A REMARK ON ABSOLUTE CESÀRO SUMMABILITY OF FOURIER SERIES

SHIGEKI YANO

(Received September 28, 1953)

Recently T. Tsuchikura [3] has proved that the summability |C, r| of the Fourier series of $L^p(0, 2\pi)$, (1 , is of local property for <math>r > 1/p. On the other hand, Bosanquet and Kestelman [1] showed that the summability |C, 1| is not of local property for the Fourier series of integrable functions. In the present paper we shall prove the following result.

THEOREM. The summability |C,1/p| at a point of the Fourier series of functions of $L^p(0, 2\pi)$, $(p \ge 1)$, is not of local property.

Proof. For p = 1, the theorem is the result of Bosanquet and Kestelman. Let p > 1, then it suffices to show the existence of a function $f(x) \in L^p(0, 2\pi)$ which is zero in the interval $1 < x < 2\pi$ and the Fourier series of which is not summable at the point $x = \pi$. Suppose that the Fourier series of any function $f(x) \in L^p(0, 2\pi)$ which vanishes in $1 < x < 2\pi$ is summable |C, 1/p| at $x = \pi$, then we have [2] that

(1)
$$\sum_{n=1}^{\infty} \frac{|a_n \cos n\pi + b_n \sin n\pi|}{n^{1/p}} = \sum_{n=1}^{\infty} \frac{|a_n|}{n^{1/p}} = \frac{1}{\pi} \sum_{n=1}^{\infty} \left| \int_0^1 f(x) \frac{\cos nx}{n^{1/p}} dx \right| < \infty,$$

where

(2)
$$f(x) \sim \frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx);$$

that is, for every function of $L^{p}(0, 1)$, it follows that

(3)
$$\sum_{k=1}^{\infty} \left| \int_{0}^{1} f(x) \frac{\cos nx}{n^{1/p}} dx \right| < \infty.$$

This shows that the sequence $\sum_{k=1}^{n} \frac{\cos kx}{k^{1/p}}$ $(n=1, 2, \dots)$ is weakly convergent as a sequence of linear functionals on $L^{p}(0, 1)$, hence there exists a constant M by the theorem of Banach-Steinhaus such that

(4)
$$\left\{\int_0^1 \left|\sum_{j=1}^n \frac{\cos kx}{k^{1/p}}\right|^{p/(p-1)} dx\right\}^{1-1/p} \leq M, \quad (n=1,2,\cdots).$$

Since the series $\sum_{n=1}^{\infty} \frac{\cos nx}{n^{1/p}}$ is covergent save for x = 0, we have by Fatou's lemma that

(5)
$$\left\{\int_{0}^{1}\left|\sum_{n=1}^{\infty}\frac{\cos nx}{n^{1/p}}\right|^{p(p-1)}dx\right\}^{1-1/p} \leq M$$

It is known [4, p.117], however, that

CESÀRO SUMMÀBILITY

(6)
$$\sum_{n=1}^{\infty} \frac{\cos nx}{n^{1/p}} \sim x^{\frac{1}{p}-1} = x^{-(p-1)/p} (x \to 0),$$

and this contradicts the inequality (5). Thus the proof of the theorem is completed.

REMARK. Using the equality [4, p.2]

$$\sum_{n=1}^{\infty} \frac{\cos nx}{n} = \frac{1}{2} \log \frac{1}{2(1-\cos x)}, \quad (x \neq 0)$$

the method of our proof is valid for p = 1.

References

- BOSANQUET, L. S., and KESTELMAN, H., The absolute convergence of series of integrals, Proc. London Math. Soc., (2) 45 (1939).
- [2] KOGBETLIANTZ, E., Sur les series absolument sommables par la méthode des moyennes arithmétiques, Bull. des Sciences Math. (2), 49(1925).
- [3] TSUCNIKURA, T., On the absolute summability of orthogonal series, Tôhoku Math. Jour., (2) 5 (1953) 52-66.
- [4] ZYGMUND, A., Trigonometrical series, Warsaw-Lwow, 1935.

MATHEMATICAL INSTITUTE, TOKYO METOROPOLITAN UNIVERSITY, TOKYO