CESÀRO SUMMABILITY OF FOURIER SERIES

Shigeki Yano

(Received September 28, 1953)
Let $f(x)$ be an integrable function with period 2π ard its Fourier series be

$$
\begin{equation*}
\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) \tag{1}
\end{equation*}
$$

We have proved the following results [2], [3]:
(i) If $f(x) \in L$ and $0<\alpha<1$, then the series

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{-a}\left(a_{n} \cos n x+b_{n} \sin n x\right) \tag{2}
\end{equation*}
$$

is summable $(C,-\alpha)$ except a set of $(1-\alpha)$-capacity zero.
(ii) If $f(x) \in L^{2}$ and $0<\alpha<1$, then the series

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{-\alpha / 2}\left(a_{n} \cos n x+b_{n} \sin n x\right) \tag{3}
\end{equation*}
$$

is summable ($C,-\alpha / 2$) except a set of ($1-\alpha$)-capacity zero.
(iii) If $f(x) \in L^{p}, 1 \leqq p$ and $0<\alpha<1$, then the series

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{-a \mid p}\left(a_{n} \cos n x+b_{n} \sin n x\right) \tag{4}
\end{equation*}
$$

is summable ($C,-\alpha / p$) except a set of β-capacity zero for any $\beta>1-\alpha$.
In this paper these results are completed as follows:
Theorem. (a) If $f(x) \in L^{p}, 1 \leqq p \leqq 2$, and $0<\alpha<1$, then the series (4)
is summable $(C,-\alpha / p)$ except a set of $(1-\alpha)$-capacity zero.
(b) If $f(x) \in L^{p}, p>2$, and $0<\alpha<1$, then the series (4) is summable $(C,-\alpha / p)$ except a set of β-capacity zero for any $\beta>1-\alpha$.
(c) In the case (b), β cannot be replaced by $1-\alpha$.

Proof. The statement (b) is identical with (iii) above, and since N . du Plessis [1] has given an example of a function of $L^{p}, p>2$, such that the series (4) assoiated with it does not even converge on the points of a set of ($1-\alpha$)capacity positive, we have only to prove the statement (a).

For the proof we need the following lemma.
Lemma. Let $\mu(x)$ be an increasing function on ($0,2 \pi$) and let

$$
V_{1-\alpha}(\mu)=\sup _{0 \leq x \leq 2 \pi} \int_{0}^{2 \pi}|x-t|^{a-1} d \mu(t)
$$

Then we have for $2 \leqq q \leqq \infty$

$$
\begin{equation*}
\left\{\int_{0}^{2 \pi}\left[\int_{0}^{2 \pi}|x-t|^{a / p^{-1}} d \mu(t)\right]^{q} d x\right\}^{1 / q} \leqq A_{a} V_{1-a}^{1 / p}(\mu),(1 / p+1 / q=1) \tag{6}
\end{equation*}
$$

where A_{a} is a constant depending only on α.
This is due to du Plessis [1].

To prove (a) it is sufficient to show that if E is a set of ($1-\alpha$)-capacity positive and $\mu(x)$ is a distribution concentrated on E then we have the inequality

$$
\begin{equation*}
\int_{0}^{2 \pi} \sup _{n}\left|N_{n}^{(\pi / p)}(x ; f)\right| d \mu(x) \leqq A_{a, p}(\mu)\left\{\int_{0}^{2 \pi}|f(x)|^{p} d x\right\}^{1 / p} \tag{7}
\end{equation*}
$$

where $N_{n}^{(\alpha / p)}(x ; f)$ is the Cesàro means of order $-\alpha / p$ of the series (4) and $A_{a, p}(\mu)$ is a constart depending only on α, p and the distribution μ. From this maximal inequality the conclusion in (a) can be obtained quite analogously as in [2], [3].

Now, we already know [3, (16), p. 34]

$$
\left|N_{n}^{(\alpha / p)}(x ; f)\right| \leqq A_{a, p} \int_{0}^{2 \pi}|x-t|^{\alpha / p-1}|f(t)| d t
$$

where $A_{a, r}$ is dependent only on α and p. In virtue of the lemma, we have

$$
\begin{aligned}
& \int_{0}^{2 \pi} \sup _{n} \mid N_{n}^{(a / p)}(x ; f)\left\{d \mu(x) \leqq A a, p \int_{0}^{2 \pi}|f(t)|\left\{\int_{0}^{2 \pi}|x-t|^{a^{\prime} p-1} d \mu(x)\right\} d t\right. \\
& \leqq A a, p\left\{\int_{0}^{2 \pi}|f(t)|^{p} d t\right\}^{1 / p}\left\{\int_{0}^{2 \pi}\left[\int_{0}^{2 \pi}|x-t|^{a / p-1} d \mu(x)\right]^{2} d t\right\}^{1 / q} \\
& \leqq A_{a, p} V{ }_{1-a}^{1 / p}(\mu)\left\{\int_{0}^{2 \pi}|f(x)|^{p} d x\right\}^{1 / p}
\end{aligned}
$$

where $1 / p+1 / q=1$.
Taking $A_{a, p} V_{1-a}^{1 / p}(\mu)$ for $A_{a, p}(\mu)$, we obtain the desired inequality (6) and the proof of (a) is completed.

References

〔1〕 N. du Plessis, A theorem about fractional integcals, Proc. Amer. Math. Soc., 3 (1952) 892-898.
[2] S. Yano, Cesàro summability of Fourier series, Pacific Journal of Math., 2 (1952) 419-429.
[3] S. Yano, Cesàro summbility of Fourier series, Journal of Math., 1 (1952) 32-34.

Mathematical Institute, Tokyo Metoropolitan University, Tokyo

