SOME TRIGONOMETRICAL SERIES, IV¹⁾

Shin-ichi Izumi

(Received January 21, 1953)

1. This paper concerns the problem proposed by O. Szász²): is the series $\sum a_n \cos nt$ continuous at t = 0 or uniformly convergent at t = 0 if $\sum a_n$ converges and $na_n \rightarrow 0$? Answering this problem we prove the following theorems.

THEOREM 1. There is a sequence (a_n) such that $na_n \rightarrow 0$, $\sum a_n$ converges and the series

(1) $\sum a_n \cos nt$ does not converge in the neighborhood of t = 0.

THEOREM 2. There is a sequence (a_n) such that $na_n \rightarrow 0$, (1) converges for all t, but (1) is not continuous at t = 0.

THEOREM 3. There is a sequence (a_n) such that $na_n \rightarrow 0$, $\sum a_n$ converges but (1) is not uniformly convergent at t = 0.

Theorem 2 is proved by Hardy and Littlewood³) for sine series. For cosine series, proof is similar.

Another problem of O. Szász is negatively answered as follows :

THEOREM 4. There is a sequence (a_n) such that

$$(n+1)s_{n+1} - ns_n \ge -p$$
 $(n = 1, 2, \dots)$

where $s_n = a_1 + a_2 + \cdots + a_n$ and p is a positive constant and that (1) is not uniformly convergent at t = 0.

2. Proof of Theorem 1. The series

$$\sum_{n} (-1)^n \frac{\cos 2nt}{2n \log (2n)}$$

does not converge at $t = \pi/2$, and then there is an integer n_1 such that

$$\sum_{2n < n_1} (-1)^n \frac{\cos 2nt}{2n \log (2n)} > 1$$

at $t = \pi/2$. Similarly, the series

$$\sum_{n} (-1)^n \frac{\cos 4nt}{4n \log (4n)}$$

3) Hardy-Littlewood, Proc. London Math. Soc., 18(1918).

¹⁾ Some trigonometrical series I, II, III will appear in the Journal of Mathematics, vol. 1, No. 2-3, 1953.

²⁾ O. Szász, Bull. Amer. Math. Soc. , 50(1944).

does not converge at $t = \pi/4$, and then there is an integer n_2 such that

$$\sum_{n_1 < in < n_2} (-1)^n \frac{\cos 4nt}{4n \log (4n)} > 1.$$

Let n_3 and n_4 be integers such that

$$\left| \sum_{n_2 < 2n < n_3} (-1)^n \frac{\cos 2nt}{2n \log (2n)} \right| > 1,$$
$$\left| \sum_{n_3 < 4n < n_4} (-1)^n \frac{\cos 4nt}{4n \log (4n)} \right| > 1.$$

Further the series

$$\sum (-1)^n \frac{\cos 8nt}{8n \log (8n)}$$

does not converge at $t = \pi/8$, and then there is an integer n_k such that

$$\sum_{\substack{n_4 < 8n < n_5}} (-1)^n \frac{\cos 8nt}{8n \log (8n)} \Big| > 1.$$

Let n_6 , n_7 , n_8 be integers such that

$$\begin{split} \left| \sum_{n_{\mathfrak{s}} < 2n < n_{\mathfrak{s}}} (-1)^{n} \frac{\cos 2nt}{2n \log (2n)} \right| > 1, \\ \left| \sum_{n_{\mathfrak{s}} < 4n < n_{\mathfrak{s}}} (-1)^{n} \frac{\cos 4nt}{4n \log (4n)} \right| > 1, \\ \left| \sum_{n_{\mathfrak{s}} < 8n < n_{\mathfrak{s}}} (-1)^{n} \frac{\cos 8nt}{8n \log (8n)} \right| > 1. \end{split}$$

Thus proceeding we can determine (n_k) . Putting

$$s(k,i;t) = \sum_{n_i < 2kn < n_i+1} (-1)^n \frac{\cos 2^{int}}{2^k n \log (2^k n)}$$
,

consider the series $(n_0 = 0)$

$$s(1, 0; t) + s(2, 1; t) + s(1, 2; t) + s(2, 3; t) + s(3, 4; t) + s(1, 5; t) + s(2, 6; t) + s(3, 7; t) + s(4, 8; t) + \cdots$$

Writing out each term as a sum of cosines, we get a cosine series where there are no overlapping terms. If we denote this by $\sum a_n \cos nt$, then $na_n \rightarrow 0$ and $\sum a_n$ converges, since we can take $n_k > 2^k$. Thus the theorem is proved.

3. Proof of Theorem 2. Let

$$n_j = v \operatorname{xp} \exp \exp j$$

and

$$a_n = \frac{1}{n \log n} \cos \frac{n\pi}{j} \qquad (n_j < n < n_{j+1})$$

Evidently $na_n \rightarrow 0$, and $\sum a_n$ converges. For, if we put

$$s_{n_{j,k}} = \sum_{n_j < n \leq k} a_n,$$
 $(n_j < k < n_{j+1})$

then

(2)

$$s_{n_j,k} = O(j/n_j \log n_j) = o(1)$$

by Abel's lemma and by $\sum \sin(n\pi/j) = O(1/\sin(\pi/j))$. Since $\sum j/n_j \log n_j$ converges, $\sum a_n$ converges.

Similarly, the series

 $\sum a_n \cos nt$

converges for all $t \neq 0$. For putting

$$s_{n_j,k}(t) = \sum_{n_j < n \leq k} a_n \cos nt,$$

we have, for $\pi/j < t/2$,

$$s_{n_j,k}(t) = \frac{1}{2} \sum_{\substack{r_j < n \leq k}} \frac{1}{n \log n} \left\{ \cos n \left(t - \frac{\pi}{j} \right) + \cos n \left(t + \frac{\pi}{j} \right) \right\}$$
$$= O(1/tn_j \log n_j).$$

Thus we get the convergence of (2), whose sum we denote by f(t). On the other hand,

$$f(\pi/j) = \sum_{\substack{n \neq n \neq n \neq n \\ k \neq j}} \frac{1}{n \log n} \cos^2 \frac{n\pi}{j} + \sum_{\substack{k=1 \\ k \neq j}}^{\infty} \sum_{\substack{n < n < n \\ k \neq j}} \frac{1}{n \log n} \cos \frac{n\pi}{j} \cos \frac{n\pi}{k}$$
$$= f_1 + f_2,$$

say. Now

$$f_1 > \frac{1}{2} \sum_{n_j < n < n_{j+1}} \frac{1}{n \log n} > \frac{1}{2} (\log \log n_{j+1} - \log \log n_j) > e'(e-1)/2,$$

for large j, and since

$$\sum_{n_k < n < n_{k+1}} \frac{1}{n \log n} \cos \frac{n\pi}{j} \cos \frac{n\pi}{k} = O\left(\frac{jk}{|j-k|} \frac{1}{n_k \log n_k}\right)$$
$$= O(jk/n_k \log n_k)$$

for $k \neq j$, we have

$$f_2 = O\left(j \sum_{\substack{k=1\\k\neq j}}^{\infty} k/n_k \log n_k\right) = O(j).$$

Thus $f(\pi/j) = f_1 + f_2 \rightarrow \infty$ as $j \rightarrow \infty$, and hence the theorem is proved. Theorem 3 and 4 may be proved by the above example.

4. Finally we can show that a theorem due to O. Szász is best possible.

Szász' theorem reads as follows :

THEOREM. If, for a $\delta_{2n}(1 > \delta > 0)$,

$$\sum_{\nu=n}^{\infty} (|a_{\nu}| - a_{\nu}) = O(n^{\delta})$$

....

and

$$s_n = \sum_{\nu=1}^n a_{\nu} = O(1/\log n),$$

then $\sum a_n$ is (R_1) summable.

We can prove that δ cannot be replaced by 1 in the theorem. In fact we have

THEOREM 5. There is a sequence (a_n) such that

$$\sum_{\nu=n}^{2n} |a_{\nu}| = o(n),$$

$$s_n = \sum_{\nu=0}^n a_{\nu} = o(1/\log n)$$

and $\sum a_n$ is not (R_1) summable.

PROOF. Let

$$s_n = \frac{1}{\log n \log \log n} \sin \frac{n\pi}{j} \qquad (n_j < n < n_{j+1}),$$

where n_j is the sequence defined in the proof of Theorem 2. Then, as in the proof of Theorem 2, the limit

$$\lim_{t=0}\sum_{n=1}^{\infty}\frac{s_n}{n}\sin nt$$

does not exist. Verification of other conditions is easy.

MATHEMATICAL INSTITUTE, TOKYO TORITSU UNIVERSITY, TOKYO