CESÀRO SUMMABILITY OF FOURIER SERIES

Shigeki Yano

(Received September 28, 1953)

Let f(x) be an integrable function with period 2π and its Fourier series be

(1)
$$\frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx).$$

We have proved the following results [2], [3]:

(i) If $f(x) \in L$ and $0 < \alpha < 1$, then the series

(2)
$$\sum_{n=1}^{\infty} n^{-a} \left(a_n \cos nx + b_n \sin nx\right)$$

is summable (C,-α) except a set of (1-α)-capacity zero.
(ii) If f(x) ∈ L² and 0 < α < 1, then the series

(3)
$$\sum_{n=1}^{\infty} n^{-a/2} (a_n \cos nx + b_n \sin nx)$$

is summable $(C, -\alpha/2)$ except a set of $(1-\alpha)$ -capacity zero. (iii) If $f(x) \in L^p$, $1 \leq p$ and $0 < \alpha < 1$, then the series

(4)
$$\sum_{n=1}^{\infty} n^{-a/p} (a_n \cos nx + b_n \sin nx)$$

is summable $(C, -\alpha/p)$ except a set of β -capacity zero for any $\beta > 1-\alpha$. In this paper these results are completed as follows:

THEOREM. (a) If $f(x) \in L^p$, $1 \leq p \leq 2$, and $0 < \alpha < 1$, then the series (4) is summable $(C, -\alpha/p)$ except a set of $(1-\alpha)$ -capacity zero.

(b) If $f(x) \in L^p$, p > 2, and $0 < \alpha < 1$, then the series (4) is summable $(C, -\alpha/p)$ except a set of β -capacity zero for any $\beta > 1-\alpha$.

(c) In the case (b), β cannot be replaced by $1 - \alpha$.

Proof. The statement (b) is identical with (iii) above, and since N. du Plessis [1] has given an example of a function of L^p , p > 2, such that the series (4) assolated with it does not even converge on the points of a set of $(1-\alpha)$ capacity positive, we have only to prove the statement (a).

For the proof we need the following lemma.

LEMMA. Let $\mu(x)$ be an increasing function on $(0, 2\pi)$ and let

$$V_{1-a}(\mu) = \sup_{0 \le x \le 2\pi} \int_0^{2\pi} |x - t|^{a-1} d\mu(t).$$

Then we have for $2 \leq q \leq \infty$

(6) $\left\{ \int_{0}^{2\pi} \left[\int_{0}^{2\pi} |x-t|^{a/p^{-1}} d\mu(t) \right]^{q} dx \right\}^{1/q} \leq A_{a} V_{1-a}^{1/p}(\mu), (1/p+1/q=1),$ where A_{a} is a constant depending only on α .

This is due to du Plessis [1].

To prove (a) it is sufficient to show that if E is a set of $(1-\alpha)$ -capacity positive and $\mu(x)$ is a distribution concentrated on E then we have the inequality (7) $\int_{0}^{2\pi} \sup_{n} |N^{(a/p)}(x;f)| d\mu(x) \leq A_{a,p}(\mu) \left\{ \int_{0}^{2\pi} |f(x)|^{p} dx \right\}^{1/p}$, where $N^{(a/p)}(x;f)$ is the Cesàro means of order $-\alpha/p$ of the series (4) and $A_{a,p}(\mu)$ is a constant depending only on α , p and the distribution μ . From this maximal inequality the conclusion in (a) can be obtained quite analogously as

Now, we already know [3, (16), p. 34]

$$N_{n}^{(a/p)}(x;f) \mid \leq A_{a,p} \int_{0}^{2\pi} |x - t|^{a/p-1} |f(t)| dt,$$

where $A_{a,p}$ is dependent only on α and p. In virtue of the lemma, we have

$$\begin{split} \int_{0}^{2\pi} \sup_{n} & |N^{(a/p)}(x;f)| \, d\mu(x) \leq A_{a,p} \int_{0}^{2\pi} |f(t)| \left\{ \int_{0}^{2\pi} |x-t|^{a/p-1} \, d\mu(x) \right\} \, dt \\ & \leq A_{a,p} \left\{ \int_{0}^{2\pi} |f(t)|^{p} dt \right\}^{1/p} \left\{ \int_{0}^{2\pi} \left[\int_{0}^{2\pi} |x-t|^{a/p-1} d\mu(x) \right]^{2} dt \right\}^{1/q} \\ & \leq A_{a,p} V \, \frac{1/p}{1-a} (\mu) \, \left\{ \int_{0}^{2\pi} |f(x)|^{p} dx \right\}^{1/p}, \end{split}$$

where 1/p + 1/q = 1.

in [2], [3].

Taking $A_{a,p} V_{1-a}^{1/p}(\mu)$ for $A_{a,p}(\mu)$, we obtain the desired inequality (6) and the proof of (a) is completed.

References

- [1] N. du PLESSIS, A theorem about fractional integrals, Proc. Amer. Math. Soc., 3 (1952) 892-898.
- [2] S. YANO, Cesàro summability of Fourier series, Pacific Journal of Math., 2 (1952) 419-429.
- [3] S. YANO, Cesaro summbility of Fourier series, Journal of Math., 1 (1952) 32-34.

MATHEMATICAL INSTITUTE, TOKYO METOROPOLITAN UNIVERSITY, TOKYO