# SOME TRIGONOMETRICAL SERIES, IV ${ }^{1 \text { p }}$ 

Shin-ichi Izumi

(Received January 21, 1953)

1. This paper concerns the problem proposed by $O$. Szász ${ }^{3)}$ : is the series $\sum a_{n} \cos n t$ continuous at $t=0$ or uniformly convergent at $t=0$ if $\sum a_{n}$ converges and $n a_{n} \rightarrow 0$ ? Answering this problem we prove the following theorems.

Theorem 1. There is a sequence $\left(a_{n}\right)$ such that $n a_{n} \rightarrow 0, \quad \sum a_{n}$ converges and the series

$$
\begin{equation*}
\sum a_{n} \cos n t \tag{1}
\end{equation*}
$$

does not converge in the neighborhood of $t=0$.
THEOREM 2. There is a sequence ( $a_{n}$ ) such that na $a_{n} \rightarrow 0$, (1) convergesfor all $t$, but (1) is not continuous at $t=0$.

THEOREM 3. There is a sequence $\left(a_{n}\right)$ such that $n a_{1 b} \rightarrow 0, \sum a_{n}$ converges but (1) is not uniformly convergent at $t=0$.

Theorem 2 is proved by Hardy and Littlewood ${ }^{3)}$ for sine series. For cosine series, proof is similar.

Another problem of O. Szász is negatively answered as follows:
Theorem 4. There is a seqnence ( $a_{n}$ ) such that

$$
(n+1) s_{n+1}-n s_{n} \geqq-p
$$

$$
(n=1,2, \cdots)
$$

where $s_{n}=a_{1}+a_{2}+\cdots+a_{n}$ and $p$ is a positive constant and that (1) is not uniformly convergent at $t=0$.
2. Proof of Theorem 1. The series

$$
\sum_{n}(-1)^{n} \frac{\cos 2 n t}{2 n \log (2 n)}
$$

does not converge at $t=\pi / 2$, and then there is an integer $n_{1}$ such that

$$
\left|\sum_{2 n_{v}<n_{1}}(-1)^{n} \frac{\cos 2 n t}{2 n \log (2 n)}\right|>1
$$

at $t=\pi / 2$. Similarly, the series

$$
\sum_{n}(-1)^{n} \frac{\cos 4 n t}{4 n \log (4 n)}
$$

[^0]does not converge at $t=\pi / 4$, and then there is an integer $n_{2}$ such that
$$
\left|\sum_{n_{1}<4 n<n_{2}}(-1)^{n} \frac{\cos 4 n t}{4 n}\right|>1
$$

Let $n_{3}$ and $n_{4}$ be integers such that

$$
\begin{aligned}
& \left|\sum_{n_{2}<2 n<n_{3}}(-1)^{n} \frac{\cos 2 n t}{2 n \log (2 n)}\right|>1, \\
& \left\lvert\, \sum_{n_{3}<4 n<n_{4}}(-1)^{n} \frac{\cos 4 n t}{4 n \log (4 n)}>1 .\right.
\end{aligned}
$$

Further the series

$$
\sum(-1)^{n} \frac{\cos 8 n t}{8 n \log (8 n)}
$$

does not converge at $t=\pi / 8$, and then there is an integer $n_{k}$ such that

$$
\left|\sum_{n_{4}<8 n<n_{5}}(-1)^{n} \frac{\cos 8 n t}{8 n \log (8 n)}\right|>1
$$

Let $n_{6}, n_{7}, n_{8}$ be integers such that

$$
\begin{aligned}
& \left|\sum_{n_{5}<2 n<n_{8}}(-1)^{n} \frac{\cos 2 n t}{2 n \log (2 n)}\right|>1, \\
& \left|\sum_{n_{6}<4 n<n t}(-1)^{n} \frac{\cos 4 n t}{4 n \log (4 n)}\right|>1, \\
& \left|\sum_{n_{7}<8 n<n_{3}}(-1)^{n} \frac{\cos 8 n t}{8 n \log (8 n)}\right|>1 .
\end{aligned}
$$

Thus proceeding we can determine ( $n_{k}$ ). Putting

$$
s(k, i ; t)=\sum_{\substack{n_{i}<2 k n<n_{i}+1}}(-1)^{n} \frac{\cos 2^{i} n t}{2^{k} n \log \left(2^{k} n\right)}
$$

consider the series ( $n_{0}=0$ )

$$
\begin{aligned}
& s(1,0 ; t)+s(2,1 ; t) \\
+ & s(1,2 ; t)+s(2,3 ; t)+s(3,4 ; t) \\
+ & s(1,5 ; t)+s(2,6 ; t)+s(3,7 ; t)+s(4,8 ; t) \\
+ & \cdots \cdots \cdots
\end{aligned}
$$

Writing out each term as a sum of cosines, we get a cosine series where there are no overlapping terms. If we denote this by $\Sigma a_{n} \cos n t$, then $n a_{n}$ $\rightarrow 0$ and $\Sigma a_{n}$ converges, since we can take $n_{k}>2^{k}$. Thus the theorem is proved.

## 3. Proof of Theorem 2. Let

$$
n_{j}=\mathcal{v x p} \exp \exp j
$$

and

$$
a_{n}=\frac{1}{n \log n} \cos \frac{n \pi}{j}
$$

$$
\left(n_{j}<n<n_{j+1} .\right.
$$

Evidently $n a_{n} \rightarrow 0$, and $\Sigma a_{n}$ converges. For, if we put

$$
s_{n, k s}=\sum_{n_{j}<n \leqq k} a_{n}, \quad\left\{n_{s}<k<n_{j+3}\right.
$$

then

$$
s_{n_{j, k}}=O\left(j / n_{j} \log n_{j}\right)=o(1)
$$

by Abel's lemma and by $\Sigma \sin (n \pi / j)=O\left(1 / \sin (\pi / j)\right.$. Since $\Sigma j / n_{j} \log n_{f}$ converges, $\Sigma a_{n}$ converges.

Similarly, the series
(2)

$$
\sum a_{n} \cos n t
$$

converges for all $t \neq 0$. For putting

$$
s_{n_{j, k}(t)}(t)=\sum_{n_{j}<n \leqq k} a_{n} \cos n t,
$$

we have, for $\pi / j<t / 2$,

$$
\begin{aligned}
s_{n_{j, k}^{k}}(t) & =\frac{1}{2} \sum_{r r_{j}<n \leq k} \frac{1}{n \log n}\left\{\cos n\left(t-\frac{\pi}{j}\right)+\cos n\left(t+\frac{\pi}{j}\right)\right\} \\
& =O\left(1 / t n_{j} \log n_{j}\right) .
\end{aligned}
$$

Thus we get the convergence of (2), whose sum we denote by $f(t)$.
On the other hand,

$$
\begin{aligned}
f(\pi / j) & =\sum_{\substack{n^{n} n^{n_{j}+1}}} \frac{1}{n \log n} \cos ^{2} \frac{n \pi}{j}+\sum_{\substack{k=1 \\
k \neq j}}^{\infty} \sum_{n_{k}<n<n_{k+1}} \frac{1}{n \log n} \cos \frac{n \pi}{j} \cos \frac{n \pi}{k} \\
& =f_{1}+f_{2},
\end{aligned}
$$

say. Now

$$
f_{1}>\frac{1}{2} \sum_{n_{j}<n<n_{j+1}} \frac{1}{n \log n}>\frac{1}{2}\left(\log \log n_{j+1}-\log \log n_{j}\right)>e^{i}(e-1) / 2,
$$

for large $j$, and since

$$
\begin{aligned}
\sum_{n_{k}<n<n_{k+1}} \frac{1}{n \log n} \cos \frac{n \pi}{j} \cos \frac{n \pi}{k} & =O\left(\frac{j k}{|j-k|} \frac{1}{n_{k} \log n_{k}}\right) \\
& =O\left(j k / n_{k} \log n_{k}\right)
\end{aligned}
$$

for $\boldsymbol{k} \neq \boldsymbol{j}$, we have

$$
f_{2}=O\left(j \sum_{\substack{k=1 \\ k \neq j}}^{\infty} k / n_{k} \log n_{k}\right)=O(j)
$$

Thus $f(\pi / j)=f_{1}+f_{2} \rightarrow \infty$ as $j \rightarrow \infty$, and hence the theorem is proved.
Theorem 3 and 4 may be proved by the above example.
4. Finally we can show that a theorem due to $O$. Szész is best possible.

Szász' theorem reads as follows:
Theorem. If, for a $\delta(1>\delta>0)$,

$$
\sum_{\nu=n}^{2 n}\left(\left|a_{\nu}\right|-a_{\nu}\right)=O\left(n^{\delta}\right)
$$

and

$$
s_{n}=\sum_{\nu=1}^{n} a_{\nu}=O(1 / \log n)
$$

then $\Sigma a_{a}$ is $\left(R_{1}\right)$ summable.
We can prove that $\delta$ cannot be replaced by 1 in the theorem. In fact we have

Theorem 5. There is a sequence ( $a_{n}$ ) such that

$$
\begin{gathered}
\sum_{\nu=n}^{2 n}\left|a_{\nu}\right|=o(n), \\
s_{n}=\sum_{\nu=0}^{n} a_{\nu}=o(1 / \log n)
\end{gathered}
$$

and $\Sigma a_{n}$ is not ( $R_{1}$ ) summable.
Proof. Let

$$
s_{n}=\frac{1}{\log n \log \log n} \sin \frac{n \pi}{j} \quad\left(n_{j}<n<n_{j+i}\right),
$$

where $n_{j}$ is the sequence defined in the proof of Theorem 2. Then, as in the proof of Theorem 2, the limit

$$
\lim _{t=0} \sum_{n=1}^{\infty} \frac{s_{n}}{n} \sin n t
$$

does not exist. Verification of other conditions is easy.


[^0]:    1) Some trigonometrical series I, II, III will appear in the Journal of Mathematics, vol. 1, No. 2-3, 1953.
    2) O. Szász, Bull. Amer. Math. Soc., 50(1944).
    3) Hardy-Littlewood, Proc. London Math. Soc., 18(1918).
