \left(0 \leq nt \leq \frac{\pi}{4} \right).$$

Dividing the last sum of (3.1) we write

$$\Phi(t) = \left(\sum_{n=1}^{\lfloor \pi/4^{\prime} \rfloor} + \sum_{n=\lfloor \pi/4^{\prime} \rfloor+1}^{\infty}\right) s_n \Delta \frac{\sin nt}{n} \equiv I + J.$$

Then we have by (3.4)

$$I = o\left(\sum_{n=1}^{\lfloor \pi/4t \rfloor} \frac{nt^3}{n}\right) = o(t^3 \cdot t^{-(2-\alpha)}) = o(t^{1+\alpha}),$$

and by (3.3)

$$J = o\left(\sum_{n=\lfloor \pi/4^t\rfloor+1}^{\infty} \frac{1}{n^{\alpha}} \frac{t}{n}\right) = o(t^{1+\alpha}).$$

Combining these results we get

$$\Phi(t) = o(t^{1+\alpha})$$

which is the required.

4. Proof of Theorem 3. Let $\{\mathcal{E}_n\}$ be a positive monotone vanishing sequence such that the relations

(4.1)
$$\frac{\varepsilon_n}{24 n^{1+\gamma}} = \varepsilon \left(\frac{1}{n}\right), \quad \varepsilon_{n+\gamma} \leq \frac{\gamma}{120} \quad \varepsilon_n$$

hold for infinitely many integers *n*. This definition may be conceived by the condition on the given function $\hat{\varepsilon}(t)$.

Let

(4.2)
$$f(t) = \sum_{k=1}^{\infty} \varepsilon_k \frac{\cos kt}{k^{1+\gamma}} \qquad (0 < \gamma < 1).$$

The series (4.2) converges uniformly, and then we have

$$s_n(0) - f(0) = \sum_{k=n+1}^{\infty} \frac{\varepsilon_k}{k^{1+\gamma}} = o\left(\frac{1}{n^{\gamma}}\right)$$
 as $n \to \infty$

which is one of the required condition.

On the other hand we have, substituting (4.1),

(4.3)
$$\int_{0}^{t} \varphi_{0}(u) du = 2 \int_{0}^{t} \{f(u) - f(0)\} du$$
$$= 2 \sum_{k=1}^{\infty} \frac{\xi_{k}}{k^{2+\gamma}} (\sin kt - kt)$$
$$= 2 \left(\sum_{k=1}^{\lfloor 1/t \rfloor} + \sum_{k=\lfloor 1/t \rfloor+1}^{\infty} \right) \equiv I + J$$

say. In the sum I, since $kt - \sin kt \ge k^3 t^3/12$,

(4.4)
$$|I| = 2 \sum_{k=1}^{\lfloor 1/t \rfloor} \mathcal{E}_k \frac{kt - \sin kt}{k^{2+\gamma}} \ge \frac{1}{6} \sum_{k=1}^{\lfloor 1/t \rfloor} \mathcal{E}_k k^{1-\gamma}$$
$$\ge \frac{1}{6} t^3 \mathcal{E}_{\lfloor 1/t \rfloor} \frac{1}{2} \frac{1}{t^{2-\gamma}} = \frac{1}{12} \mathcal{E}_{\lfloor 1/t \rfloor} t^{1+\gamma}.$$

By $|\sin kt - kt| \leq 2kt$ in the sum J, we get

(4.5)
$$|J| \leq 2 \sum_{k=(1/\ell)+1}^{\infty} \frac{2\mathcal{E}_k t}{k^{1+\gamma}} \leq \frac{5}{\gamma} \mathcal{E}_{(1/\ell)+1} t^{1+\gamma}.$$

Hence if $\lfloor 1/t \rfloor$ is an integer which fulfills the conditions (4.1), we have from (4.3), (4.4) and (4.5)

$$\int_{0} \varphi_{0}(\boldsymbol{u}) \, d\boldsymbol{u} \geq |I| - |J| \geq \left(\frac{1}{12}\varepsilon_{1/t} - \frac{5}{\gamma}\varepsilon_{1/t+1}\right)t^{1+\gamma}$$
$$\geq \frac{1}{24}\varepsilon_{1/t}t^{1+\gamma} = \varepsilon(t).$$

Thus the condition (1.8) holds for infinitely many t with $t \rightarrow 0$.

5. Proof of Theorem 4. We shall begin by the case $\beta \ge 0$. Let $\eta(t) = \varepsilon(t)/t^{\alpha+\beta-\gamma}$, and we may suppose without loss of generality that $\eta(t) \downarrow 0$ as $t \to 0$, and that x = 0. By the inequality $\beta - \gamma \ge 0$, there is an integer M not smaller than $\beta - \gamma$. Put $\beta - \gamma = \delta$ and

(5.1)
$$\eta^{*}(t) = \frac{4^{M+1}(M+1-\delta)\Gamma(\alpha+M+2)}{\Gamma(M+2)} \eta(t),$$

(5.2)
$$\eta^*_n = \eta^* \left(\frac{1}{n}\right).$$

Since $\eta_n^* \to 0$ as $n \to \infty$, we can find a sequence of integers $\{n_k\}$ such that

(5.3)
$$n_1 = 1, \ \eta^*_{n_{k+1}} \leq \frac{\alpha \delta \Gamma(\alpha) \Gamma(M+2)}{2 \cdot 4^{M+2} (M+1-\delta) \Gamma(\alpha+M+2)} \ \eta^*_{n_k} (k = 1, 2, \ldots).$$

Let $\{\eta'_{\nu}\}$ be a sequence such that

(5.4) $\eta'_{\nu} = \eta^*_{n_k}$ for $n_{k-1} < \nu \leq n_k$ $(k = 1, 2, ...)_r$ then obviously $\eta'_{\nu} \neq 0$ $(\nu \neq \infty)$. We shall define a function f(t) by \cdot

(5.5)
$$f(t) = \sum_{\nu=1}^{\infty} \eta_{\nu}' \frac{\cos \nu t}{\boldsymbol{\nu}^{1+\delta}},$$

and we shall prove that this function is the required. We have

(5.6)
$$f(0) - s_n(0) = \sum_{\nu=n+1}^{\infty} \eta'_{\nu} \frac{1}{\nu^{1+\delta}} = \eta'_n O\left(\frac{1}{n^{\delta}}\right) = o\left(\frac{1}{n^{\delta}}\right)$$

as $n \rightarrow \infty$, and hence immediately

$$f(0) - \sigma_n^{\beta}(0) = o(n^{-\delta}) = o(n^{\gamma-\beta})$$

as $n \to \infty$, which is one of the required conditions.

Now we get

$$\Phi_{a}(t) = \frac{2}{\Gamma(\alpha)} \int_{0}^{t} (t-u)^{\alpha-1} \left(\sum_{\nu=1}^{\infty} \frac{\eta'_{\nu}}{\nu^{1+\delta}} (\cos \nu u - 1) \right) du$$
$$= \frac{2}{\Gamma(\alpha)} \sum_{\nu=1}^{\infty} \frac{\eta'_{\nu}}{\nu^{1+\delta}} \int_{0}^{t} (t-u)^{\alpha-1} (\cos \nu u - 1) du.$$

For $\nu \leq t^{-1}$ we have r^t

(5.7)
$$-\int_{0}^{t} (t-u)^{\alpha-1} (\cos \nu u - 1) \, du$$
$$= 2\int_{0}^{t} (t-u)^{\alpha-1} \sin^{2} \frac{\nu u}{2} \, du$$
$$\geq 2\int_{0}^{t} (t-u)^{\alpha-1} \left(\frac{\nu u}{4}\right)^{M+1} \, du$$
$$= \frac{2\nu^{M+1}}{4^{M+1}} \int_{0}^{t} (t-u)^{\alpha-1} u^{(M+2)-1} \, du$$
$$= \frac{2\Gamma(\alpha)\Gamma(M+2)}{4^{M+1}\Gamma(\alpha+M+2)} \nu^{M+1} t^{\alpha+M-1},$$

and we have also

(5.8)
$$\left|\int_{0}^{t} (t-u)^{\alpha-1} (\cos \nu u - 1) du\right| \leq 2 \int_{0}^{t} v^{\alpha-1} dv = \frac{2}{\alpha} t^{\alpha}.$$
 If we put

$$\Phi_{\alpha}(t) = \frac{2}{\Gamma(\alpha)} \left(\sum_{\nu=1}^{\lfloor 1/t \rfloor} + \sum_{\nu=\lfloor 1/t \rfloor+1}^{\infty} \right) \frac{\eta'_{\nu}}{\nu^{1+\delta}} \int_{0}^{t} (t-u)^{\alpha-1} (\cos \nu u - 1) \ du = K + L,$$

then by (6.7) we get for small t

(5.9)
$$|K| \ge \frac{2}{\Gamma(\alpha)} \sum_{\nu=1}^{\lfloor 1/\ell \rfloor} \frac{\eta'_{\nu}}{\nu^{1+\delta}} \frac{2\Gamma(\alpha)\Gamma(M+2)}{4^{M+1}\Gamma(\alpha+M+2)} \nu^{M+1} t^{\alpha+M-1},$$
$$\ge \frac{\Gamma(M+2)}{4M\Gamma(\alpha+M+2)} \eta'_{\lfloor 1/\ell \rfloor} t^{\alpha+M+1} \sum_{\nu=1}^{\lfloor 1/\ell \rfloor} \nu^{M-\delta}$$
$$\ge \frac{\Gamma(M+2)}{2\cdot 4^{M}(M+1-\delta)\Gamma(\alpha+M+2)} \eta'_{\lfloor 1/\ell \rfloor} t^{\alpha+\delta},$$

and by (5.8) we get for small t

(5.10)
$$|L| \leq \frac{2}{\Gamma(\alpha)} \sum_{\nu=\lfloor 1/l \rfloor+1}^{\infty} \frac{\eta^{\prime\nu}}{\nu^{1+\alpha}} \frac{2}{\alpha} t^{\alpha}$$
$$\leq \frac{4}{\alpha \Gamma(\alpha)} \eta_{\lfloor 1/l \rfloor+1} t^{\alpha} \sum_{\nu=\lfloor 1/l \rfloor+1}^{\infty} \frac{1}{\nu^{1+\delta}}$$
$$\leq \frac{8}{\alpha \delta \Gamma(\alpha)} \mathcal{E}_{\lfloor 1/l \rfloor+1} t^{\alpha+\delta}.$$

If we put $t = 1/n_k$, we have, by (6.1)-(6.4), $\eta'_{[1|l]} = \eta'_{n_k} = \eta^*_{n_k} = \eta^*(1/n_k) = \eta^*(t)$ $= \frac{4^{u+1}(M+1-\delta)\Gamma(\alpha+M+2)}{\Gamma(M+2)} \eta(t),$ $\eta'_{[1|l]+1} = \eta'_{n_k+1} = \eta^*_{n_k+1}$ $\leq \frac{\alpha\delta\Gamma(\alpha)\Gamma(M+2)}{2\cdot4^{M+2}(M+1-\delta)\Gamma(\alpha+M+2)} \eta^*_{n_k}$ $= \frac{\alpha\delta(\alpha)}{8} \eta(t),$

and hence we get easily from (6.9) and (6.10) $|K| \ge 2n(t) t^{\alpha+\delta}$

and

$$|L| \leq \eta(t) t^{\alpha+\delta}$$

for sufficiently small t. Thus we conclude that

$$|\Phi_{\alpha}(t)| \geq |K| - |L| \geq \eta(t) t^{\alpha+\delta} = \mathcal{E}(t)$$

for $t = 1/n_k$, k being sufficiently large.

In the case $\beta \ge 0$ Theorem was thus proved.

We shall now consider the case $\beta < 0$. We have $0 < \beta - \gamma = \delta < 1$. As in the former case we get easily

$$f(0) - s_k(0) \equiv r_{k+1}(0) \equiv r_{k+1} = o((k+1)^{-\delta}).$$

Remembering $r_1 = f(0)$, we have

$$\sigma_{n}^{\beta}(0) - f(0) = \frac{1}{A_{n}^{\beta}} \left\{ \sum_{k=1}^{n} A_{n-k}^{\beta} \frac{\eta'_{k}}{k^{1+\delta}} - A_{n}r_{1} \right\}$$
$$= \frac{1}{A_{n}^{\beta}} \left\{ \sum_{k=1}^{[n/2]} A_{n-k}^{\beta} \frac{\eta'_{k}}{k^{1+\delta}} - A_{n}^{\beta}r_{1} \right\} + \frac{1}{A_{n}^{\beta}} \sum_{k=[n/2]+1}^{n} A_{n-k}^{\beta} \frac{\eta'_{k}}{k^{1+\delta}}$$
$$\equiv P + Q$$

say. Then

$$P = \frac{1}{A_n^{\beta}} \left\{ \sum_{k=1}^{[n/2]} A_{n-k}^{\beta}(\boldsymbol{r}_k - \boldsymbol{r}_{k+1}) - A_n^{\beta} \boldsymbol{r}_n \right\}$$

= $\frac{1}{A_n^{\beta}} \left\{ -\sum_{k=1}^{[n/2]} A_{n-k+1}^{\beta-1} \boldsymbol{r}_k - A_{n-[n/2]}^{\beta} \boldsymbol{r}_{[n/2]+1} \right\},$
 $|P| = O\left(\frac{1}{n^{\beta}} \left\{ \sum_{k=1}^{[n/2]} n^{\beta-1} k^{-\delta} + n^{\beta} n^{-\delta} \right\} \right)$
= $O(n^{-\beta} \{ n^{\beta-1} n^{1-\delta} + n^{\beta-\delta} \}) = O(n^{-\delta}),$

and

$$|Q| = O(n^{-\beta} n^{-1-\delta} \sum_{k=1}^{\lfloor n/2 \rfloor - 1} A_k^{\beta})$$

= $O(n^{-\beta - 1 - \delta} n^{\beta + 1}) = O(n^{-\delta}).$

From these estimations we get

$$\sigma_n^{\beta}(0) - f(0) = O(n^{-\delta}) = O(n^{\gamma-\beta}).$$

The estimation of $\Phi_{\alpha}(t)$ is the same as in the former case.

Thus the theorem was completey proved.

6. Remarks. The theorems 1 and 3 will be shown by using examples of the type used by one of the authors [2,3]. An example of the Paley type [1] may be also used for the proof of Theorem 3.

References

- R. E A. C. PALEY, On the Cesàro summability of Fourier series and allied series, Proc. Cambridge Phil. Soc., 26(1929-30) p. 173-203.
- [2] S. IZUMI, Notes on Fourier analysis (XVI), Tôhoku Math. Journ., (2) 1(1949-50), p. 144-166.
- [3] S. IZUMI, Notes on Fourier analysis (XXXV), Tôhoku Math. Journ., (2) 1(1949-50), p. 285-302.

Tokyo Metropolitan University, Tokyo, Kyushu University, Fukuoka, Tôhoku University, Sendai.