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INTRODUCTION

1. The customary axiomatic definition of the system of ordinary complex
numbers may be given as follows ' (see Dickson, [ 1 ]2))

Let a, b, c, d be real numbers. Two couples Qa,b) and (cyά) are called
equal if and only if a = c and b = d. Addition and multiplication of two
couples are defined by the formulas

Qa, ό) + Qc,d) = Qa + c,b + d')
Qa, U) (c, d) = Qac — bd, ad -f be).

Addition and multiplication are commutative and associative, and the
distributive law holds.

Subtraction is defined as the operation inverse to addition. It is always
possible and unique.

Division is defined as the operation inverse to multiplication. Division,
except by (0,0) is possible and unique:

Qc, d) _ ί acΛ-bd ad—be \
Qa,b) ~ \ a2+b2 ' '2b'z )

Now let Qa, 0) be a, and (0,1) be i. Then

P = (0,1) (0,1) = (-1,0) = - 1

ίa,b) = U,0) + CO, 6) = (^,0) + a θ ) (0,1) = a+bu

Thus the set of all real couples, with the above definitions, becomes the

field of all complex numbers. The theory of complex-valued analytic functions

of a complex variable has been extensively developed.

2. The question next arises as to what occurs if the above definitions are
applied to couples of complex numbers, and the corresponding function theory
investigated. This new system permits the same definition of the four funda-
mental operations, except that division will not be possible by the couple Qa, fr)

1) This paper was written as a Ph.D. thesis at the University of Kansas under the

supervision of Prof. V. Wolontis and many of the problems and numerous changes have

been suggested by him. The author wishes to express his appreciation. The project

was originally proposed by Prof. G. B. Price, and a preliminary investigation was made

by him.

2) Numbers in brackets refer to the bibliography at the end of the paper,
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if a2 4- b2 = 0. This occurs if b = ± at, and the system is therefore not a field.

Furthermore, the product of the couples Qa, aϊ) and Qa,~aϊ) is Qcf-a2,-a2i+

a2ϊ) = (0, 0). Thus nil-factors or divisors of zero occur. However, the system

is a linear algebra.

Futagawa, [2] and [3], has published two articles on the theory of func-

tions of quadruples, which are equivalent to the couples of complex numbers.

Scorza [4] and Spampinato [5] each have presented results concerning a

system equivalent to these couples of complex numbers except for notation.

From the extensive literature concerning analytic functions on linear algebras

in general, mention is made here only of the papers by Scheffers [6] and

Ringleb [7] and several sections in a book by Hille [8], Takasu [9] has

presented a theory of functions on an algebra which is a generalization of,

and includes as a special case, the algebra presently being discussed. An

article by Ward [10] includes an extensive bibliography which eliminates the

necessity of including a complete set of references here.

3. A simplified notation is obtained by introducing a new unit j = (0,1).

Then

f = CO, I) C<UD = C-1,OD= - 1 .

The couple Qa, £) = Qa, 0) + CO, V) = Qa, 0) + Qb, 0) CO, 1) - a+bj will be termed

a bicomplex number. This number may also be written as a real linear

combination of the four units 1, i, /, ij. A geometric interpretation is afforded

by the four-dimensional Euclidean space.

4. By squaring the numbers -g-Cl+ί/D and -g-Cl —*/) ft * s found that they

are idempotent elements. A result of Scheffers CseeDickson [1] p. 26-27)

then states that this system is reducible. In fact the numbers 01 = -«Cl+*/D»
1

02 = ie\, 03 = ~2"C1 —ί/D» βi — ie* f o r m a bas i s if r e a l coefficients a r e used, a n d

0103 = 0104 = 0a03 = 0204 = 0. T h e n if c o m p l e x coefficients a r e p e r m i t t e d , 01 a n d

03 alone form the basis. The bicomplex number a+bj is uniquely represented

as Cfl—WDβi+C0+&θ03.

Now consider the bicomplex variable z-x+jyt x and y complex. Then

z=Qx—iy^ei+Qx+ty^es. For convenience let x— iy=zι and x+iy=zs. Then

2=2i0i+2303. A fundamental result of Ringleb [7] Cwhich he proves for

reducible linear algebras in general) then states that an analytic function /Oz)

Cthe analyticity of a function of a bicomplex variable will be defined in section

I.) can be decomposed uniquely into the sum of functions analytic in the

separate sub-algebras, i.e., /O) = gQzi)eι + h(zz)ez, where gQzi) i3 an analytic

functon of 21 and #C2s) is an analytic function of 23, and that conversely if

^Czi) is an analytic function of 21 and #C23) is an analytic function of 23,

then/C2) =<g
rC2i)0i + ^C2s)0s is an analytic function of 2. Here /C2) takes

bicomplex values, while gQzi) and h{zs) take only complex values. A proof
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of this directly based on the definition of an analytic function and not using

differentials, as Ringleb's proof does, will be given in section I. This provides

a powerful method for the study of analytic functions of a bicomplex variable.

This decomposition actually occurs in Futagawa's work for the special case

where /CO is sin z or cos z, but he makes no use of the decomposition.

5. Let z= £i0i+2303 and w = w\β\ -f wzβz. Since e\βz = 0, ei2 = ei, and 032 = <?3,

zιv =ziwiβi-h23W3β3. Thus zzv=0 if and only if zιwi = 0 and Z3W3 — O. Thus

the product of two non-zero numbers is zero if and only if one of them is a

complex multiple of eι and the other is a complex multiple of £3. Note also

that zei~Zieι and 203 = £303. Thus it will suffice to say multiple instead of

complex multiple. The set of numbers which are multiples of ei will be

termed the first nil-plane. Similarly the set of numbers which are multiples

of β3 will be termed the second nil-plane3;>. A non-zero number which is a

multiple of eι will be termed a first nil-factor and a non-zero number which is

a multiple of 03 will be termed a second nil-factor. By these conventions, the

origin belongs to both nil-planes, but is not a nil-factor.

6. The elementary functions have been discussed by Futagawa. However

they may well be defined by the formula /O) = /(zi>i + /(>3>3, where, in the

right member, / denotes the elementary function whose generalization to

bicomplex values is desired, since for z complex, z = zeι+ze3, and thus Zi = Z3 = z.

In fact, this formula provides a natural way of extending every complex-valued

function of a complex variable into the bicomplex space.

7. Two immediate generalizations to the bicomplex case of the concept of

absolute value of a complex number will be employed extensively. They are

the norm of z = x+jy, denoted by llzll, and defined as i Iz! \==V\x\2~+ \y\2 and

the absolute value of z} denoted by \z\, and defined as \z \=V IΛ: 2 +/ 2 | . The

norm of z is readily seen to be the Euclidean distance norm, and thus satisfies

the properties required of a norm. The absolute value of z does not satisfy

the triangle inequality and is zero for the class of numbers by which division

is not permitted, i.e., when z is zero or a nil-factor. (This absolute value is

the first modulus in Futagawa's polar representation of 2.) It is frequently

convenient to express \z\ and | | z | | in terms of \z\\ and 12:31. Thus

1*1 = V\x2+y2\ =V\Q^t^ϋc+ϊy)\ = VJzϊzsJ = V\zι\ \z3\ .

Then \z\φθ and division by z is possible if and only if z\ and z$ are both

non-zero. In the representation of the bicomplex number system based on its

reducibility, division by z takes a particularly simple form, since

3) See Futagawa £2] for a geometric interpretation of the nil-planes,
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1 1 1 . 1

1 1 01-f03 Z\ Z3
——01 +—Γ~03

T h e identity

Il2l! = -

is easily verified by expressing both members in terms of the four real com-

ponents of 2, or somewhat more conveniently by employing polar coordinates

in the zι- and 23- planes.

Note that if 2 is in a nil-plane, say the first, then I! z 11 = /0- \z\\, so that

distance in a nil-plane, if measured by the absolute value of the complex

number 21, differs from distance in the bicomplex space by a constant factor.

Note also that if 2 = x + jy is a complex number, so that y — 0 and 2 = x,

then both |2| and II2II are equal to \x\.

I. ANALYTIC FUNCTIONS-DECOMPOSITION

8. Analyticity will now be denned and the decomposition theorem proved.

The definition and the first part of the proof bear considerable similarity to

the corresponding definition and the derivation of the Cauchy-Riemann equa-

tions in the theory of functions of a complex variable. It will also be

discovered that differentiation of an analytic function with respect to 2 will be

equivalent to differentiation of the separate components with respect to their

respective variables, 21 and 23.

9. Throughout this paper, the topological concepts employed for sets of

bicomplex numbers will be those of four-dimensional Euclidean space. For

example, a set of points S will be called open if for every 20 in S there exists

a K> 0 such that every 2 for which \\z~zo\\ < K is also in S. An open

connected set will be called a region. The set of all bicomplex numbers with

this topology will be called the bicomplex space. If T is a region, and if each

2 in T is written in the form 2 = 21̂ 1 + 23̂ 3, (where eι= -τrCl+ί/), £3 = -τr(l—//),

see Introduction, parts 4 and 5), then the set T\ of values of 21 is a region in

the 21-ρlane On the topology of that plane) and the set Ts of values of 23 is a

region in the 23-plane. These regions 7Ί and Ts will be termed the com-

ponent regions of T. If the regions 7\ and T3 are given, the largest region

T whose component regions are T\ and TO will be termed the product-region

of T\ and T 3.

It should be observed that for convenience the regions J Ί and Ts have

been chosen in the complex 21- and 23-planes, which are not planes of the

bicomplex space. If component-regions in the space itself are desired, the
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components z\ eι and 23̂ 3 of the number z, located in the first and second nil-

planes, respectively, should be considered.

10. Let zo = Xo + jyo be a bicomplex number. The bicomplex variable

z — x -f- jy will be said to approach zo, and Zo will be termed the limit of z if

\\Z—ZQ\\ approaches zero- It may be verified that z approaches Zo if and only

if x approaches x0 and y approaches y0.

DEFINITION. Let /GO be a bicomplex-valued function of the bicomplex

variable z — xΛ-jyy defined in a region 71. Let z0 be a point in T. Then /GO

will be termed analytic at zo if and only if there exists a bicomplex number

f'Qzo) such that for any £ > 0 there exists a dε > 0 such that

/oo-/c*o _ / u

whenever 11 2 — 2011 < fle and I2 —201 9̂  0.

DEFINITION. A function /Cz) will be termed analytic in a region T if it is

analytic at each point of T.

THEOREM. ^Decomposition theorem of Ringleb). Let fQz) be analytic in a

region T, and let T\ and Tz be the component regions of T, in the 21- and 23-

planes, respectively. Then there exists a unique pair of complex-valued

analytic functions, gQzi) and hQz-S), defined in 7\ and Tz, respectively, such that

for all 2 in T. Conversely, if g(z{) is any complex-valued analytic function in

a region Tiand h{z &) any complex-valued analytic function in a region Tztthen

the bicomplex-valued function /CO defined by the formula Ĉ 4) is an analytic

functon of the bicomplex variable z in the product-region T of 7\ and Tz.

PROOF. Let /GO = « ( # , J 0 + jvQx,y). Let z0 = x0 +jy0 be an arbitrary

point in T, and let 2 approach z0 in such a way that y is always equal to yo,

i.e., 2 = x + jyo Then 2—zo = x — Xo, hence the assumption that \z — zo\φθ is

satisfied for all x Φ Xo, and

z—zo x—xo

J
X-Xo J X-Xo

This tends to a limit if and only if each term tends separately to a limit. But

this means simply that the complex-valued functions u and v of the two

complex variables x and y possess partial derivatives with respect to x, du/dx

and dv/dx, at x=xo, y=yo, and that

=xo,y=yQ



CONTRIBUTIONS TO THE THEORY ETC. 13f

Similarly if z approaches zQ so that z-zo = Qy-yo~)j> i e , z = xo-hjy9 it is

found that du/dy and dv/dy exist at x=xo, y=y0 and

f ( ? Λ - ( d v _ _ . d u \
\ υy υy . χ = Xθ9 y==y(}

Comparison of the two expressions for f'Qzo') gives

1L — -P~ _
dx ~ dy ' dx ~ dy

for any point Zo-^xo-hjyo of T. These are the generalized Cauchy-Riemann

equations. Now, using the representation mentioned in the introduction

w — f(jz) = u + jυ — Qu — iυ)eι Q

z = x + jy = Qx—ty^ei 4-

and with the notation

w\ = u — iVy W3 = u+ivy

then w = M;^I + M;3̂ 3 and 2 =

Then since the partial derivatives of u and v with respect to x and jy exist

in T, the partial derivatives of w\ and ^3 with respect to x and .y exist in T and

QM I __ du _ . ̂ ^ ŵ̂ i _ du^ _ ._9^
9A; ~ dx ι dx' dy~~dy ι~dy'

dtps du . dv dws du . dv
dx~ dx^1 dx' dy~dy + ΐdy'

Using the generalized Cauchy-Riemann equations

dwi __ .dwi dim
dx ' dy ~ι Ύx"

Also, since x = —^ tzi+z-s) and ^ =

dy
dzi dzz 2 ' dzi 2 > dz3 2 '

Since w\ and zί;3 are analytic functions of x and j>, and x and j are analytic

functions of 21 and z3, for any point zo^xo+j'yo of 7\ wi and w;3 are analytic

functions of 21 and 23. Further

dwi dw\ dx dw\ dy _ dwi 1 - ^ i _̂ " ŵ̂ i
dx dzi + dy dzi ~ dx % 2 ~ f ^ F " ~2~ = ~5T

dx ' 2 * 9# \ 2

dx dw3 dy __ dz#3_ 1
dzi + dy dzx ~ dx 2

Q - ^ ^ 4- ^ ^ 3 ^ = dw^ _1 .9^3 / i \ _ 9^3
923 "~ dx dz3 dy dz3 dx 2 ~*~ι dx \ 2 ) ~ dx '

Since these equations hold at all points of the region T, it follows that wι

is an analytic function of 21 alone and ws is an analytic function of 23 alone,
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in the region T. Then placing wiQzi) = ^ O O for z\ in 7Ί and W3Q23) = htzi)

for Z3 in T3,

/CO = # O 0 e i + h(zz)ez

and the representation is unique, since w\ is uniquely determined as u—iυ and

^3 is uniquely determined as uΛ-iυ-

Conversely if ^ O O is an analytic function of zi in a region T\ of the bi-

plane and h(jzz) is an analytic function of zz in a region Tz of the 23-plane,

then g(z\)e\ + hQzi)ez is defined as a function of 2=2101+2303 in the product-

region of the bicomplex space having the components Ti and Ts. Denoting

this function by /O) then, if 2o=2°iei+2°303 is a point of 71, and z a point of

T for which \z-zυ\φθ,

Z3-4 ~z-zo ~~ zι-z(l Z3-4

Since the right side approaches a limit as 21—>Λ> 2 i ^ Λ , and 23—>2°3,

then the left side approaches a limit as 2-̂ 20 and \z—zo\=fiθ, since \z—zo\ =0 if

and only if 21=Λ or Z3 = z°3.

11. COROLLARY 1. L^/ /C2) £0 analytic in a region T which intersects

the complex plane. Let S be a set of points in the intersection of T and the

complex plane and let S have a limit point in this intersection. Suppose that

for all 2 in S, fQz) assumes complex values. Then /C2) assumes complex values

for every 2 in the intersection of T and the complex plane and f{z) may be

defined for every value z in the components 7\ and Tz of T so that the

Ringleb decomposition formula becomes

for all z = zιe1+z3β3 in T-

PROOF. By the Ringleb decomposition theorem fQz)=g{z1)eiJrhQzz)e3 for

2 in T. For z=x-\-jy in S, 2 is complex and y = 0. Then 21 = x—iy = x,

Z3 = x-hiy = xf and 2=21 = 23==/, where t is a new complex variable introduced

for convenience. For each 2 in 5, /C2) is a complex number, and thus ^ O O

=/O) and Kzz)=fQz)i or fQO=gQO = Kf). Now S has a limit point in the

complex plane. Thus gQt) == h(J). Thus gQzO = h{zz) whenever 21 = 23. But

2i = 23 for all 2 in the complex plane. Thus if 2 has a value t in the intersec-

tion of T and the complex plane, fCO^gQtyei-hgQfyes^gQO or / (2)=/(2>i+

/(2)£3, and f(z) assumes complex values there.

Now for every value of 21 in Ti for which fQzi) is not already defined

(recall that the complex values for which fQz) is defined are those of T; compare

Section I, part 9), define fQz{)=g (21); and for every value of 23 in Tz for

which /O3) is not already defined, define fQzz)=-hQzz). Then f(z{) is an

analytic function of 21 in T\ and f(zί) is an analytic fuuction of 23 in 7V

Thus /(2)=/C2i>i+/(23>3 for 2 in T.
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COROLLARY 2.

elf dg o , dh o

dz d z i ^ dzz 3

PROOF. By direct substitution of results obtained in the course of proving

the theorem

df ,rr Λ du , . dv ( du . dv \ / du , . dv

dw3 dwi , dws dg dh
Ύ~e3 = ~ e ι + ^ e ^~\eι + ϊ

REMARK. If /O) is analytic in a region T, then the decomposition formula

gCzOβL-hhQzs^es will automatically define an analytic function, coinciding

with /O) in T, at all points of the product region of TΊ and Ts, which in

general will include points not in T. This trait of the bicomplex function

theory has no counterpart in the theory of functions of a complex variable.

12. The decomposability of a function is in itself a rather strong

requirement, as shown by the following.

REMARK. Let /O) be any bicomplex-valued function of a complex

variable, i.e., a bicomplex-valued function defined if and only if z is in the

complex plane. Then if it be required that fQz) be extended into the bicom-

plex space in such a way that f(z) is decomposable as fQz) — gQzι)eι-i-hQz3)β2,

then the extension is already uniquely determined. This follows from the fact

that for z in the complex plane, 2=21 = 23 and the definition of f(z) for these

values determines gQzi) and h(zi) in their entire domains of definition, the

complex 21- and 23-planes, respectively. Thus f(z) is determined in the entire

bicomplex space. Of course if f(z) is analytic the continuation will be analytic.

COROLLARY. If /(V) and FQz) are two analytic function of the bicomplex

variable z which are equal for all complex values of 2, the functions are equal

for all bicomplex valves of 2.

The above remark and its corollary could be generalized in various ways.

II. POWER SERIES AND TAYLOR'S THEOREM

00

13. DEFINITION. Let 2 an be a series of bicomplex terms, and let s*-

h

2 an- The series will be said to converge if for S > 0 there exists an integer

N such that for all m,n> N, II sm-Sn \\<8.

Let an—bnei+cnez, where bn and en are complex. It will be useful to show

that ^ j an converges if and only if ^ j bn and ^ j en converge in the ordinary
w=0 re=O ϊ i=0
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sense. Therefore let ^ j a<n converge. Let Sk=pkeiΛ qtβz. Since an —

k Jc k

2 ΛV3 Thus p/c =^]bn and ^ = 2
n=0 ' n = o n=0

and 11 Sm — Sn 11 = — = \ / \pm — pn\2-\- \q»n—qn\z < S for m,

n> N. Thus \pm—pn\ < S -γ/2~ and \qm—qn\ < 8 y/2~. Therefore 2 &"> and

00

XΊ c« converge.
71=0

00 00

Conversely let 2 On a n c * 2 Cw converge. Then for 8 > 0, there exists
w=0 w = 0

M such that \pn-pn\<8 for m,n>Ni and iNfc such that |φ«-^ | < £ for

m, n> N* Then for N = maxCM, M), these inequalities both hold for

m,n> N- Thus I i s«i—Sw 11 < £ for m,n> N and ^ a* converges.
71=0

DEFINITION. Let 2 an D e a series of bicomplex terms, and let SA = Σ Λ n

The series will be said to converge to the sum S if for 8 > 0 there exists an

integer N such that for k > TV, 11 s* —S I! <£.

It is easily verified that a series is convergent if and only if the series
00 00

converges to a sum S, and that S = Peι+Qe3, where ^ = 2 ^n* ^ = Σ C/ι'

00

Now l e t ^ j a nzn denote a power series. It converges if and only if
71=0

bnZιn and ̂ j crc23w converge, from the above analysis, since anzn — (bne\-\-ones)
τi=0

DEFINITION. The set of all interior points of the set of points at which

a power series is convergent will be termed the region of convergence of the

power series.

It follows from the Ringleb decomposition theorem that a convergent power

series represents an analytic function in its region of convergence.

14. Since ^ j bnZin and 2 ι CίlZ'όn a r e complex power series they will have
7l=ϋ 71=0

radii of convergence, which may be zero or infinite. Let the radius of
00 00

convergence of ^^bnZιn be Eι and the radius of convergence of J>^cnZ3n be 2?3

If 2?i = 0 then the set of points of convergence of j ^ a,ιzn is restricted to the
71=0



CONTRIBUTIONS TO THE THEORY ETC. Ϊ4l

second nil-plane, and if i?3=0 to the first nil-plane. In these two cases the

region of convergence as defined above will be empty. If 2?i, i?3 > 0 however,

then the set of points of convergence contains a hypersphere, 11 z I ί < k for some

k > 0, centered at the origin, and the region of convergence is not empty. Let

o r

 ξ \TΪΓ1iT)2 =

Then the series 2 Λ / ι 2 ? i = Σ 0»C#Λi+-ff3w&O fra converges for |£i| < 1 and

I f 31 < 1. Thus a power series may be normalized to unit radii of convergence

of both component power series.

15 It seems desirable to be able to describe the region of convergence in

terms of z itself, particularly in terms of a norm such that the series converges

when the norm is less than some constant and diverges when the norm is

greater than this constant. Since | |2 | j = - 7 = . v

/ l2i|24- i-zsί2, it is seen that

this norm fails to describe the region of convergence for the normalized power

series. For if \zι\ < 1 and \zs\ < 1, then li-εil < 1, and if \zι\ = \z3\ = 1, then

I1 z I! = 1. But if I z-ί\ - 0 and 1 < |*i| < γ/2~, then 11 z\ t < 1. The problem is

solved by the following theorem, which is applicable when i?i=-i?3 = i?, which

is the case when the power series has been normalized, and which is in

particular the case whenever the series represents a function which is complex

whenever z is complex, for then /(2)=/Czi>i+/(>3>3 and αn^bα^cn for all n.

This refers, of course, to the generalization of any function studied in classical

complex variable theory.

THEOREM. Let

NQz)- V\\z\?+V'\\z\\*- | 2 | 4 .
oo

Then N{z) is α norm, and if 2 a,nzn is a power series whose component series

^jbiZi71 and ^jCnZό71 {an — bnei+cne-d) both have the same radius of convergence

R>0, then 2 anZn converges for N{z)<R and diverges for NQz)>R.
71=0

PROOF. Substituting llzll = - ^ = v / \zι\2+ \z3\
2 and \z\ = V \z\\ \z9\ in the

expression for iVC«) gives

Nίz) = ^-A-C \zi ! 2 + 1*3 IΌ + V χ C IΛ I2+ 1^312)2-

2^ ^ m a x
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Hence, if MX) < Rf both l*i|< j? and ΊzsK R a n d ^ , anz
n converges, whereas

if iVO) > R> either I21I or 1231 will be greater than R, hence the series must
diverge.

Using the above representation of iV(z), it is immediately verified that
NQz) is a norm and also that NQzw~) 2̂ MX)MwO. Also the following
inequalities may be verified

• l l s l l ^ M V ^ I I s l i v ^ a n d 1*1 S M » .
Each of the equations I|2|| =NQz~) and \z\ = MX) is satisfied if and only if
|*iI = 1*31 (which is then also equal to | * | ) , hence in particular when * is
complex. The equation iVO) = 11211 Y2 is satisfied if and only if z is a nil-
factor (i.e., 2i = 0 or *3 = 0), or if z = 0.

16. The existence of a Taylor series is demonstrated by Futagawa [3],
without the use of the Ringleb decomposition. His conclusion is that the
series is absolutely convergent in the hypersphere of radius one-fourth the
distance from the point of expansion (the center of the hypersphere) to the
boundary of the region T of analyticity of the function. Taylor series in
more general systems are discussed by several authors. With the use of the
decomposition theorem and the above norm, MX)> it is possible to show that
the region of convergence not only contains the hypersphere of radius equal to
the distance from the point of expansion to the boundary of the region T but
actually extends outside of this hypersphere in certain directions.

The actual process of expanding an analytic function as a power series
may be carried out without employing the decomposition directly, as is
evidenced by

TAYLOR'S THEOREM. Let /(*) be analytic in a four-dimensional region
T, and let a be a point of T. Then /GO may be expanded as a generalized
Taylor series about the point a:

wherever /(*) is defined and the series is convergent. If d is the greatest lower
bound of !|2—a\\ for z a boundary point of T, then the above series for /(*)
converges for NQz) < d\/2. In particular this implies convergence in the
hypersphere 112—a 11 < d.

PROOF. By the Ringleb decomposition theorem

/GO = gQzύei +
and also

/'GO = g'QzOei"+
in T. Then
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in T. Let a = a\ei+aze* be a point in T. Then, by Taylor's theorem for the

complex case,

CA) ^ f c p ^ V

(B) AOaO^toθ + ^ * ( α θ + " +

for 10i— αi | < Rι and Izs-tfsl < #3, where the radii of convergence, R\ and Rs,

are not zero because of the openness of T. There exists a point βi in the zi-

plane such that \βi — ai\ = Rι and gQzO has a singularity for zi = βu Then

/(z) is singular for z=βιβi-+a3e3. Thus 11 Qβιei+ocsea) - a ί I ><i or I i (i3i-α:i>i 11

i> d. But !! Qβι-cti)eι II = -?== !/3i-αi| - -5=. Therefore - ^ > J or

<i\/2 . By similar reasoning, R3^

Now consider the series

The series CC) has the component series CA) and CB), and thus CC) converges

for 2=21^1+2:3^3 if and only if CA) and CB) both converge. Then CA), CB), and

hence CC), certainly converge for M » < d\/2, and for those points of the

set M A ) < d\/2 which belong to T, the sum of the series CC) is g{zy)eι-\-

h{z{)es=f(z). Moreover, since N{z)^k \\z\\ Λ/2 , the inequality Λ̂ OO < d\/2

holds in particular for 11 z 11 <d.

REMARKS. This conclusion does not mean that CC) diverges for NQz^)>

dχ/2. This is the case, however, if Ri^R3-=dV2, which shows that no

better general conclusion is possible. Convergence for 11 z 11 < d is not the

best possible conclusion, which brings out the fact that a power series with a

bounded region of convergence, hence representing a function which cannot be

analytic for all values of z, always converges for some points which are more

distant from the point of expansion than the nearest singularity, if distance is

measured in the sense of the Euclidean norm.

00

17. DEFINITION. The series 2 β % where the an are bicomplex numbers,

00

is termed absolutely convergent if ^ \\an\\ is convergent.
71 = 0

It may be verified that a necessary and sufficient condition for absolute
00

convergence of the series ^α™ is the absolute convergence of the component

series, ^Jbn, and J>jc«, since



144 J D RILEY

\b*\^V\bn\2+\cn\*=\\an\\V2 a n d \c<n\^ V\bn\*+\cn\2 = \\an\\Y2, a n d

conversely

II OnW^V \bn\2 + \Cn\2^\bn\ + \Cn\ .

A power series is absolutely convergent in its region of convergence.

00

18. DEFINITION. Let 2 β / ι ^ a s e r ^ e s °f bicomplex terms. The series
n=0

will be said to be quasi-absolutely convergent if ^ j |0n| converges.
71=0

00

If for some integer N all an for #>iV are nil-factors, then the series >!#/*

will be quasi-absolutely convergent even though the series itself may diverge.
However, if for some N there exists k> 0 such that \\an\\^k\an\ for n > N,
then the quasi-absolute convergence will imply absolute convergence. This
condition will be shown to hold if the an are in a plane through the origin
(for definition of a plane see Section IV, part 36) which does not have any
other point in common with a nil-plane. Of course if the plane intersects a
nil-plane in a line, then the an may lie along the line and quasi-absolute
convergence will not imply convergence.

The proof will use the following:

LEMMA. Let a,bfc,d be complex numbers and let cx+dy be different from
zero for all real Qx,y^) Φ (0,0). Then FQx,y^) = Qax+by^/Qcx+dy^ is bounded for
all real Qx,y^)Φ (0,0).

PROOF. If x=0, F=b/d. For xφO, let y/x=λ. Then F=ίa+bX)/(c+dX),
where λ is real. Consider i as a complex variable. Then F is a linear
fractional transformation which takes the real axis into a straight line or a
circle. Since c + dλ φ 0 for real λ, the real axis transforms into a circle.
Thus F is bounded for Qx,y^ Φ (0,0).

Now let the points an lie in a plane through the origin which has no other
point in common with a nil-plane. Then each an may be expressed in the
form ma + nβ, where m and n are real, a and β are fixed bicomplex numbers
which are not zero or a nil-factor, and ma + nβ is not zero or a nil-factor
except for m — n = 0. Let a— a\e\+a-iez and β — β\e\ + /3303. Then

I \ma + nβ\ \ = -τψ~ V \ma± + nβ\ I2 + \ma3 + nβ-ά\2

and

\ma + nβ\ = VT~
Then

I "**3 + ftfe I2



Under the previous notation, 2>^anZn = ^ Z ^ i 7 1 W + 2 ^ Λ 2 > 3 W

<rc = - o o ' ^ T C = - O O -^ ^~n=— oo
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This will be bounded if and only if

\moί\ + nβ\\ \ma3 + nβ3\

\ma3 + nβ3\ \mci\ + nβ\\

is bounded. Since ma+nβ is never a nil-factor or zero except when m=n=0,

each term is bounded by the lemma for either morn different from zero. Let

the bound be k. If m = n = 0, then I! ma + nβ I! = \ma + Λj9| = 0. Thus in

all cases I ί ma + nβ ! I >* & \ma + nβ\ and quasi-absolute convergence implies

absolute convergence, which in turn implies convergence.

19. DEFINITION. A series of the form ^>^anzn will be termed a Laurent
n=-oo

series.

d h i ^ W 2 r3

convergent if and only if j£bnZin and 2 C / i 2 > 3 ? l a r e convergent If the series re-
n=—oo ra=— oo

presents the extension of a complex-valued function of a complex variable to

the bicomplex space, then bn will equal en for all n, and the series in

brackets will converge for r< \z1)3\ < i?. Then the region of convergence of

the series may be represented by NQl/z) < l/r and NQz) < R, since N(l/z) =

max [1/ !zi|, 1/ |23| ] = 1/min [ \zi\, \z3\ ] < l/r if and only if min [ \zι\, \.z3\ ] > r.

This, of course, bounds z away from the nil-planes.

III. SINGULARITIES AND ZEROS

20. DEFINITION. A point z0 will be called a singularity of a function

fQz) if 2Ό is a boundary point of a region T in which fQz) is analytic and if

there does not exist a region T' including T and containing zo and a function

# 0 ) analytic in T 7 and coinciding with fQz) in T. The point zo will be called

a removable singularity if the described T 7 and gQz) do exist.

Note that a removable singularity is not a singularity.

The decomposition theorem of Ringleb leads at once to the result that fQz)

= gQzι)eι + hQz3)e3 can have a singularity at z = zo = zι°ei + 23°03 if and only if

# O 0 has a singularity at zi = 2i° or /*O3) has a singularity at z3 = £3°. But

then it follows that /O) has a singularity at every point of the intersection of

the closure of the region of analyticity of fQz) and one of the niί-planes with

respect to zo, i.e., the set of points which are of the form Zo+α for α in a nil-

plane.

Thus there are no isolated singularities.

Since a functon fQz) with a singularity at the origin can have no point of

analyticity in one of the nil-planes, fQz) will be said to be singular in that nil-

plane, even though all points of the nil-plane may not be boundary points of

the region T in which fQz) is analytic,
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21. DEFINITION. A hypersphere \\2—zo\\<k, for some k > 0, will be

referred to as a neighborhood P1 of the point zo.

DEFINITION. A neighborhood P' of a point minus the nil-planes with

respect to the point will be called a deleted neighborhood P of the point. The

neighborhood Pr will be called the associated neighborhood of P.

DEFINITION. Let fQz) be analytic in a deleted neighborhood of z=zo=Zι°eι

+z3°03. Then /(z) will be said to have a pole of order at most n, where n is a

non-negative integer, in the nil-planes with respect to zo if both gQzi) has a

pole of order at most n at zi=-zι° and /zfe) has a pole of order at most n at

z3 = Z3°. If both gQzi) and /zOs) have a pole of order n at these points, then

/CO will be said to have a pole of order n.

Here a point of analyticity in the complex planes, and hence also in the

bicomplex space, has been referred to as a pole of order zero.

22. In the theory of functions of a complex variable, the inequalities

1/(2)1 <Mf \fQz)\>\z\n<M, and I/O) I ^MIz\n holding in a neighborhood of the

origin were shown to imply that f(z) has at the origin a removable singularity,

a pole, and a zero, respectively.

These results motivate using the norm and the absolute value in assuming

similar inequalities in the bicomplex space to hold in a deleted neighborhood

of the origin and investigating the effect on the function. Because 11 z 11 ̂  M » ^ ί

\\z\\ Λ/2 , the norm N(z) may be substituted in any of these inequalities for

lUll and the conclusion will be unchanged. This of course includes sub-

stituting M/GO ] for 11/(2) 11.

23. The first step might be to assume that /O) is analytic in a deleted

neighborhood P of the origin and that II/CO II <M in P, then prove that ^ O i )

and hQzi) have removable singularities at their respective origins, and that

therefore /O) has a removable singularity at all points of the intersection of the

nil-planes with the associated neighborhood P. This can be done. However

it is included in the following perhaps unexpected more general theorem, since

for 11 z 11< 1, then 11 /O) 11 11 z I \n < I I/GO 11 < M.

THEOREM. Let /O) be analytic in a deleted neighborhood P of the origin

and let

in P for a positive integer n, where M is a positive constant. Then fQz) has

a removable singularity at all points of the intersection of the nil-planes with

the associated neighborhood P'.

This theorem may be proved directly, but will be proved as a corollary of
the next theorem
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24. Since the boundedness of ! I/O) 11 11 z IΓ in a deleted neighborhood of

the origin is too strong a restriction on /O) to permit singularities, the next

step might be to weaken this assumption by replacing one of the norms or

both by the absolute value, first checking the restriction on /O) of the

boundedness of 1/(2)1 in a deleted neighborhood of the origin. Again this is

included in a more general

THEOREM. Let /O) be analytic in a deleted neighborhood P of the origin

and let

l/GDl l !z lΓ <M

in Py where n is a positive integer and M is a positive constant. Then there are

two cases:

Case 1. I/O) I Ξ= 0 in P, but /O) may be singular in a nil-plane.

Case 2. /O) has a removable singularity at all points of the intersection

of the nil-planes with the associated neighborhood P'.

PROOF. If I/O) 1^0 in P, then there exists a point z = ae\ + be3 in P such

that a Φ 0, b Φ 0, hQy) = c Φ 0. Then for z3 = b and 0 < \zι\ < \a\,

I/CO I 11*11n = V\I(zO\7\c\~[^ψV Isil2 + \bVJ < M
or

M22n M22n

for 0 < |zi| < |<z|. Therefore gQziJ has a removable singularity at z\ = 0.

Similarly ΛOs) h^s a removable singularity at z3 = 0. Therefore /O) has a

removable singularity at all points of the intersection of the nil-planes with the

associated neighborhood Pf.

Proof of the preceding theorem: Since I/O)I I \z I Γ ^ 11 /"O) 11 11 z IΓ < M

either the conclusion is already proved or else I/O) I = 0 in P. But then /O)

= # O i > i or /O) Ξ Kz3^e3, say ^ O i > i . Then for 23 = b Φ 0,

I^OO I 11 b \ \n = γT\fQz)\ -\\b\\n<Mv2r
or

\giz{)\<MY2-/\\b\\\

Therefore gζz{) has a removable singularity at the origin and the conclusion is

proved in any case.

25. THEOREM. Let fQz) be analytic in a deleted neighborhood P of the

origin and let

\\fQz)\\Λz\n<M

in P, where n is a positive integer and M is a positive constant. Then fQz)

has a pole of order at most [ n/2 ] in the nil-planes, where [ n/2 ] = n/2 if n is

even and [ n/2 ] = O — l)/2 if n is odd. Further, if n is odd,

I I/O) II-UΓ" 1

is also bounded in some neighborhood of the origin.
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PROOF.

I I/CO ll \z\n = ( W 2 " V l # O 0 1 2 + IΛteύ IVI21IΊ z3 \
n < M

or
[ \gQzι) I2 + I hQui) I2] |zil» U31» < 2M2

for 2 in P. Let 2 •= aei + fo3 be a point in P. Then β ^ O and bφO. Let 23 = δ

and 0< \zx \< \a\/2, then z=zιeι+z3e3 is in P. Then

\[gQzOY |. | a |»= |^Ca) |2 | a r ^ [ i ^ O ) I2+ \h(J>) I2] I* r < 2 M 2 / | ί |»

for 0 < I21I < \a\/2. Thus [#(>0] 2 has a pole of order at most » at a = 0.

Therefore gOO has a pole of order at most [n/2] at 21 = 0. Similarly AOs) has

a pole of order at most [n/2] at z3 = 0. Thus /GO has a pole of order at

most [n/2] in the nil-planes.

Further if n = 2r + 1, where r is an integer, then [n/2] = r and Î C-ε) l

\zι\r<N and l^fe) l \z3 \
r < R in some neighborhood of their respective

origins, where N and E are positive constants. Let |zi| < 1 and \z31< 1. Then

I I/GO 11 \z \n-1 = 11/(2) 11 l* | 2 -= C1/Λ/2")I/I^C2I)I 2 + l^fe) I2[ V \z l Ift I ]
r+ \hίz£) I21az3 l

2r

I2121 Γ2^+ l^fe) I2 \z3\
 2r

This last part of the proof also serves to showτ that the conclusion of the

theorem is the best possible.

26. THEOREM. Let fQz) be analytic in a deleted neighborhood P of the

origin and let

\f{z)\Λz\n<:M

in P, where n is a positive integer and M is a positive constant. Then there

are two cases.

Case 1. 1/(2)1 = 0 in P, but /CO may be singular in one nil-plane.

Case 2. /C2) has a pole of order at most n in the nil-planes in the

associated neighborhood Pf.

PROOF. If 1/(2) | == 0, then I/CO I \z\n=0<M.

If |/( 2 ) 1 ψ 0, then gQzO Ψ 0, and Kz3~) ψ 0. Then there exists z=aei+bes

in P such that aφO, bφO, and Kb)=cφO. Let z3^b and 0< \zι\ < \a\/2,

then 2=2i£i+2303 is in P. Now

I/CO I \z\n=V \gQa)\- IΛCaOl l2ι|'Λ |23 |
w < M

for 2 in P, or

\gQzO\ \zi\n<M*/(:\c\-\b\n),

0 < 1211 < \a\/2. Thus ^C^O has a pole of order at most n at 21 =0. Similarly

h{zϊ) has a pole of order at most n at 23 = 0. Therefore /O) has a pole of

order at most n in the nil-planes.

REMARK. If/C2) = I/271, then |/COI l*ln=l for all 2 in the deleted neigh-

borhood of the origin. Thus the conclusion of the theorem is the best

possible,
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27. THEOREM. Let fQz) be analytic in a deleted neighborhood P of the
origin. Then f(z) has a pole of order n in the nil-planes if and only if
\f(z)zn\ approaches a limit K^fiO as z approaches the origin through points of P.

PROOF. In P, \fQz)zn | =•/ Î OOI | zι\n \htz3)\ \z3\
n . As z approaches

zero, z\ and 23 approach zero independently. Thus \f{z)zn\ approaches a finite
non-zero limit if and only if \gQz\)\ \zι\n and \h(jzi)\ \z3\

n approach finite non-
zero limits. This means g(2i) has a pole of order n at z\ = 0 and h(z-i) has a
pole of order n at 23 = 0, or /CO has a pole of order n in the nil-planes.

27. DEFINITION. Let /CO be analytic in a neighborhood of the origin.
Then /O) will be said to have a zero of order at least n, where n is a positive
integer, at the origin if and only if both gCzy) has a zero of order at least n
at 2i = 0 and h{z£) has a zero of order at least n at 23 = 0.

THEOREM. Let /CO be analytic in a deleted neighborhood P of the origin
and let

WKz)\\<M\\z\\n

in P, where n is a positive integer and M is a positive constant. Then /CO
has a zero of order at least n at the origin.

PROOF. Since for I \ z 11< 1, 11 /CO \\^M\\z\\n<Mi f{z) has a removable
singularity in the nil-planes. As z approaches zero, f(z) approaches zero.
Therefore redefine /(0)=^C0) = ̂ (0) = 0, and /CO is then analytic in the
associated neighborhood Pf. Let 23=0 and 2=2i£i be in P. Then fQz)=gQzi)ei,
and 11 z 11 = ( W 2 ) \zι \. Therefore 11 /O) 11 = (1/V2~) IgOO I ̂  M11 z! \n = 2~n/2 M-
\zi\n or \gQzO\^2^n-^/2M\zι\n. Thus gQzx~) has a zero of order at least n
at 2i = 0. Similarly ΛOs) has a zero of order at least n at 23=0. Thus f{z)
has a zero of order at least n at 2=0.

The conclusion is best possible, for if /(2) = 2TO, then 11 fίz) 11 = (l/γ/2~>

l/ |2i|2w+ |23i2M ^ Λ/11211»= A/ [ Cl/i/2) Λ/ | 2 I | 2 + |23 | Γ ] W for M= QV^T~\ since
| 2 l | 2 w + | 2 3 | 2 ^ [ |2l|2+ |23|

2]w.

28. THEOREM. Let fQz) be analytic in a neighborhood P of the origin
and let

in P, where n is a positive integer and M is a positive constant. Then fCz)

=0 for 2 in P.

PROOF. Let 23 = 0 and z^i be in P, then \z\ = 0 and thus 11/CO II = 0.
Therefore /*(0) = 0 and ^OO=0 for 2i£i in P. Similarly KZS^ΞΞO for 23̂ 3 in P.
Thus fCz)=O for 2 in P.

29. THEOREM. Let f(z) be analytic in a neighborhood P of the origin

and let
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1/(2)1 ^ \ \

in P, where n is a positive integer and M is a positive constant. Then there

are two cases:

Case 1. !/(2)| Ξ O

Case 2. /(z) has a zero of order at least n at the origin.

PROOF. If !/Gr)| == 0, then I/COI ^M\z\\

If !/(2)| ψ 0, then gQzO ψ 0 and Λ(z3) ψ 0. Then for some z = aβι+ce3 in

P, a φ 0, c Φ 0, gQa) = b Φ 0 and Kc) = dφO. Since for z in P

1/(2)1 = V terOOl
or

Now let 23=c and \zi\< \a\/2, then 2̂ 21̂ 1+23̂ 3 is in P and !^(2i)| \d\ %

Aflal'-lcl" or l^(2i)l ^ [ M 2 IcΓ/Wl] I^Γ. Thus ^(21) has a zero of order at

least n at 21 = 0. Similarly hQzi) has a zero of order at least n at 23 = 0. Then

the conclusion follows.
The conclusion is best possible, for if fcz) = zn, then

I/CO I = V l*iP kal" =[•/ lal ISsI ] n= l2|TO.

30. THEOREM. Let fQz) be analytic in a neighborhood P of the origin

and let

\Kz)\^M\\z\\n

in P, where n is a positive integer and M is a positive constant. Then 1/(0) |

= 0 and the sum of the orders of the zeros of the component functions at their

respective origins is at least 2n.

PROOF. Suppose first that ^(0) = bφO. Let 21=0 and 2 = 23̂ 3 be in P.
Then

I/CO I = / terOOh IK*3)l:SM[(lΛ/2) / |2i|2+
or M2

Thus h(zi) has a zero of order at least 2n at z3 = 0.

Now suppose ^(21) has a zero of order m<2n. Then lim

> 0. Now let 21=23 for 2=21^3+23^3 in P. Then lim \gQz^)/z3m\ = δ > 0, and

there exists a ^>0 such that for \z3\ <δ, l^(23)/23

m |^ 6/2. Since

V \ /
then |Λ(23)I ^ {ΛP/[ I^(23)/23W| ]} \z3\

 2n~™ ^ (2M2/6) \z3\
 2n~m

for |23| < δ. Thus Λ(23) has a zero of order at least 2n—m at 21 = 0. In any

case the sum of the orders is at least 2n.

The conclusion is best possible, for if /(2) = 2iwa+23

2 / l~m^3, then 1/(2) | =

Y I21Im \z3\ *n-™^V[ I ί 21! V T M I i 211 V2~Yn~m = [Λ/2 \ \ 211 ]*, since 1211

II z\\γ2
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31. REMARK. A function /CO which has a zero at the origin has the

further interesting property that for z in the intersection of the first nil-

plane and the region of analyticity of /GO, the function /CO has a value which

is a first nil-factor, and correspondingly for the second nil-plane. For if /(0)

=0, then ^(0) =/?(()) = 0 and for z in the first nil-plane z3 = 0, so that /CO =

IV. INTEGRATION

32. Let C be a rectifiable curve connecting the two distinct points a and

b of the bicomplex space. Let Ci be the set of values which zi takes for all

z on C, and let C3 be the set of values which z3 takes for z on C. Ci will be

called the projection of C on the 2i-plane. If C is contained in a region 7\

then Ci is contained in the component region TΊ and Cs in the component

region T3.

A straight line in the bicomplex space is defined as the set of points

z=ka+(l — k')β, where k is real and a and β are two distinct points. Decom-

posing the defining formula into its components, one verifies that a straight

line projects into a straight line or a point. Therefore if C is a rectifiable

curve, Ci and C3 are also rectifiable curves.

Let further zι, / = 0, 1, 2, •••, n be n+1 distinct points on the curve C,

where zo = a, Zn = b and z% is situated on C between zίm,ι and zi+ι as C is traced

from a to £; finally, let /CO be a function analytic at all points of C, including

its end points a and £.

DEFINITION. Consider the expression

where f; is an arbitrary point on the section of C which connects zc-ι and zt

and denote by Δn the max \\zi—zι-\!!. Let the number of points zt on C tend

to infinity in such a way that J« tends to zero. Then limSπ, (shown below

to exist and be the same for all sequences of subdivisions) will be called the

integral of /CO along C from a to b and denoted by 1 fQz)dz.

Let ξi = ζiieι+ξ3ie3;zt = zιie+Z3ie3; ^ire = max W-zi^l) Δ3

n=

Sn = SιneL-hS3ne3. Then

and w ,̂ L_

Σ
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Δn tends to zero if and only if Δ\n and Δ3

n tend to zero. From the theory of

functions of a complex variable,

lim S = [ gQzϋdzi; lim S = [ hQz3')dz3.

Since these limits exist, lim Sn exists and

I A.

A number of elementary properties of the integral may be verified from

the definition. Among them that if C is divided at a point of C into two

curves C and C", then \J{_z)dz = \tf(β)dz+ [ f,f(z)dzm Then the integral

over a closed rectifiable curve in a given direction may be defined by taking

two distinct points on C and combining the integrals over the separate parts of

C in the given direction. If the closed curve is traced in the opposite direction,

the value of the integral will of course be the negative of the previous.

33. CAUCHY'S INTEGRAL THEOREM. Let C be a closed rectifiable curve in

a simply connected region T, and let /O) be analytic in T. Then

'{z)dz = 0.

PROOF. Let Ci and C3 be the projections of C on the 21-and z3~planes,

respectively. Since T is simply connected the component regions TΊ and T3

are simply connected. Now

\j{*)dz = I \ gQzOdziΊ ei + I I hQz3~)dz31 e3.

The quantities in brackets are zero. (See Bieberbach [11], page 108, for an

argument showing that Cauchy's theorem holds for rectifiable curves which, as

Ci and C3, may intersect themselves.)

34. DEFINITION. Let C be a rectifiable curve in the bicomplex space

whose projections Ci and C3 in the zL- and z3-planes, respectively, are simple

closed curves, and such that CL and C3 are traced once as C is traced once.

A curve C in this class will be called a P-curve.

Since Ci and C3 are simple closed curves, a P-curve is a simple closed

curve.

DEFINITION.50 Let C be a P-curve and let z = zveι+z3e3 be a point such

that Zι is in the interior of Ci and z3 is in the interior of C3. Define the

interior I of the P-curve C as the totality of all points z satisfying this condi-

tion.

3) This definition has been given by Prof. Price.
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DEFINITION. Let C be a P-curve. As C3 is traced in the positive direc-

tion in the z3-plane, which is an ordinary complex plane, C will be traced in a

certain direction. Designate this direction as the principal direction on C.

DEFINITION. Let C be a P-curve. As C is traced in the principal direction,

Ci will be traced in a certain direction in the Zι -plane. If this direction is positive,

designate C as a P-plus curve. If it is negative, designate C as a P-minus curve.

35. The proof of the next theorem requires the following

LEMMA. ijz=Zιβι-z3e3.

PROOF. ijz=ijQx-{-jy) = — iy+ixj^[—iy-i(ix)]eι-\-[—iy-{-iQix)]e3

Then, of course, ij

THEOREM. QCauchy's Integral Formula). Let C be a P-curve and let

fQz) be analytic in its interior I and continuous on the closure of I. Let z be

any point in the interior I of C. Then

Case 1. // C is a P-plus curve,

_ 1 Γ
- Ύπi )c)c w~z '

where C is traced in the principal direction.

Case 2. If C is a P-minus curve

{C?Λ - 1 f Ktv)dw
A 2 J - 2πj )c w-z '

where C is traced in the principal direction.

PROOF. fQz) =gCzι~)eι-\-hQz3)e3 in /. By Cauchy's integral formula in the

complex case

_ 1 f
~ ~ϊri Jet W3-z3

Case 1.
_ _ 1 _ P fCupdw = Γ_J^_ f gQwQdwi Ί ^ , Γ J _ f
2πi )c w-z L2πi }c\ wι-zι J I2πi J4 w3-z3

f
Case 2.

1 f fdw)dw = Γ_l__ Γ gQwQdwi Ί ΓJL Γ KW3)dw3 1
2ττ/ Jc M - 2 L 2ττ; JcT M I - ^ I J ' L27Γ; J ^ M ; 3 - 2 3 J

_ Γj-1^ Γ gdwQdwi Ί , f 1 Γ Kws^dw, Ί
" " L 2 7 Γ / M ^1-21 J e i " + ~ L 2 7 Γ / J 4 W3-23 J 3

L_ΓJL f gίwQdwi Ί JLΓJL f h{wz)dwi\
~ j l2πi)c\ wi-zx J e ι ^ j I2πi)c% w3-z3 J *3

36. In order to apply Cauchy's integral formula, a criterion is needed to

determine if the curve is a P-plus curve or a P-minus curve. The
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remainder of this section will be devoted to establishing such a criterion for

plane curves. A plane is defined as the set of points of the form z~moi

+ nβ + Ql — m)Ql — n)r where m and n are real and a, β, and T are three

distinct points not on a line. For convenience the point z about which the

integration is performed will be translated to the origin. Then the question

asked becomes the following:

Let P be plane through the origin, and let C be a simple closed rectiίiable

curve in P. For which planes P will the curve be a P-curve, and in which of

those will the curve be a P-plus curve and in which will the curve be a P-

minus curve?

It appears at once that a simple closed rectifiable curve in the complex

plane is a P-plus curve, for there the result in case 1 holds. By analogy it

would be expected that the plane determined by the line z — k and the line

z=kj Qk real) contains P-minus curves. This is correct, as can be verified by

the promised criterion.

37. For the proof of the validity of this criterion, a few elementary results

from the geometry of four-dimensional Euclidean space will be needed. They

are undoubtedly well-known. For the sake of completeness, these results will

be formulated and proved.

For the remainder of this section, advantage will be taken of the isomor-

phisms zxex<—>zi and z3e3<—>z3 to estabish results in the nil-planes by actually

performing the computation for the z\- and 23-planes.

The first and second nil-planes will be referrd to as conjugate to each

other.

LEMMA 1. Let P be plane through the origin which intersects one of the

nil-planes in a straight line. Then every point of P projects into the same

straight line in the conjugate nil-plane.

PROOF. In the defining formula of a plane, let T be the origin and β a

point on the line of intersection, thus a nil-factor, say β\eι. Then a point in P

is of the form ma + nβxCu The projection in the z3-plane is of the form

ma3. The set of such points lie on a line through the origin of the z3-plane.

LEMMA 2. Let P be a plane through the origin ivhich has no other point

in common ivith a nil-plane. Let C be a simple closed curve in P. Then the

projection of C in the conjugate nil-plane is also a simple closed curve.

PROOF. The projections Ci and C3 of the curve C in the first and second

nil-planes, respectively, are clearly closed. Suppose the second nil-plane is the

one with which P is assumed to have only the origin in common, and that Ci

is not simple. Then for two different points a and β on C, <Xι = βi. Therefore
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•••{

cc3φβ3. But then <x—β is in P and is a second nil-factor. This is a contradic-
tion, and the lemma follows.

38. In the remainder of this section there will ba a change of notation.
A bicomplex point z will sometimes ba represented as x-hiy-t-jz+iju, where
x, y, z, u are real. It will always ba clear which interpretation is meant. This
will be useful in referring to the geometry of the four-dimensional space.

By separating the defining equation of a plane into its four components in
this notation, letting T be the origin, and eliminating m and n in the resulting
four equations, it is verified that a planeP through the origin may be represented
by two homogeneous independent real linear equations :

Ax + By + Cz + Du = 0
ax + by + cz + du = 0.

The equation of a line may ba represented by three independent real linear
equations and a point by four such equations. The intersection of two planes
may be a line or a point.

LEMMA 3. Let P be a plane through the origin, other than a nil-plane.
Let P be represented by the system of equations:

Ax + By + Cz + Du = 0
ax + by + cz 4- du = 0.

Then P intersects the first nil-plane in a line if and only if
A + D B - C
a + d b — c

P intersects the second nil-plane in a line if and only if
A- D B+ C
a - d b +

•••{

= 0.

PROOF. The equations of the first nil-plane may ba taken as
(A) x - u = 0, y + z = 0.

The equations of the second nil-plane may be taken as
(B) x + u = 0, y - z = 0.

The intersection of P and the first nil-plane is determined by solving the equa-
tions (A) with the equations P. These equations can have solutions other
than (0,0,0,0) if and only if the determinant of the system vanishes. This
determinant is

A
a

1

0

B
b

0

1

c
c
0

1

D
d

-1

0

and is easily reduced to the determinant Similarly if the system

consisting of equations P and (B) are solved simultaneously, the resulting
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determinant of the system reduces to

LEMMA 4. Let P be a plane through the origin which does not intersect
a nil-plane except at the origin. Let C be a circle in P with center at 0. Then
the projection of C into the conjugate nil-plane in an ellipse. Here a circle is
considered an ellipse, but a straight line segment is not.

PROOF. Let P be represented by the pair of linear equations:
p. (Ax+By-h Cz+Du = 0

^ax +by + cz + du = 0 .
Then the circle will be the intersection of this plane with the hyper-sphere
x2+y2-Jrz2-t-u2 = r2. The projection of a point x+iy+jz+iju in the zi-plane is
zi = O-l-w)+ Ky—z) and in the 23-plane the projection is z3^Qx — u)+iQy+z).
Then if in the zι- and 23-planes, the usual rectangular cartesian coordinates
are denoted here by Xι, Yi and X3> Yz.

(A)

(B)

The system of the four equations (A) and (P) may be solved for x9y,z,u as
linear combinations of Xι,Yi if and only if the determinant of the system is
non-zero. By comparing equations (A) with equations (B) of lemma 3, it is
seen that this determinant is A*{P). Then if P does not intersect the second
nil-plane in a line, the linear combinations of Xι and Y\ may be substituted in
the equation of the hypersphere to obtain the equation of the projection of C in
the 21-plane. This eqution is quadratic. The curve is bounded. By lemma 2
it is not degenerate. Therefore it is an ellipes.

Similarly if P does not intersect the first nil-plane in a line the projection
of C in the 23-plane is an ellipse.

39. THEOREM. Let a plane P through the origin be represented by the
system of equations:

fAx+By+Cz+Du= 0
* I ax +by + cz + du= 0 .

Let
A+D B-C
a -f d b — c

A~D B+C
a ~ d b-\- c

Let C be a simple closed rectifiάble curve in P containing the origin in its
interior (in the topology of the plane P)m C is a P-curυe if and only if
JiQP^φO and J3QP~)φ0. Further C is a P-plus curve if JiCP) and ΛCP)
are of the same sign, and C is a P-minus curve if JiQP) and Λ2CP) are of
different signs.

PROOF. If P is a nil-plane, then one of the determinants is zero, and the
curve C is not a P-curve. Otherwise, by lemmas 2 and 3, C is a P-curve if

and J 2 ( P ) ^ 0 . By lemmas 1 and 3, C is not a P-curve if either
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Λ ( P ) or Λ2(P) is zero.

Now let ^/ι(P) and ^a(P) be different from zero. Since C is a simple closed

curve in P containing the origin in its interior (in the topology of the plane P ) ,

the curve C contains in its interior a circle ~G in P with center at the origin.

The projections of C will contain in their respective interiors the respective

projections of C~. The curve C will bs a P-plus curve if and only if (T is a

P-plus curve. Thus without loss of generality it may be assumed that C is a

circle.

Because the projections Ci and C3 of the circle C are ellipses by lemma 4,

it will be found sufficient to consider only two points on C which are distinct

and not at opposite ends of a diameter. From the relative positions of these

two points and their respective projections, it is possible to determine the

directions in which Ci and C3 are traced when C is traced in its principal

direction. This will then determine if C is a P-plus or a P-minus curve.

Let a: Qau &., cίf dθ and β : Qa2, b2, c2, dz) be two distinct points on the circle

ΊJ not at opposite ends of a diameter. Then

β =

Since J i ( P ) and J2CP) are not zero, a and β cannot be nil-factors. Therefore

let

then 0Ci = n Λ , a3 = rseiθ3} &i — R\el4>i, β3 = R3e%. Now the direction from <#i to

A on Cί, not passing through — <%i or — βL, will be positive if

π<θ1-φι<2π or 0 < ^ i - ^ < 7 r

and negative if

O<0 1-Θ' 1 .<7Γ or π<φι~θι<2π .

(Because of the symmetry of the projections and the assumption that a and β

are distinct and not at opposite ends of a diameter, Φι — 6X cannot be an integral

multiple of π.~) Thus the direction will possess the same sign as sin(0i — 0i).

Now
β~ - are- ( ? a ± * ) + ( k^ -arg u + ^ ) + ( : 5

Thus

sign [sin(0i-Θ0]-signΓ ( Λ + * ) ( & - g a ) - ( * * + A ) ( δ ι - α ) ] = sign Γ ̂ ι t j ?

Similarly
r corresponding Ί r __ , _ , n

sign [direction on J - sign [sin(03-^)] - sign y % + ^ 1 ^ + ^ |J
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Now by multiplication of determinants, using the fact that the points satisfy

the equations of P

0 0 A-D B+C

0 0 a-d b+c

0 1

A B C D

a b e d

1 0 0 - 1

0 1 1 0

# 1

bi

Ci

dl

a2

b2

Cz

d2

1
0

0

0
1

1

10 bι+cι b2+c2

By reducing the determinants on the left to the second order and making the

obvious Laplace expansion by second order minors on the right

A+D B-C
a+d b — c

ai+dι bi —

a2+d2 b2—

or

Thus

a2+d2 b2 —

sign ΛCP)Xsign[^ r eg i o n] = sign

=

A-D B+C
a-d b+c

J2CP) X bl + Cι

aι — dι

b\ +' Cί

#2 — d2

b2+c2

a2 — d2

b2+cz

_ . ΓdirectionΊX S l g n Ion C3 J
Thus if ACP) and A*{P) have like signs, Cis a P-plus curve; and if

and ΛC/0 have unlike signs, C is a P-minus curve.

V. ANALYTIC CONTINUATION

40. DEFINITION. Let /(z) be analytic in a region T. If there exists a

region T such that TdT and a function gQz) such that gQz) is analytic in T

and /Cz) = g (z) for z in T, then the function gQz) will be said to continue the

function /(z) analytically into the region T'.

If /Cz) is a complex-valued function analytic in a region S of the complex

plane Cconsidered as a subset of the bicomplex space), it has previously been

pointed out in the introduction, part 6, that the expression /C^O î + f(jzi)es

defines a bicomplex-valued analytic function of a bicomplex variable in the

product region T of the component regions of S. Any analytic continuation of

this function will also be referred to as an analytic continuation of fίz).

It has also been pointed out previously that if f{z) is analytic in T and

the component-regions are T\ and Ts, then fQz) is automatically continued

analytically into the product region of 7Ί and T3 by the formula /Cz) = gQzi)eι

+hQz3)e3 for zx in 7\ and z3 in T3.

The usual method of analyticl continuation by power series is applicable

to the bicomplex space Csee Futagawa [3]), and theorems similar to those in

the complex case can be established.

41. The following question has been raised by Futagawa [ 3 ] :

Given a complex-valued function /Cz) of a complex variable z, and a simple

closed curve Γ in the complex plane. Suppose that /Cz) is analytic in the

interior of T\ but that singularities of fQz) are everywhere dense on Γ. In other
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words, Γ is a natural boundary of /(V) Is it ever possible to continue fQz) into

the bicomplex space along a continuous path which intersects the complex plane

outside of Γ ?

Futagawa appears to answer this question in the affirmative CFutagawa [ 3 ],

pages 80-120). However if /CO is continued into the bicomplex space, then

f(.z)=fCzi)ei+fCz3)e3, and since for z complex, zi=^23 = 2, the projections Γ\ and

Γz of the curve in the £i-and z3-planes, respectively, are curves congruent to Γ,

and are hence the natural boundaries of the component functions /Ozi) and

/feO, respectively. The projections of a continuous curve z in the bicomplex

space joining a point inside Γ in the complex plane to a point outside Γ in the

complex plane are continuous curves joining pairs of points similarly situated

with respect to Γx and Γ3, hence crossing A and A , respectively. Hence

analytic continuation along C is impossible and the above question is answered

in the negative.

VI. EXTENSION OF VARIOUS THEOREMS TO THE BICOMPLEX SPACE

42. Many theorems from the theory of analytic functions of a complex

variable can be extended with little or no change to the bicomplex space and

proved by the Ringleb decomposition. Some examples chosen rather arbitrarily

will be presented here. The maximum-minimum principle will be found to

hold for 11/CO II, I/CO I and N[fQz)]. Schwarz's lemma holds if the norm,

11 z 11, is used. The condition for equality has a modification, however.

In theorems where the assumptions involve the behavior of an analytic

function on a set of points S having a limit point interior to the region T of

analyticity, such as Vitali's theorem and the uniqueness theorem for power

series, the additional assumption must be made in the bicomplex case that the

set of points does not lie in the nil-planes with respect to a finite number of

points, and also some assumption such as that the closure of the set of points

is in T. The purpose of this last assumption is to prevent S from consisting

of the sum of two sets A and B such that A is contained in the nil-planes

with respect to a finite number of points and yet has a limit point in T, while

B is not contained in the nil-planes with respect to a finite number of points

but has all its limit points on the boundary of T.

Periodic functions generalize immediately. If the period is not a nil-factor,

then the component functions are both periodic.

The property of conformal mapping in the complex plane can of course not

be expected to extend to the bicomplex case, as an example will confirm.

43. MAXIMUM-MINIMUM PRINCIPLE. Let /CO be analytic in a region T.

Then none of the expressions ίl/CON, M/COL o r I/CO I can assume a

maximum or a non-zero minimum at a point zo interior to 7\
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PROOF. 1. Suppose I 1/(2) 11 = (l/i/2 ) V teC*0 I 2+ I Afe) I2 assumes a max-

imum at an interior point Zn=Zι°eι+Z30e3 of T. Then 1 (̂21) ! 2 + I^Us0)!2 assumes

a maximum at 21 = 21°, an interior point of the component region Ti. This

contradicts the maximum modulus principle in the complex theory. Thus

ll/C-ε) II cannot assume a maximum at an interior point of T.

Suppose now that 11/CO II assumes a minimum at z = z0. Then \gQzO I2 -h

I /H>3°) I2, and therefore \gQzO I, assumes a mimimum at 21-21°. Thus I^Czi0)!

= 0. Similarly |AC*3°)I =0. Therefore 11/(2)!! is zero at 2-20.

2. Let iV[/(O] have a maximum at 2 = 2o = 2in£L+23% interior to T. Recall

that M / C 0 ] = max [ \gQzi) I, 1/zfeOI ]. Suppose, for instance, that l#Gn°) I ^

IΛ(23°)|. Then 1 (̂21)1 has a maximum at 21 = 21°. This cannot happen.

Therefore iV[/(O] cannot have a maximum at an interor point of T. Now

suppose M / ( O ] has a minimum other than zero at 2o = 2i°£i-[-23°03 in T and

ί^Osi0)! > l/zfe0) I. Then again 1̂ (21)1 has a non-zero minimum, which cannot

happen. If l^(2i°)| = l/zfe0)! then either ^(21)1 or IΛfeOI has a non-zero minimum,

which cannot happen. Thus N[fQz~)] cannot have a non-zero minimum.

3. Suppose 1/(2)1 has a maximum at 2=2o = 2i°0i+23o03 interior to T. Since

I/CO I =V Î CzOί l/zfe)l, then l^(2i)| IAfe°)ί has a maximum at 21=21°. This

cannot happen. Similarly 1/(2)1 cannot have a non-zero minimum.

44. SCHWARZ'S LEMMA. Let f(z) be analytic in the hypersphere \\z\\ <R.

Let | | / ( 2 ) I ) < M for \\z\\<R, and let / (0) = 0. Then

/or | | 2 l| <R, where equality can hold if and only if"/CO= {M/R^Kz, where K

is a bicomplex constant such that \\K\\ = |/Cl = 1 .

PROOF. Since /(0)=0, ^ ( 0 ) - ^ ( 0 ) - 0 . Let \zi\ <Ry/^ and 23 = 0. Then

11 2 11 <R, and 11 /(2) 11 <M} by hypothesis. Therefore \gQzi) \ <Mχ/'Γfor \zι \ <

Ry2. By Schwarz's lemma for the complex case

for \zι\<R\/2~anά equality holds only if ^(21) ΞΞ (M/i?) Kizi, where \Ki\ = 1 .

Similarly

for |23| <R\/2 and equality holds only if hQz3y = (M/R^) K3z3 where \K3\ = 1 .

Then for \\z\\<R,

l!/(2) 11 = (l/v/2~) V^Cz^i^WCz.WSQl/x/ΐ) y ^ l 21I2+^~H 2312

M 1 —

R V2
= M\\z\\/R,
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and equality holds only if

/CO = -β- Kiziei -h ~g KZβ

where #=/fi£i+#303 with |/Γi| =1 and \K*\ =1. This is the case if and only
if \\K\\ = |/5Π=1.

45. DEFINITION. Let /«(» be an infinite sequence of bicomplex-valued
functions, defined on a set S. The sequence will be termed uniformly con-
vergent if for every £>0 there exists an integer iV(£)>0 such that II/«O)-
/ΛCO II <£ for every ^ , ή^>NQS^) and for every 2 in S.

If the /»(» are analytic for all n it is easily verified that a necessary and
sufficient condition for fn{z) to converge uniformly on S is that gnOO converge
uniformly on Si and hn^zi) converge uniformly on S3.

VITALI'S CONVERGENCE THEOREM. Let fnQz) be a sequence of functions, each

analytic in a region T. Let

for every n and for every z in T, and let fiQz) tend to a limit as n->°° at a
set S of points that is not contained in the nil-planes with respect to a finite
number of points, and such that the closure of S is in T. Then /.O) tends
uniformly to a limit on any closed subset of T, the limit being therefore an
analytic function of z in T.

PROOF. Since I |/»CO 11 ί M terOOl SiWy Γand l/zfe)i SΛfv/27 The projec-
tions Si and S3 of the set S are infinite point sets having a limit point in 7Ί
and T3, respectively, since the closure of S is in T, and S is not contained in
the nil-planes with respect to a finite number of points. Therefore Vitali's
convergence theorem applies to the gnQzO and hnQzz), which are uniformly
convergent in every closed subset of Ti and T3, respectively. Thus the
sequence fn(z) is uniformly convergent in every closed subset of T.

46. This section will be concluded by an example to show that even if an
analytic function /O) is assumed to have a derivative different from zero or a
nil-factor at a point, the mapping performed by /O) need not preserve angles
in the bicomplex space. The example will be based on the following :

LEMMA. The transformation w=az-i-b, where a is not equal to zero or a
nil-factor, takes every straight line into a straight line.

PROOF. Let a and β be two distinct points on the line. Then aa+b Φ
a&+b. On the line, z is of the form koL+ (l — &)/3, where k is real. Then
az+b=a[ka+Ql-k^)β]-hb=kCaa-i-b^~\-(il-k^Qaβ+b^, which is a straight line
through the distinct points aa-hb and aβ+b.

EXAMPLE, Consider the transformation ιv=(2ei+e3~)z. This function is
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analytic in the entire space. The derivative has the constant value

which is not zero or anil-factor. Now let the bicomplex variable 2 be x+iy+jz+iju

where x,y,z, u are real. In the plane x=0, u=0, consider the lines y=0 and

y = z. These lines intersect at the origin at an angle of π/4. By the lemma

the transformation takes these lines into lines again. But a point on the line

^ = 2 is a nil-factor and the transformation leaves the line fixed; while a point

on the line y = 0 if on the form kj, where k is real. Then

1 3
j k i + #

which determines the line x=0, u=0, 3y+z=0 and this line does not make an

angle of π/4 with the line y = z.

VII. TAKASU'S ALGEBRA

47. Takasu [9] has considered the theory of functions of a generalized

bicomplex variable

z= Xι-\-jx2+j'Qx3+jx^

where j 2 = μ+vj, j n = μ'+v'j and μ,v,μ',vf, are real constants and Xi,*2,#3,ΛΓ4

are real variables. The fundamental operations are defined by requiring the

usual formal laws of operation to hold. The system of such numbers z is seen

to be an associative commutative linear algebra with the modulus 1+Q/+/C0+

0/), denoted by 1 (see Dickson [1], pages 4-7),

In view of Ringleb's decomposition theorem one might ask: For what

values of μ, v, //, w is this system reducible? Scheffers has given the following

criterion: (See Dickson [1], page 27).

A linear associative algebra A with a modulus is reducible if and only if it

contains an element xφO, 1 such that x2 = x and xz=zx for every element z of

A. An equivalent condition is that there exist in A an element y Φ ± 1 such

that jy2 = l and yz=zy for every z in A.

Proof of equivalence: Assume that there exists x Φ 0,1 such that x2 = x.

Then (2x-iy = 4x2-4x+l = 4(x2-x^+l = l. Since xφO, then 2#-l=£-l; since

xφl, then 2x-lφl.

Conversely, assume that there exists y such that y2 = l, and yφ±l. Then

[0>+l)/2] 2 = 0>2-f23>+l)/4 =(1+2^+1)/4 =(2j>+2)/4 = ( y + l ) / 2 . Since yφ+1,

then (^+l)/2r^l; since yφ~ 1, then (3>+l)/2^0.

Clearly y commutes with every element z of A if and only if x commutes

with z.

Further [(l-;y)/2] 2 = ( / 2 - 2 ; y + l ) / 4 =(2-2.y)/4 ^ ( 1 - J O / 2 . And [( l+Jθ/2] .

[ O - J θ / 2 ] = ( l - Λ / 2 = 0. Thus (l+jO/2 and (l-;y)/2 are idempotent

divisors of zero (nil-factors).
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48. To simplify the computation through which it will be determined for
what values of μ, v, μf, v1 the system is reducible, the definitions of f and j ' 2

will be transformed in the following way.
Since j* = vj+μ, then (2/-i0a = 4;2-4i/;'+i/2 = 4iy +4μ-4vj+v* = 4μ+v\ If

then γ/V+477 j s r e a i , and
/ 2j — v

Xχ/v2~+4μ

If v2+4μ<0 then γ-(y+4μ) is real, and
2j-v

= _ 1 #

If v = 0 then

Similarly from the equation defining jf2

9

C2; / -^0 2 = 0 if >
These relations divide the algebra into nine cases, which may be reduced

to ήve by isomorphisms. If the relations are represented briefly as ϋΓ2 = l,
K'2= - 1 , K/2 = 0, then the cases may be tabulatedK2= - 1 , 7

as follows:
0, and K/2 =

\ #2

# / 2 \
1

- 1

0

1

A

D

G

- 1

B

E

H

0

C

F

J

The cases B and D are seen to be isomorphic simply by interchanging K

and Kf. Case E is seen to be isomorphic to cases B and D, since QKKfy = l,

and the elements K and KK! of case E can be made to correspond to the

elements K and K1 of case B. By interchanging K and Kf it is also seen that

cases C and G are isomorphic and that cases H and F are isomorphic. These

facts summarized in tabular form become:

/Γ / 2\
1

-1

0

1

I

II

III

-1

II

II

IV

0

III

IV

V

Cases I, II, and III are reducible since they contain an element whose
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square is unity, and the system is commutative. Case II is, of course, that of
the ordinary bicomplex variable discussed in the previous sections of this paper.

Inc ase IV, let Λ^=-l, and /Γ2 = 0. The elements eι = l,e2=K,e3 = K',ei

form a basis with the multiplication table

Then if a>b,c>d are real,

e
2

e
3

e*

e
2

-e
x

e*

e
3

e±

0

0

e±

~e
3

0

0

This is equal to one if and only if
a2-b2=l

ab = 0
ac-bd=0
ad+bc=0.

This system of equations has only two solutions, a=±l, b=c=d=0. Thus
the algebra in case IV is irreducible.

In case V, K2 = 0 and K'2 = 0. The elements eχ = l, e2=K, e3 = K', e± = KK! form

a basis with the multiplication table

ex

e
2

e
3

βi

e
2

0

e±

0

e
3

e*

0

0

0

0

0

Then if a, b, c, d are real

This is equal to one if and only if

ac=0

This system of equations has only two solutions, a=±l, b=c=d=0. Thus
the algebra in case V is irreducible.

49. Many questions about the function theory in the separate cases can be
raised. Case I decomposes into four separate subalgebras, which are each
isomorphic to the algebra of real numbers. Then to what extent will the
theory of functions in case I resemble that of a complex or ordinary bicomplex
variable?

Cases IV anή V have nil-potent elements, for which all power series would
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terminate. Case IV contains the complex number system as a subalgebra.

Then is it possible, or again impossible (see section V), to continue a complex-

valued analytic furxtion of a comlpex variable in this space beyond its natural

boundary in the complex plane?
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