ON COVERING SURFACES OF A CLOSED RIEMANN SURFACE OF GENUS $p \ge 2$

MASATSUGU TSUJI

(Received August 21, 1953)

1. Let F be a closed Riemann surface of genus $p \ge 2$ spread over the z-plane. We cut F along p disjoint ring cuts C_i $(i = 1, 2, \dots, p)$ and let F_0 be the resulting surface. We take infinitely many same samples as F_0 and connect them along the opposite shores of C_i as in the well known way, then we obtain a covering surface F^{∞} of F, which is of planar character. Hence by Koebe's theorem, we can map $F^{(\infty)}$ conformally on a schlicht domain D on the ζ -plane, whose boundary E is a non-dense perfect set, which is the singular set of a certain linear group of Schottky type. Myrberg¹⁾ proved:

THEOREM 1. E is of positive logarithmic capacity. In another paper²⁾, I have proved :

THEOREM 2. Every point of E is a regular point for Dirichlet problem.

Hence $F^{(\infty)}$ is of positive boundary and its Green's function $G(z, z_0)$ tends to zero, when z tends to the ideal boundary of $F^{(\infty)}$. Now instead of cutting F along p ring cuts, we cut F along q $(1 \leq q \leq p)$ ring cuts C_i $(i=1,2,\cdots,q)$ and let F_0 be the resulting surface. We take infinitely many same samples as F_0 and connect them along the opposite shores of C_i $(i=1,2,\cdots,q)$, then we obtain a covering surface $F_{(q)}^{(\infty)}$ of F. Then I have proved in another paper³ the following extension of Theorem 1.

THEOREM 3. $F_{(1)}^{(\infty)}$ is of null boundary, while if $q \ge 2$, $F_{(q)}^{(\infty)}$ is of positive boundary and there exists a non-constant bounded harmonic function on $F_{(q)}^{(\infty)}$, whose Dirichlet integral is finite.

In this paper, we shall prove the following extension of Theorem 2.

THEOREM 4. The Green's function $G(z, z_0)$ of $F_{(q)}^{(\infty)}(q \ge 2)$ tends to zero, when z tends to the ideal boundary of $F_{(q)}^{(\infty)}$.

¹⁾ P. J. MYRBERS: Die Kapaziät der singulären Menge der linearen Grupen, Ann. Acad. Fenn. Series A. Math.-Phys. 10(1941).

M. T_{SUJI}: On the uniformization of an algebraic function of genus $p \ge 2$, Tôhoku Math. Journ. 3(1951).

²⁾ M. T_{SUJI}: On the capacity of a general Cantor set, Jourual Math. Soc. Japan, 5(1953).

M.T_{SUJI} Theory: of meromorphic functions on an open Riemann surface with null boundary, Nagoya Math. Journ. 6(1953).

consists of one analytic Jordan curve Γ_0 . We exhaust ϕ by a sequence of compact Riemann surfaces:

where $\Gamma_0 + \Gamma_n$ is the boundary of \mathcal{O}_n and Γ_n consists of a finite number of analytic Jordan curves. Let $u_n(z)$ be harmonic in \mathcal{O}_n , such that $u_n(z) = 1$ on Γ_0 , $u_n(z) = 0$ on Γ_n , then $u_n(z)$ increases with n, so that we put

 $\lim_{n\to\infty} u_n(z) = u_{\Phi}(z).$

Then as I have proved⁴), $u_{\phi}(z) \neq \text{const.}$, so that $0 < u_{\phi}(z) < 1$ in \emptyset and $u_{\phi}(z) = 1$ on Γ_0 .

It is easily seen that Theorem 4 is equivalent to

THEOREM 5. For any Φ , $u_{\phi}(z)$ tends to zero, when z tends to the ideal boundary of Φ .

Next we shall prove Theorem 5.

PROOF. Let C_i^+ , C_i^- be the both shores of C_i . Instead of C_1^+ , C_i^- , \cdots , C_q^+ , $C_q^$ we write Γ_1 , Γ_2 , \cdots , Γ_{2q} . In the following, F_j , F_{ji_1} , \cdots denote the same sample as F_0 , which will be defined as follows.

We connect F_j (j = 1, 2, ..., 2q) to F_0 along Γ_j and let $\Gamma_j + \sum_{i_1=1}^{2q-1} \Gamma_{ji_1}$ be its boundary. We connect $F_{ji_1}(i_1 = 1, 2, ..., 2q - 1)$ to F_j along Γ_{ji_1} and let $\Gamma_{ji_1} + \sum_{i_2=1}^{2q-1} \Gamma_{ji_1i_2}$ be its boundary. Similarly we define $F_{ji_1...i_n}$ and let $\Gamma_{ji_1...i_n} + \sum_{i_{n+1}=1}^{2q-1} \Gamma_{ji_1...i_{n+1}}$ be its boundary.

e its boundary

We put

$$F_{j} + \sum_{i_{1}}^{1,\dots,2q-1} F_{ji_{1}} + \dots + \sum_{i_{1}\dots,i_{n}}^{1,\dots,2q-1} F_{ji_{1}\dots,i_{n}} + \dots = (F_{(q)}^{(\infty)})_{j}$$
(1)

and

$$\boldsymbol{\varPhi}_n = F_j + \sum_{i_1}^{1_j \dots, 2q-1} F_{ji_1} + \dots + \sum_{i_1, \dots, i_n}^{1_j \dots, 2q-1} F_{ji_1 \dots, i_n}, \qquad (2)$$

then

The boundary of $\mathbf{\Phi}_n$ is $\Gamma_j + \Gamma_{(n)}$, where

$$\Gamma_{(n)} = \sum_{i_1, \dots, i_{n+1}}^{1, \dots, 2q-1} \Gamma_{ji_1 \dots i_{n+1}}$$
(3)

Let $u_j^{(n)}(z)$ be harmonic in $\mathcal{O}_{n,1}$, such that $u_j^{(n)}(z) = 1$ on $\Gamma_j, u_j^{(n)}(z) = 0$ on $\Gamma_{(n)}$. Then $u_j^{(n)}(z)$ increases with n, so that let

4) M. TSJUI, loc. cit. 3)

$$\lim_{n\to\infty} u_j^{(n)}(z) = u_j(z). \tag{4}$$

Then as remarked above, $u_j(z) \neq \text{const.}$, so that $0 < u_j(z) < 1$ in $(F_{(a)}^{(\infty)})_j$ and $u_j(z) = 1$ on Γ_j .

To prove our theorem, it suffices to prove that

$$\operatorname{im} u_j(z) = 0, \tag{5}$$

when z tends to the ideal boundary of $(F_{(q)}^{(x)})_j$.

$$\underset{z \in F_{ji_1}}{\operatorname{Max}} u_j(z) = \lambda_{ji_1}, \quad \underset{1 \leq j \leq 2q, 1 \leq i_1 \leq 2q-1}{\operatorname{Max}} \lambda_{ji_1} = \lambda,$$
(6)

then

$$0 < \lambda < 1. \tag{7}$$

We put

Let

$$F_{ji_1} + \sum_{i_2}^{1,\dots,2^{q-1}} F_{ji_1i_2} + \dots + \sum_{i_2,\dots,i_n}^{1,\dots,2^{q-1}} F_{ji_1i_n} + \dots = \left(F_{(q)}^{(\infty)}\right)_{ji_1} \quad . \tag{8}$$

We define $u_{ji_1}(z)$ for $(F_{(q)}^{(\infty)})_{ji_1}$ similarly we defined $u(z_j)$ for $(F_{(q)}^{(\infty)})_{j}$, then by the maximum principle, we have easily

$$\frac{u_{j}(z)}{\lambda} \leq u_{ji_{1}}(z) \text{ in } F_{ji_{1}},$$

so that

we have

$$\max_{z \in \Gamma_{ji_1i_2}} \frac{u_j(z)}{\lambda} \leq \max_{z \in \Gamma_{ji_1i_2}} u_{ji_1}(z).$$

Since as easily seen from the definition of λ ,

we have

$$\begin{array}{c}
\underset{z \in \Gamma_{ji_{1}i_{2}}}{\operatorname{Max}} \quad u_{ji_{1}}(z) \leq \lambda, \\
\underset{z \in \Gamma_{ji_{1}i_{2}}}{\operatorname{Max}} \quad u_{j}(z) \leq \lambda^{2}. \\
\underset{z \in \Gamma_{ji_{1}}\cdots i_{n}}{\operatorname{Max}} \quad u_{j}(z) \leq \lambda^{n}.
\end{array}$$
(9)

From this we conclude that $\lim u_j(z) = 0$, when z tends to the ideal boundary of $(F_{(q)}^{(\infty)})_{j}$. Hence our theorem is proved.

3. We shall extend Theorem 3 as follows. Let F be a closed Riemann surface of genus $p \ge 2$ spread over the z-plane and C_i , $C_i'(i = 1, 2, \dots, p)$ be conjugate ring cuts, such that C_i , $C_j'(i, j = 1, 2, \dots, p, i \neq j)$ are disjoint and C_i , C_i' have one common point z_i and we connect z_i to a point z_0 by a curve l_i , which are disjoint each other and if we cut F along C_i, C_i', l_i $(i=1,2,\cdots,p)$, then we obtain a simply connected surface. Now we cut F along C_i $(i = 1, 2, \dots, q)$ and C_{q+i} , C'_{q+j} , l_{q+j} $(j=1,2,\cdots,r)$, $1 \leq q+r \leq p$) and let F_0 be the resulting surface. We take infinitely many same samples as F_0 and connect them along the opposite shores of these cuts, then we obtain a covering surface $F_{(q,r)}^{(\infty)}$ of F. Then

187

M. TSUJI

THEOREM 5. $F_{(l,0)}^{(\infty)}$ and $F_{(0,1)}^{(\infty)}$ are of null boundary, while if $q + r \ge 2$, $F_{(q,r)}^{(\infty)}$ is of positive boundary and there exists a non-constant bounded harmonic function on $F_{(q,r)}^{(\infty)}$, whose Dirichlet integral is finite.

PROOF. By Theorem 3, $F_{(1,0)}^{(\alpha)} = F_{(1)}^{(\alpha)}$ is of null boundary and we can prove similarly as Theorem 3, that if $q+r \ge 2$, then $F_{(q,r)}^{(\alpha)}$ is of positive boundary and there exists a non-constant bounded harmonic function on $F_{(q,r)}^{(\alpha)}$, whose Dirichlet integral is finite. Hence it remains only to prove that $F_{(0,1)}^{(\alpha)}$ is of null boundary. We put $C = C_1$ and we assume that C, C' do not contain $z = \infty$ and branch points of F. We cut F along C, C' and let F_0 be the resulting surface. F_0 is bounded by a single closed curve, which consists of C^+ , C^- , C'^+ , C'^- . Hence we can represent F_0 topologically by a square with p-1 handles. We denote C^+ , C^- , C'^+ , $C^{-\prime}$ as the sides of F_0 and call the points of F_0 vertices, which correspond to the vertices of the square. We take infinitely many same samples F_i as F_0 . We connect 8 Fi's to F_0 , which have common sides or vertices with F_0 and let G_1 be the sum of these 8 F_i 's and put $F^{(1)} = F_0 + G_1$. Next we connect 16 F_i 's to $F^{(1)}$, which have common sides or vertices with $F^{(1)}$ and let G_2 be the sum of these 16 F's and put $F^{(2)} = F_0 + G_1 + G_2$. Similarly we define G_n , which consists of 8n Fi's and put

$$F^{(n)} = F_0 + G_1 + \dots + G_n.$$
 (1)

We take a schlicht circular disc \mathcal{A}_0 in F_0 , whose boundary is Γ_0 . Then

$$\Delta_0 \subset F^{(1)} \subset F^{(2)} \subset \cdots \subset F^{(n)} \to F^{(n)}_{(0,1)} \quad . \tag{2}$$

Let Γ_n be the boundy of $F^{(n)}$, which consists of one closed curve.

In virtue of the hypothesis on C, C', we can cover Γ_n by kn equal schlicht discs, whose radius is independent of n and k is a constant independent of n and any two of these discs overlap at most once.

Hence by Nevanlinna's theorem ⁵⁾, $F_{(0,1)}^{(\infty)}$ is of null boundary.

MATHEMATICAL IUSTITUTE, TOKYO UNIVERSITY

R. Nevanlinna: Ein Satz über offene Riemannsche Flächen. Ann. Acad. Sci. Fenn, A. I, 54. Nr. 3. (1940).