ON THE PRINCIPAL GENUS THEOREM

HIDEO KUNIYOSHI and SHUICHI TAKAHASHI

(Received July 20, 1953)

Recently, Mr. F. Terada has proved the principal genus theorem for abelian extension fields [2]. It is the purpose of this paper to investigate the same problem for non abelian cases. Though our theorem is slightly different from Terada's formulation, both coincide in cyclic cases.

Let K be a normal extension field of a number field k, with the galois group \mathfrak{G} . We denote by \mathfrak{D} the relative different of K/k, and by \mathfrak{f} the conductor¹⁾ of K/k. Our theorem is stated as follows:

THEOREM 1. Let $\{\mathfrak{A}_{\sigma}, \sigma \in \mathfrak{G}\}$ be a system of ideals of K which satisfies the following conditions:

- (1) $\mathfrak{A}^{\sigma}_{\tau} \mathfrak{A}^{-1}_{\sigma \tau} \mathfrak{A}_{\sigma} = (A_{\sigma, \tau}),$
- (2) $A_{\sigma,\tau} \equiv 1 \mod f \mathfrak{D},$
- (3) $\{A_{\sigma}, \tau\}$ is a factor set of K/k.

Then, there exists an ideal & such that

$$\mathfrak{A}_{\sigma}=\mathfrak{C}^{1-\sigma}(C_{\sigma}),$$

where $C_{\sigma} \equiv 1 \mod f$.

To prove the theorem by employing idèles, we restate it in terms of them. Theorem 1'. Let $\{\mathfrak{A}_{\sigma}, \sigma \in \mathfrak{G}\}$ be a system of idèles in K which satisfies the following conditions:

- $\mathfrak{A}_{\tau}^{\sigma} \mathfrak{A}_{\sigma\tau}^{-1} \mathfrak{A}_{\tau} = A_{\sigma, \tau} \mathfrak{U}_{\sigma, \tau},$
- (2') $\mathfrak{U}_{\sigma,\,\tau} \equiv 1^{2} \qquad \text{mod. } \mathfrak{D},$
- (3') $\{A_{\sigma,\tau}\}\$ is a principal idèle factor set.

Then, there exists an idèle & such that

$$\mathfrak{A}_{\sigma} = \mathfrak{G}^{1-\sigma} \mathfrak{B}_{\sigma},$$

where
$$\mathfrak{B}_{\sigma} \equiv 1$$
 mod. \mathfrak{f} .

PROOF OF THE EQUIVALENCE OF THEOREM 1 AND THEOREM 1'. In the assumption of Theorem 1, for the primes \mathfrak{P} of k dividing \mathfrak{f} , the \mathfrak{p} -components of \mathfrak{A}_{σ} form an ideal crossed character (one dimensional ideal cocycle), and it

last $\mathfrak{G}_i \neq 1$. Then, we define the \mathfrak{P} conductor $\mathfrak{f}_{\mathfrak{P}}$ of K/k formally as \mathfrak{P}' , $f = \sum_{i=0}^r [\mathfrak{G}_i]$

¹⁾ Let $\mathfrak P$ be a prime spot of K. We denote by $\mathfrak G_i$ the i-th ramification group of $\mathfrak P$ for K/k, i. e., $\mathfrak G_i = \{\sigma \in \mathfrak G, A^\sigma \equiv A \bmod \mathfrak P^{i+1} \text{ for all integers } A \text{ of } K\}$ and by $\mathfrak G_r$ the

^{1].} The ideal $\mathfrak{f}=\Pi\mathfrak{f}\mathfrak{F}$ of K is called the conductor of K/k. As $\mathfrak{f}\mathfrak{F}=\mathfrak{f}\mathfrak{F}'$, for each canjugate \mathfrak{F}' of \mathfrak{F} , \mathfrak{f} is invariant under automorphisms of K/k.

²⁾ $\mathfrak{A}\equiv 1$ (mod. m) means $\mathfrak{A}\equiv 1$ (mod. m) and $\mathfrak{A}_{\mathfrak{B}}$ are \mathfrak{P} -units at \mathfrak{P} , m.

is of the form $\mathfrak{G}^{1-\sigma}$ (an ideal coboundary). Translating these factors into the right side of (4), we may assume that \mathfrak{A}_{σ} are all prime to \mathfrak{D} .

As \mathfrak{f} and \mathfrak{D} are invariant under automorphisms in \mathfrak{G} , \mathfrak{G} is an operator domain of ideal and idèle class groups modulo \mathfrak{f} , (res. $\mathfrak{f}\mathfrak{D}$). Under the usual isomorphism between these two groups, theorems 1 and 1' are transformable into each other.

In the following, german letters should mean idèles instead of ideals.

We begin the proof with local considerations.

LEMMA 1. Let $K_{\mathfrak{P}}$ be a normal extension field of a \mathfrak{p} -adic number field $k_{\mathfrak{P}}$ Let $\mathfrak{D}_{\mathfrak{P}}$, $\mathfrak{f}_{\mathfrak{P}}$ be its relative different and conductor¹⁾, respectively.

Then, a factor set $U_{\sigma,\tau}$ in the ray (Strahl) of $\mathfrak{D}_{\mathfrak{B}}$ is

$$U_{\sigma,\tau} \equiv 1$$
 mod. Defie

is a splitting factor set.

Furthermore, it splits in the ray of $\mathfrak{f}_{\mathfrak{P}}$, i.e., there exists $\{B_{\sigma}\}$ in the ray of $\mathfrak{f}_{\mathfrak{P}}$

 $B_{\sigma} \equiv 1 \qquad \quad {
m mod.} \;\; {
m fg}$ such that

$$U_{\sigma,\tau} = B_{\tau}^{\sigma} B_{\sigma\tau}^{-1} B_{\sigma}.$$

PROOF. It holds obviously for unramified $K_{\mathfrak{B}}/k_{\mathfrak{p}}$.

For a ramified extension we prove the lemma in a generalized form.

Let us put

$$s = \min_{A \in K_{\mathfrak{P}}} \text{ Ord. } \frac{S(A)}{A}$$
-,

S(A) being the trace of A concerning $K_{\mathfrak{P}}/k_{\mathfrak{p}}$. Obviously $s \geq 0$.

If the factor set $U_{\sigma,\tau}$ is in the ray of \mathfrak{P}^{r} , x > 2s

$$U_{\sigma,\tau} \equiv 1 \mod x > 2s$$

it splits in the ray of \mathfrak{P}^{x-s} , i.e.,

$$U_{\sigma,\tau} = B_{\tau}^{\sigma} B_{\sigma\tau}^{-1} B_{\sigma\tau}$$

$$B_{\sigma} \equiv 1 \mod \mathfrak{P}^{x-s}$$
.

In fact, we take $A_0 \subseteq K_{\mathfrak{B}}$ which attains the minimum value s, and put

$$U_{\sigma,\,\tau} = 1 + V_{\sigma,\,\tau}, \qquad V_{\sigma,\,\tau} \equiv 0 \mod \mathfrak{P}^{\tau},$$

$$B'_{\sigma} \; = \; rac{1}{S(A_0)} \; \sum_{ au \in \mathfrak{Y}} \sigma au(A_0) \; V_{\sigma, \, au},$$

and

$$B_{\sigma}^{(x)} = 1 + B_{\sigma}'.$$

Then it follows from the definitions of B_{σ}' and A_0

$$B_{\sigma}^{(x)} \equiv 1 \mod \mathfrak{P}^{x-s}$$
.

As x > 2s > 0, we know that

$$U_{\sigma,\tau} (B_{\tau}^{\sigma} B_{\sigma\tau}^{-1} B_{\sigma})^{-1} \equiv 1 \mod \mathfrak{P}^{x+1}$$

Repeating this process, we have a converging infinite product $\prod_{y\geq x} B_{\sigma}^{(y)}$ which is a desired solution B_{σ} .

Finally, from the definition, $s < \text{Ord. } \mathfrak{D}_{\mathfrak{P}} < \text{Ord. } \mathfrak{f}_{\mathfrak{P}}^{1)}$ Therefore, we may take Ord. $\mathfrak{D}_{\mathfrak{P}} + \text{Ord. } \mathfrak{f}_{\mathfrak{P}}$ as x and get a solution in the ray of \mathfrak{P}^{x-s} which is contained in the ray of $\mathfrak{f}_{\mathfrak{P}}$.

LEMMA 2. Let $U_{\sigma,\tau}$ be an idèle factor set and

$$U_{\sigma,\tau} \equiv 1 \mod f \mathfrak{D}.$$

Then, there exists a system $\{B_{\sigma}\}\$ of idèles in K, such that

PRCOF. We prove the lemma for each component of \mathfrak{p} of k, and combine them to get the seeking B_{σ} . As components are always \mathfrak{P} - units, the resulting B_{σ} is an idèle.

We shall restrict ourselves to the $\mathfrak p$ -component idèles $I_{\mathfrak p}$. It is the product of $\mathfrak P$ components,

$$I_{\mathfrak{p}} = \prod_{\mathfrak{P} \mid \mathfrak{p}} I_{\mathfrak{P}},$$

where \mathfrak{P} mean prime factors of \mathfrak{p} in K. We denote by $R(\mathfrak{f})_{\mathfrak{P}}$ the ray of $\mathfrak{f}_{\mathfrak{P}}$, as a subgroup of $K_{\mathfrak{P}}^*$, and $R(\mathfrak{f})_{\mathfrak{p}}$ the direct product of $R(\mathfrak{f})_{\mathfrak{P}}$ where \mathfrak{P} ranges over $\mathfrak{P}|_{\mathfrak{p}}$, which is a subgroup of $I_{\mathfrak{p}}$. Similar notations $R(\mathfrak{D})_{\mathfrak{P}}$, $R(\mathfrak{D})_{\mathfrak{p}}$ are used analogously. The automorphism σ in \mathfrak{G} induces automorphisms in $R(\mathfrak{f})_{\mathfrak{p}}$ and $R(\mathfrak{D})_{\mathfrak{p}}$. From Shapiro's lemma [1], we have onto isomorphisms

$$H^{2}(\mathfrak{G}, R(\mathfrak{f})_{\mathfrak{p}}) \longrightarrow H^{2}(\mathfrak{G}_{\mathfrak{P}}, R(\mathfrak{f})_{\mathfrak{P}}),$$

$$H^{2}(\mathfrak{G}, R(\mathfrak{f})_{\mathfrak{p}}) \longrightarrow H^{2}(\mathfrak{G}_{\mathfrak{P}}, R(\mathfrak{D}\mathfrak{f})_{\mathfrak{P}}).$$

Furthermore, the following diagram is commutative.

$$H^{2}(\mathfrak{G}, R(\mathfrak{f})_{\mathfrak{p}}) \xleftarrow{\varphi} H^{2}(\mathfrak{G}, R(\mathfrak{f}\mathfrak{D})_{\mathfrak{p}})$$

$$\downarrow^{} H^{2}(\mathfrak{G}_{\mathfrak{P}}, R(\mathfrak{f})_{\mathfrak{P}}) \xleftarrow{\varphi} H^{2}(\mathfrak{G}_{\mathfrak{P}}, R(\mathfrak{f}\mathfrak{D})_{\mathfrak{P}}),$$

where φ and ψ are induced by injection maps

$$R(\mathfrak{f})_{\mathfrak{p}} \longleftarrow R(\mathfrak{f}\mathfrak{D})_{\mathfrak{p}},$$

$$R(\mathfrak{f})_{\mathfrak{F}} \longleftarrow R(\mathfrak{f}\mathfrak{D})_{\mathfrak{F}}.$$

The image of ψ is (0) from lemma 1, and hence the image of φ is also (0). This shows the lemma for the \mathfrak{p} -component.

PROOF OF THEOREM 1'.

From lemma 2 we have

$$\mathfrak{U}_{\sigma,\tau} = \mathfrak{B}_{\tau}^{\sigma} \mathfrak{B}_{\sigma\tau}^{-1} \mathfrak{B}_{\sigma},$$
 $\mathfrak{B}_{\sigma} \equiv 1 \mod \mathfrak{f}.$

Therefore, $\{A_{\sigma,\tau}\}$ is an everywhere splitting factor set. From, Hasse's norm theorem, it splits as a global factor set. i. e.,

$$A_{\sigma,\,\tau} = C_{\tau}^{\sigma} C_{\sigma\tau}^{-1} C_{\sigma}.$$

Hence, $\left\{\frac{\mathfrak{A}_{\sigma}}{\mathfrak{B}_{\sigma}\,C_{\sigma}}\right\}$ is a one-dimensional idèle cocycle which is always a coboundary

 $\frac{\mathfrak{A}_{\sigma}}{\mathfrak{B}_{\sigma} C_{\sigma}} = \mathfrak{G}^{1-\sigma}.$

REFERENCES

- (1) G. HOCHSCHILD-T. NAKAYAMA; Cohomology in class field theory, Ann. of Math. 55(1952), 348-366.
- (2) F. TERADA; On the principal genus theorem concerning the Abelian extensions, Tôhoku Math. Journ. 4 (1952), 141-152.

MATHEMATICAL INSTITUTE, TOHOKU UNIVERSITY, SENDAI.