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Introduction. The investigations of homotopy classes of maps of an n-
sphere Sn into a given topological space X lead us to the concept of homotopy
group which was introduced by W Hurewicz. Dually to this, by the con-
sideration of homotopy classes of maps of X into Sn we arrive at the concept
of cohomotopy group which was introduced by K. Borsuk CΌΌ. In 1949, E.
Spanier CIO} proved that if (X,A) is a compact pair withdim(JΪ-A)< 2 n — 1,
then the homotopy classes of maps of QX, A) into QSn, p) form an abelian
group, and he investigated these cohomotopy groups in detail.

Homotopy groups can be defined for any topological space, while for
cohomotopy groups the dimensional restriction stated above seems to be
essential. But the condition of compactness is undesirable. Therefore, it will
be interesting to show that cohomotopy groups are able to be defined for a
wider class of spaces.

The purpose of this paper is to generalize the theory due to E. Spanier
concerned with cohomotopy groups to the case of paracompact spaces.

The generalizations are able to do in two directions. One of these is
based on the concept of usual homotopy and the other is based on that of
uniform homotopy which was used by C. H. Dowker C3} More precisely, we
shall show that if QX, A) is a paracompact pair with dim (JC—A)<2n — l, then
both homotopy classes πnQX, A) and uniform homotopy classes π*{X, A) of
maps of (X, A^) into QSn, p) form abelian groups. Thus, for a paracompact
pair, we have two kinds of homomorphism sequences which will be called
cohomotopy and uniform cohomotopy sequences respectively. These results
are obtained in §§ 1-8.

In § 9 we shall establish the general limiting process. This will be an
important tool, because, by means of this process, many results with respect
to complexes will be extended to cases of paracompact spaces. By application
of this process to the cohomotopy sequence we have the decomposition
theorems (Theorem 9. 5) of cohomotopy and u-cohomotopy sequences into
direct spectrums. Thus the exactness of these sequences which is the most
important property is reduced to that of cohomotopy sequence for any sim-
plicial complex. The proof of exactness is stated in § 10.

v

The relations between cohomotopy sequence and Cech cohomology sequence

1). Numbers in brackets refer to the references cited at the end of this paper.
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based on infinite coverings are discussed in § 11. As direct consequences from

these we have the generalized Hopfs classification theorems (Theorem 11.3

and

1. Preliminaries. Let 36 be the set of sequences of real numbers y = (yi)

(i =• 1, 2, ), where / s are zero except for a finite set of integers f. 36 is

metrized by

dis (yf y>) = ζ g (yt - yi>yyi\

DEFINITION 1.1. The sets below are defined by the corresponding condi-

tions on the right.

S- = (y <Ξ 2 I yt = 0 for i > n + 1, 2 *ϊ = ^

£"•«= (y e 361 y, = 0 for i > n + 1,

£ * + ι = c^ e s | ^ n + i ^ 03, £ ^ + 1 = & e s « | y»+i ^ 0),

E°+ = p = (1,0, 0, ), E°_ = p= (-1,0, 0, ).

DEFINITION 1. 2. A pair (JSΓ,i4) is a topological space and a closed subset

A If X is paracompact, then 4̂ is also, and such a pair QX9 A) is called a

paracompact pair. A map / of a pair QX, A) into a pair (Y, 5 ) is a conti-

nuous function from X to Y which maps A into B, and will be denoted by

/ : CX, A) — > ( F , £ ) .

Let / denote the closed real number interval 0 ^ / <; 1 with the customary

topology. If /, g: QX, Λ^ — > (Y, E), then / is homotopic to g (denoted by

/ ~ ^ ) , if there is a map

F : CX X /, A X /) — > (y, 5 )

such that

T, Λ -.x . . ί for all Λ: e X.
F Qx, 1) = Qy f

lί fix) = ^ ( Λ ) for all x Eϊ A, then / is homotopic to g relative to ACf—g

rel. A), if / is homotopic to ^ and if the homotopy

F : (JSΓ X /, A x /) — > (Y, E)

can be chosen so that

FQx, 0 = /GO for all * e ^4, / e /.

It is obvious that homotopy and homotopy relative to A are both proper

equivalence relations so that they divide the set of continuous maps of (JY, A)

into (Y, B) into disjoint equivalence classes called homotopy classes or

homotopy classes relative to A, respectively. If / : QX, A) — > (Y, JB), then

{/} denotes its homotopy class and {/}4 denotes its homotopy class relative

to A,
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DEFINITION 1. 3. Let (F, 2?) be a metric pair, i. e. Y is a metric space.

For maps/, g: QX, A) -> QY, E), f is uniformly homotopic to g (denote by

f JL S) if there exists a homotopy F between / and g which satisfies the

following condition: for a given real number ε > 0, there is a number d > 0

such that if \ t- t' \ < d then

dis QFQx, 0 , ^ O , O ) < s
holds for any point A: £ X Such F is called a u-homotopy.

Uniform homotopy is also proper equivalence. For a map / : QX,A) —>

( F , ZΓ), {/}w denote its uniform homotopy class.

Throught the present paper all spaces considered will be assumd to be

normal space.

2. Some properties of dimension. DEFINITION 2. 1. A covering of a space

X by open sets is said to be of order less than or equal to n, if no collection

of n + 2 distinct elements of this covering have a point in common. A space

X is said to have dimension less than or equal to n (deroted by dimX ^S ri),

if every finite open covering of X has a finite open refinement whose order is

less than or equal to n.

LEMMA 2.1. If dim X ^ n and A is closed in X, then dim A <: n.

For a proof see {fi, p. 14J.

LEMMA 2.2. If X is a paracompact space, and Y is a compact space with

dim X ^ n and dim Y <^ m, then dim ( I X Y) <L n Λ- m.

This is proved in C7J.

3. Nerves and canonical maps. DEFINITION 3. 1. Let {Ua} be a locally

finite covering50 of a space X. By the nerve of the covering {Ua} we mean a

simplicial complex which is a geometric realization of {Ua} A simplicial

complex is topologized by the weak topology in the sence of J. H. C. Whitehead

Cll, §15 12, §5> Let K be the nerve of {Ua}. Then the vertices {ua} of

K correspond with the sets {Ua} in one-to-one, and finite vertices ua, •••, ur of

K form a simplex in K if and only if Ua Γ) ••• ΓΊ Ur Φ φ. Let i be a closed

subset of X Let Z denote a subcomplex of ϋf consisting of simplices ua •••

% of /Γ such that Ua ΓΊ ••• (Ί ϋV Π 4̂ 4= 0 Then Z, may be regarded as the

nerve of the covering {Ua Π A} of A.

DEFINITION 3. 2. Let U = {£/«} be a locally finite covering of X, and /Γ

the nerve of U, and Z, be the subcomplex corresponding to a closed subset A

C X A mapping 0 : (X, A) -> ( i ξ Z) is said to be canonical if, for each

2) By a covering we mean an open covering and by a locally finite covering mean a
neighborhood finite covering in the sense of Lefschetz [6, p. 13).
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vertex u of K, the inverse image of the open star of u with respect to K

under the map ψ is contained in the corresponding element U of 11.

LEMMA 3.3. For a locally finite covering 11 of X, there exists a canonical

map φ : (AT, A) -» (if, Z,).

For a proof see (Ύ, Lemma 2}.

Let / : (Z, ^4) -> (F, 5 ) be a map of a pair (JY, ^3) into a simplicial pair

(F, 5 ) G e Y is a simplicial complex and B is a closed subcomplex of F) .

Let 11 be the covering of F consisting of the point sets open stars of the

vertices of F. Then IV = f"ι(Vi) is the covering of X consisting of inverse

images of elements of 11. If u is a vertex of Y its star will be denote by U

and f~\U) will be denote by Uf. If 11" is a locally finite refinement of 11',

choose for each vertex u11 of the nerve K of IF a vertex u of Y such that Urr

is contained in Ur. The correspondence u" —• w is a simplicial map of /Γ

into Y and if it is extended linearly over the simplexes of K, is a continuous

map

τ : QK, L) -> (Y, 5 ) .

LEMMA 3. 4. Using the above notation h: (X, ^4) —> QK, L) is canonical

then f — τh. If Y is a finite complex1*, then / — τh.

This lemma is easily proved (cf. C9, Lemma 3.4}).

LEMMA 3.5. Let QX, A) be a pair such thai dimi*1 ^ n for any closed

subset F a X-A. Given a continuous map f : {X,A) ~> QY, B^) into a finite

simplicial pair (F, B), and given an open in + /)-simplex σ of Y ivhose

closure doesnt meet B, there is a map g : (X, A) ~-> (F, B^ such that f ~g reL

f-KY-σϊ and g(JO C Y-σ.

PROOF. Notice that in the proof of Lemma 3. 5 of [10], as a homotopy

F : CM X I, N X I) -> Cσ, σ-) between / and f\N relative to N we can

choose a u-homotopy F relative to N. Then the proof of the lemma is quite

parallel with that of Lemma 3.5.

LEMMA 3.6. Let (X A) be a paracompact pair ivith dim(JY—A) tin. If

F is any closed subset of X X I — A X I, then dimF ^L n + 1.

PROOF. Using of our Lemma 2.3 instead of Lemma 2.3 C10], this lemma

is proved by the same fashion as the proof of Lemma 3. 6

4. Deformations in spheres. In order to define the group operaton for

uniform cohomotopy groups, it is necessary to rewrite the lemmas in § 4 of

C103 by means of uniform homotopy.

DEFINITION 4.1, A subset A of a space X is called a deformation retract
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of X, if there is a homotopy

F : QX X /, A X /) — > QX, A)

such that
F (x, 0) = x )
=. , N ̂  Λ \ for all * e X
F Qx,ι) ^ A /

F (*, O = # for all AT e ,4, f e /.
In this case F is termed a retracting deformation of Z onto A.

If -X is a metric space, and a retracting deformation F of X onto A is a
uniform homotopy, then A is said to be a uniform deformation retract Qu-
deformation retract) and such F is called a retracting uniform deformation
(retracting w-deformation).

LEMMA 4.2. Z,β/ 4̂ bz an u-dzformallon ratract of a metric space X and
let f : QX, A) —> (F, B) be an open and uniformly continuous map of (λ", A)
onto a metric pair (Y, B) which maps X—A homeomorphically onto Y—B.

Then B is a u-deform ation, retract of Y.

PROOF. Let g : QX X /, A X I) -> ( F X /, B X /) be the map defined by
g(.x> t) ~ C/QO, t). Since / is an open and uniformly continuous map, g
is also. It is clear that g maps X X I — Ax ΐ homeomorphically onto F X /
— B X /. Let F be a retracting deformation of X onto A. Define a map

Fr : ( F X /, B X /) -» (F, J5)
by .F'O>, 0 = QfFg-^ Cv, O.
Then -F' is single valued and continuous, and this is a retracting deformation
of F onto B (cf. Proof of Lemma 4.2 £9}).

Since /, £• are uniformly continuous and F is uniform homotopy, it is
clear that Ff is a uniform homotopy.

From Lemma 4. 2 we have the following corollaries. Proofs of these are
similar with that of Corollary 4.3 and 4. 4 [10], and so we shall omit the proofs.

COROLLARY 4. 3. In the product space Sn X Sn, the subset QSn X p) U
Qp X Sn) is a u-deformation retract of S" X Sn-(Jp,p) if n ^ 1.

COROLLARY 4. 4. In the product space Sn X Sn X Sn, the subset
QSn x sn x P) U QSnx px sra) U Qpx sn x SO

is a u-deformation retract of Sn X Sn X Sn-tp,p,p) if n ^ 1.

5. Definitions of additions. Let a, β be two maps of a pair QX, A~) into
a pair (F, JO consisting of a space F and a point y £ F. Then ax β will
denote the map of (Z, -4) into ( 7 x F, Qy, JO) defined by

(α x 0) 00 = (α 00, j9 (Λ)).

DEFINITION 5.1 Let/ : (X,^4) ^ ( F x 7 , (Λ^)). A homotopy

F : QX x /, ^ X / ) -> CF X F, O,^))



88 H. MIYAZAKI

will be called a normalizing homotopy for /, if
Fix, 0) = fix) i

W)εσx,)UOχy3 I f o r a l l * e x

The map / ' : ίX,A) ~> C(F X y) U O X F), Cy,^)} defined by

fix) = F(*, 1)

is called a normalization of/.

If F is a compact metric space and the homotopy F in the above defini-

tion is a uniform homotopy, then F will be called a normalizing uniform

homotopy (normalizing u-homotopy) for / and the map / ' is called a uniform

normalization (u-normalization) of/

In the sequel F V Y will denote the space (FXjOUQyXF).

Let Ω : tYVY.iy.y)! -> iYfy)

be defined by
Ω iy',y) = y' for iyr,y) E F x y,

DEFINITION 5.2. Let α, /3: iXy A) ~> iY, y) and assume that axβ:

iX,A)->iYx F, (jy,y)) can be normalized. Let/: (X,^) ^ f f V F , O , J 0 )

be a normalization of α x β. The sum with respect to / (denoted by a <f> β)

is defined to be the composite map a < / > β = î /.

Let F is a compact metric space and ax β:iX,A) —> iY X Y, iy9y))

can be uniformly normalized. L e t / : iX,A) ~^> iY V Y, iy,y)) be a u-

normalization of a X β. The u-sum with respect to / (denote by a <f>u β)

is defined to be the composite map a <f>u β = Ωf

6. The cohomotopy and uniform cohomotopy group3. LEMMA 6.1 and β. 2

in CIO} are easily modified to following forms.

LEMMA 6. 1. Let iX, A) be a pair with dimF < 2n for any closed set

F C X-A. For any map f : iXyA) -» (S* X S\ ip,p)), there exists a u-

normalization g off such that f ϊί g re I. f~x iSn V Sn).

LEMMA 6. 2. Let iX, A) be a paracompact pair with dim(X— A) < 2 « - l .

If a, β, a', βf : (X, A) -> iSn, p) with a ", a' and β ", β' and if g: iXtA)

-> iSn \/Sn, ip, p)) is a u-normalization of ax β and gf: iX,A) -> iSn V Sn,

iP, PΎ) is a u-normalization of a' X βr, then Ωg ̂  Ωgf. If a^af, β ~ βr

then for any normalizations g, gr of ax β, and a1 X β' wε haυ2 Ωg 2^ Ω gf.

THEOREM β. 3. If iX,A) is a paracompact pair with dim iX—A) <2n—l,

the homotopy classes {a} of maps of iX, A) into iSn,p) form an abslian

group with the law of composition {a} + {β} = {a < f > β}, where f is an

arbitrary normalization of ax β.

A proof of this theorem is quite similar with that of Theorem 6.3 in £10 3.
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THEOREM 6.4 // QX,A) is a paracompact pair withάimQX—A) <2n-l,
the uniform homotopy classes {a}u of maps a of QX, A) into (S\ p) form an
abelian group with the law of composition {a}u+{β}u = {a < f>u β}u, where f
is an arbitrary u-normalization of ax β.

This theorem will be proved, if, each lemma used in the proof of Theorom
6. 3 of ClO^ is replaced by the corresponding lemma in the paper.

The groups whose existences were proved in Theorem 6.3 and 6.4 are
called the n-th cohomotopy group and uniform cohomotopy group and these
are denoted by πnQX, A) and πJJ {X, A) respectively.

REMARK 1. In the following, we shall use πnQX, A) and π\lQX, A) to
denote the sets of homotopy classas and uniform homotopy classes of maps
of CX", A) into (SΛ, p) respectively, even if QX, A~) doasn't satisfy the hypothesis
of Theorem 6.3. Hence κn(X, A) and πJjCX, A) are sets of homotopy classes
and uniform homotopy classes and are defined for any pair QX,A).

If (F, A) is a compact pair, then πn(iXtA) and π^CX, A) are the same

set. It is obvious that πnQX, A) and π™CX,A) for a paracompact pair

(LX,A) with dimCX— 4̂) < 2/2-1 are both generalizations of Borsuk's cohomo-

topy group for a compact pair.

NOTATIONS. πnQX) and πlQX) will denote πn(X, 0) and πZQX, 0) respecti-
vely.

THEOREM 6. 5. If P is a space consisting of a single point, then πnQP)
= 0, ττ^(P) = 0 for n ^ 1.

7. The induced homomorphisms. Let (Jϊ, A) and QY,E) be two pairs

and let / : tX,A) ->QY,B) ba continuous. If a : QY,B)-> QSn,p^, then af :

QX,A)->QSn,pϊ, and if a^β (or a*,β), then af^βf (or afu,βf). Hence,

/ induces two mappings
/# : πn (Y, 5) -» πn QX, A),
ft : πl (F, B) -> π?t QX, A)

defined by f#{a} = {af} for {a} ^πn (Y,J5) and by f%{a}u = {af}u for

{a}u ^ πl (F, 5) respectively.

/* and /* are to be considered here as merely set transformations as no

dimension restrictions have been imposed on either pair QX, A) or (Γ, J5).
REMARK 2. Let K be a CW-complex C12] consisting of at most (2 n-

2)-dimensional cells. Then, by £1, Lemma 5J, dim K<2n—1 and also K is
paracompact Ĉ > Therefore, for any closed subset L of K, πn(K, L) and
πl QK, L) are abelian groups.

LEMMA 7. 1. // (X,A) and QY,E) are paracompact pairs with
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<2n-l and dim(Y-B*) < 2 « - l , then / # : πn(Y, B) -> TΓ^CZ,^.) ααrf /* :

< ( Γ , B) -* τr;;(Z,^4) #n? fotfΛ homomorphisms.

THEOREM 7.2. / / / : ( Z , ^ ) -* OX", A) /s fte identity, then f# and f*

are the identity transformations on πn{X,A) and π™ίX,A) respectively.

THEOREM 7.3. / / / : QX,A) -> (Y, J5) and g : QY, £ ) -» (Z, C), //z^

CfgV =f*g#, and(gf)* = /***.

THEOREM 7. 4. ///, ^ : (X,A) -> ( F , 5 ) «r^ homotopic, then f# = ,g # .

THEOREM 7.4'. If (Y,B) a compact pair and f,g : QX,A) -> (Y, J5)

«/e u-homotopicp then f* = ^*.

If C-X",̂ ) is a pair, let (X*, qA~) be the pair consisting of a space XA

obtained from by identiίing A to a point qΛ, and the point gu.

L e t / : (-X,̂ 4) —> QXΛ,q.ι) ba the natural map which maps Y—A homeomor-

phically onto XA — qA.

THEOREM 7.5. With the above notation, f* is a 1-1 map of πnQXΛ,qA^)

onto πnQX, A\ Also f% is a 1-1 map of Έ^XA^A) onto πZQX, A).

THEOREM 7.6. Let V be an open set contained in A andj: (X— V,A—V)

-> QX, A) be the identity map. Then j # is a 1-1 map of πn{_Xy A) onto πn

(X-V,A-VX and also j * is a 1-1 map of πn

a <JC,A) onto < QX-V,A-V).

The above results are easily proved and so we shall omit the proofs (cf.

CIO, § 7D.

8. The coboundary operators. In this section set transformations from

πn(A) into πn+ιQX,A~) and from < ( A ) into nn

a

+\X,A) will be denned.

Let QX, A) be a pair and let a: A -> Sn. Then there exists an extension

α of a which maps QX,A) into {E'l+\S^. Let ψ: QE'l+ι X Γ,Sn X /) -> CS'ft+1,

En_+ι) be denned so that if φt = φ\ QΞ^1 X 0 , then

ψ0 = identity map of QEn^\ Sre) into CSra+1, £τϋ+1)

Φι : (Eϊ+1, S'O ~^ QSn+\ /0 is a homeomorphism of

LEMMA 8.1 / / ai, 0C2: A -> Sn are homoiopic and if au a2: QX, A) ->

QE++1, Sw) are extensions of oc\ and a2 respectively, then φ\ cc\ — φ\ a2.

Moreover, if oi\, a* are uniformly homotoplc, then Φ\ cί\ li Φιcc2.

PROOF. Let F: (£QX X θ ) U ( i X / ) U QX X / ) ! A x Γ)-> (£7ΐ+ 1,S7 1) be

defined by

3) See C8; p. 84].
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F (*, 0) = 21 (*) 1 π

} for all
*) 1

O /F O, 1) = 0C2 GO

F\ A X I = a homotopy between αx and α2 in S\

Then, F has an extension Ff: QX x /, A X /) -> (E?+ 1, S'Ό and Φ\Ff is a

homotopy between φ\ct\ and

Let αγ ~ α2. We define a map F : ( [ ( * X 0) U QA X /) U QX X

,4x7) -» (£?+1,S») by taking

Î 4 X / = a u-homotopy between αi and et2 in

Let φ : Z -> β (Z) be the Cech compactification of X ([2]), and set 0 (A) =

i5M). Then, by [3, Proof of Theorem 9.3], there exists a map G: ([Qβ(X)Xθ')

U 03 (i4) X Γ) U Qβ QX) X 1) ], β (i4) X /) -> (F?+ 1, SΛ) such that G ( ψ (AT), 0

= F(x,Q ( ^ e ( Z x O ) U U X / ) U QX X 1)). By the homotopy extension

theorem G has an extension G': Qβ QX) X /, β Ĉ L) X /) -> (F? + 1 , Srt). We put

•F'O, 0 = G ' C 0 ( Λ ) , O . Then F ' is an extension of F. Since ^CX) is compact,

Gr is a uniform homotopy, hence Ff is also uniform homotopy. Since ψι is

uniformly continuous, ψ\Fr is a uniform homotopy between ψkccι and ψιoc2, i. e.

DEFINITION 8. 2 The coboundary operator Δ is a sat transformation of

π\A) into πn+KX,A) defined by

^ {«} = {Ψiα} for {α} e τrTCC4) ,

where α : X-+Eΐ+ι is an extension of α.

The uniform coboundary operator Δu. is a set transformation of πn

α ζA) into

πn

u

+\X, A) defined by

JM {α}u = {0i α }M for {α}* e ττ (A) ,

where α: Z -> ^ + ι is an extension of α:.

Lemma 8. 1 shows that {ψicίi} and {φict }u, are indepedent of the choice

of α EΞ {α} and α £ {α}« and of the extension α, hence are uniquely deter-

mined by {α} and {α}u respectively.

We have following results and proofs of these are quite parallel with that

of Lemma 8. 3 and Theorem 8. 4 CIO}.

LEMMA 8. 3. If (X, A) is α pαrαcompαct pair with dim A < 2 « - l and

dim (X-A) <2n - 1, then Δ: πn QA) -> πn+ι QX, A) and Δu : π»QA) ->

π™ QX, A) are both homomorphisms.

THEOREM 8.4. For any πi2p f: QX, A) ~> (Y,B) commutatiυities hold in

the diagrams



92 H. MIYAZAKI

Δv

9. The limiting process. Let QX,A) be a pair, and QM,tri) be a sim-

plicial pair consisting of a simplicial complex M and its vertex m. Let Uv

be a locally finite covering of X, and denote by QKV, Lu) the nerve of Uv.

LEMMA 9.1. If φfφ
r: QX, A) -> (/Γv, £*>) «^ canonical, then φ ~ Φr> In

particular, Uv is finite, then φ?t Φ'.

This lemma is easily proved (cf. [ 10, Lemma 13.1])

If Uμ is a locally finite refinement of Uv, (denote by U^ > Uv), let

Tμv: QKμy Lμ) ->• QKv, Lv)

be a projection from CKμ,Lμ) to QKV,L^ (by a projection is meant a simplicial

map Tμu with the property that if Tμv{uιμ) =ui then UμCl Uξ). Such a map

exists because Uμ is a refinement of Uv. If T1/^ is another such projection,

then it is easily verified that Tμv^lΓμv and if Mv is finite, TμvΐLTμv.

Let DQKμ,Lμ;M,m^) denote the hDmotopy classes of maps of QKμ,Lμ)

into (M, nϊ). Then Tμ» and 7 ^ induce a unique transformation

T% = T% : D(KV, Lv\ M, m) -> DQKμ, Lμ; M, ni).

If Û  > VLμ > Uy and let T ^ , ΓAH, be projections, then Tμv Tλμ is a projection

of <iKλ,Lλ) into (iΓv, L v). Thus the system {DQKμ,Lμ;M,tn),Tμv} forms a

direct spectrum, where {U^} is the totality of all locally finite coverings of X.

Denote by DQX, A; M, m) the limit set of this spectrum. Let {Uμ}ir be the

totality of all finite coverings of X. Let Djr(X,A;M,m) be the limit set of

the spectrum {DQKμ, Lμ, M, m)\ 7%,} based on {VLM}F.

For each element Uμ ^ {Hμ}, choose a canonical map

hμ : QX,A~) -> QK^Lμ).

Such a map exists by Lemma 3. 3.

LEMMA 9.2. if hμ : (X,A)->{Kβ,Lμ} is canonical and Tμ» : QKμ,Lμ)

-» QKv, Lv) is a projection, thsn Tμv hμ: (Z, A) -> (/£"„, L v) fs canonical, where

Mμ > Uu are locally finite coverings of X.

PROOF. See CIO, Lemma 13. 2 }

COROLLARY 9. 3. hv is homotopic to Tμvhμ. If Mv is finite, then hy is

uniformly homotopic to Tμvhμ,

This corollary immediately follows from Lemma 9.1 and 9.2.
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If uv EΞ DQKV,L^; M,nί), [u»] and [uv]r4:> denote the elements of

DQX? A; M,m) and DFQX,A; M, m) determined by uv.

If uβ 6Ξ [UV], then there is λ > μ, v, such that T% u» = Tfμ uμ By-

Corollary 13. 3,

K Uu = ίTλμ hλ)#Up = hf Tfμ UU.

Similarly k% uμ = hf Tfμ uμ. Hence ht uv — h* uμ. Also, if Uμ£Ξ[ uv \F,

then we have hf,u uv = hμ,u uμ. Therefore, we can define

~h\ DQX,A; Mynί) -> DQX,A\ M,ni).

and ~HU\T)F(X,A\ M,m) -> DUQX,A; M,m)

by h[uu] = h?uv, and hu[uu]r = h%uVi where Du(Y,A; M,m) denotes the

uniform homotopy classes of maps of QX, A) into (Λf, m).

THEOREM 9.4. If QX, A) is a paracompact pair, then h maps DQX,A;

M,tri) 1-1 onto DQX,A; Mtnϊ). hw is a 1-1 transformation of DFQX,A;M,m^)

onto DuQX,A; M,tn), where M is finite complex, but the paracompactness of X

is not assumed.

PROOF. By Lemma 3. 4 it is obvious that h and hu are onto. First, we

prove that h is one-to-one.

Let h[uv] = Jι[vμ] so that tiHuv = hμ~vμ. Let {a} = uv, {β} = υμ.

Then ahu~ β hμ. We have to prove that there exists λ > /', v such that

α Tλμ ~ j9 Γyiv Therefore we can assume that α and β are simplicial maps.

If a, β are not simplicial, then by [11; Theorem 36] there are simplicial

approximations ccf

t β1 of a, β with respect to suitable subdivisions Kμ, Kχ! of

Kμ, Kv respectively. Let U/ be the covering of X consisting of the sets hμ

ι

(star uμ'), where star uμ is the open star of a vertex uμ EE Kμ with respect

to Kμ

f. Let IV be the corresponding covering for Kv

f and hv. Since X is

paracompact, there exist locally finite refinements U/' and IV' of Uμ

f and IV

respectively. Let τμ: QKβ'
r, Lβ

rf) ~* QKμf, Lμ

f) and rv : (Kv», Lv'')->(Kvf, Lv

r) be

mappings corresponding to r which is used in Lemma 3.4. Then, by Lemma

3.4, τvhv»^hv, τμhμ"^hβ> where QKv

f/,W), (Kμ'f,Lμ'f) are nerves of IV',
U/ί̂  and /?//;/, hv

!r are canonical maps. In this case, τv and Γ/ι are projections,

and a! τv hv

rt — β' ?M hμ", and a1 τu, βr τβ are simpliciaί maps. Therfore we

may assume that a and β are simplicial maps with respect to Kv and Kμ

respectively.

Now, let II be the covering of X consisting of the open stars of vertices

of K. Let E: QXxl, AxI)-> QM, m) ba a homotopy between a hv and a hμ

Then F~ι (II) covers X Chose a locally finite covering 11 λ = {£/"} and finite

coverings 2δα = {WL i = l, *,hCα)} corresponding to each suffix α: such that

4). In this ca^e it is always assumed that all coverings VLV are fiαite and M is fiαite.
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Ca) Wλ is a common refinement of Vίβ and ΪU

Cb) totality of products Ό\ X Wί (i = 1, •••, nQa)) forms a renfiement of

/ ^ O Ό Since X is paracompact and / is compact, it is not difficult to show

that such coverings IU, 28α exist Csee [7, p. 91]).

Let 8 Qa) be the Lebesgue's number C[6, P 32]) of the covering 2B«. Put

Ω{n) = {a\8 Cα:)>l/2 r a} and let /ΓJ denote the subcomplex of the nerve

(KλyLx) of lu consisting of vertices u\ such that a 6Ξ ΩQri).

Then -/^ C^jC - <= #5 C - ,
00

and 2 1̂ = ^

Let α* : C ^ x O . I i X O ) ^ CM, m) and /3* : QKλ xl, LλXl)-> CM, w)

be the maps defined by

a*(pf0) = αΓi/j CΛ, i9* Cί, 1) = β Tχv (p~) Qp e iΓO.

We shall prove α* 2r ^*. This proof is the induction on n.

Let n be a fixed integer, and we divide / up 2n minor intervals Pn =

[/-l/2re, z72ra] (ί = 1, ..., 2n). Put β^ = α*|/Γ;, /3f+ ι= β * | ^ . For each set

UΛ

k Qa e Ω Qn)), each /; is contained in a some element of 2δ«. Hence, by Cb),

each product U\ X Γn is contained in a sat F " 1 Cstar m x 0 , where mai is a

vertex of M. Let βiQua) = mαί, then it is obvious that β* Ĉ ' == lί —, 2Λ) are

simplicial maps of K\ into M and β; (Zj) = w, where LJ = /ί^ Π ^>ι. Thus

If «ϋ, •••, uP are vertices of a simplex of Ky then C7ϋ Γi ••• Π

is obvious that

P

F-ιQΠ starj9£(«0 Π Π starft + 1 C^'))I3 CΠ U^xΓnΓ\ U>Xlΐ+xX where
J0 jΰ ϋ j0

0 < i < 271 and /£, ^ r a + 1 are to mean the point t = 0, i = 1 respectively. Since

the set on right equals

n (tf'xfo = en t/o x ί* ^ 0,
i=ϋ 3

where // - /• fl 4 + ι - ί"/2w. Hence, for each 0 < / < 2 w , ^C^°) , - , /5;C«P),

/%+1 C^ϋ), , ^;+ 1 C^p) are vertices of a simplex of M. Thus j9j (ΛΓ) and ffiKx)

both belong to a closed simplex of Λf for any x EΞ /if and for each 0 < 1 < 2ra.

Moreover, if x e Z^, i3£ (Λ) = m. Thus we can define a map Gι

n: QKn

λ X /,

I J X I ) ^ CM, m) which maps x X / linearly onto the segment of M joining

0*00 to i3;+10O C^eϋCJ, 0 < ί < 2 » ) . Define a map G* : QKn

λ x I, Ln

λX /)

-> CM, tri) by taking
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'~1CY ?w+l/7_ 2»-l ^ , ^ 2 " - ! , 1

Then Gn is a homotopy between a*\K* and /3*|<ffJ.

Next, in the same way we define /?j+1: C^+ 1,L^+ 1J ^ (M,m) (j=l, •• ,2W+1)

under the following additional condition: if j = 2/, y = 2/-1 and if ^ E J2,then

PLι(ua^ = β*n(u*). If j = 2i or j = 2 ι - l , then /£+ 1C /*, therfore this restriction

is consistent with the above definitions of β's. Thus j9£+1 have been defined,

hence, by the same way as the preceding, we have a homotopy Gn+i : {Kγx X

/ , Z ^ + ι X Γ)-+QM,tn) between α * | ^ + 1 and β*\Kn

λ

+1.

By the additional condition for #£ f l i t is easily seen that Gn 2r Gw+i I/Γj X /.

Hence, by C12, (J), p. 228^, there exists a homotopy #*+i between a*\Kn

λ

+ι

and β*\Kn

λ

+ι such that tfw+11^ X / = HnQ= Gn').

Starting with Hi = Gi it follows by induction on n that there exists a

sequence of homotopies Hn: {Kn

λ X /, Zj X /) -» (M,nϊ) between α*|ΛΓj and

/ 5 * | ^ such that Hn+ι\Kn

λ

+1 = i7"(^ = 1,2,-). Define a homotopy £Γ: ( ^ X /,

Z,Λ X /) -> (M, w) by

, ί Γ | ^ X I = Hn.

Then, by [12, (I), p. 228], H is continuous. Therefore H is a homotopy

between α* and /S*, i.e. α* 2r /3*. Thus our assertion has been proved.

Next, we shall prove that, if M is finite, then hu is one-to-one. Let

hu[uμ]F — hu[vu]v so that k%ιUUμ = hu^Vv Let {a} = uμ> {β} = i;v. Then

# ^//^ /5 /?v. We have to prove that there exists a finite covering Uλ such that

Uλ is a common refiniement of Uβ, Uv and a Tλμ — β Tιv. To prove this we

may assume without any loss of generality that μ = v.

Let φ : X-> βQX) be the Cech compactification of X, and let βQΛ) = 0CA).

Since 4̂ is closed, 0|A -Λ -> βQΛ) is also the compactification of A. For each

open set u% of \Xμ we put F^ = β(JY) - 0C-̂ — C7"j). Then { V%} forms a covering

Uμ of /3CZ). (cf. [3, b), p. 229]).

Since Kβ is compact there exists the unique map ft*: (βQX\ βQA))->

iKμ>Lμ) such that

hμ = ft%φ.

Let SB be the covering consisting of open stars of vertices of Kμ and let

us put 95/*' = /$-χ0lδ). Let % be a common finite refinement of ^Sμ and 55 ^

and let Uv = 0"1C^5v). Since ψ^QSju) is a refinement of VLμ, Uv is a refinement

of Uμ and C^^)" 1 (SB) = A^CΪδ)". The nerve (/f^Z,,) of Hv may be regarded
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as the nerve of SSV. Let h: (X,A) -> (Ku, JW and hΐ : Qβ(X), βQA)') -> QKV, Z,v)

be canonical maps. Then it is obvious that hΐφ is a canonical map of (X9A)

into QKU,LV). Hence, by Corollary 9.1, we have

h^hίφ.

Let Tvμ be a projection of the nerve QKU, L»~) of 11* into the nerve

(Kμ, Z,,,) of Uμ Then, by Corollary 9. 3, we have

1 v β Iflv ̂ Jrlμ

Since a, β and Tvμ are uniformly continuous, we have

ahμ^aTvβh*φ and βhμgβTuμtitφ.

But ahμlLβhμ, hence

TvμhΐφZβ Tvμhίφ.
Therefore we have

OLTvμhΐ^lβTvμkf.

Since /3Q0 is compact, by the first part of Theorem 9. 4, there exists a finite

refinement % of 5BW such that

aTuμTλu^βTuμTλu9

where Tχv is a projection of the nerve (KχyLκ) of % into the nerve {KVyLv)

of 9?v. Let ib = ^OBv). Then CKA,LA) may be regarded as the nerve of

UΛ and TΛV may be regarded as a projection of the nerve of UA into the nerve

of Uy Hence TvμTλu~ Tλv, where Tχv is a projection of the nerve QKA,LA)

of UΛ into the nerve QKμ, Lμ) of Uμ. Hence we have α Txμ — β Tκμ. There-

fore our assertion is proved. Thus the theorem has been completely

established.

REMARK 3. Let {Uμ}' and { I W F be cofinal parts of {VLμ} and {U^}^

respectively. We remark that the limit sets of {D(Kμ,Lμ; M,tri)} based on

VXμY and {UM}F' are same with 7)(X,A; M, m)} and DF(X,A; Mtnί) respec-

tively.

We shall now apply Theorem 9. 4 to cases of cohomotopy and u-cohomo-
topy groups.

Let QX, A) be a paracompact pair with άimX <2n -1- We consider the

totality of all locally finite coverings of X with order < 2 # —1. Let QKλyLλ)

be the nerve of Uj. Then dim Kι < 2 ; ^ - K [ 7 , Lemma 5]), and K\ is para-

compact ([7, Lemma 4]), therefore πnζK^Li) is an abelian group. If UΛ > Uμ,

then Tfμ is a homomorphism, thus we have a direct spectrum of homomor-

phisms Let πn(K, A) denote the limit group of this spectrum.

Also, let πn

F{XyA) denote the limit group of the direct spectrum of

homomorphisms based on all finite coverings with order < 2n — 1. From

Theorem 9. 4, Remark 2 and [3, Theorem 3. 5], we have immediately the

following theorem.
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THEOREM 9.5. If {X,A) is a paracompact pair with dim X< 2n-l, then

h maps nn(iXtA) isomorphically onto πnQX,A^), and hu maps π'ΊXX,A) isomor-

phically onto πlQX.A).

Let QX,A) be a paracompact pair with dmxX"< 2n—l, and let /: A —»X,

j : X -> QX, A) be identity maps. The cohomotopy and u-cohomotopy sequences

of the pair QX,A) are sequences

j# v# ## A <J#

and

Let llv be as before and let iv: Lv —> Kv and j v : Kv —> QKVf L») be the

identity. Then the cohomotopy sequence of QKV, L») is the sequence

If μ < y, then T*/z commutes with each map of the cohomotopy sequences of

QKv.L^ and (Kμ,Lμ), and therefore, can be regarded as a homomorphism of

the cohomotopy sequence of QKV, Z v) into that of (Kμ,Lμ). Hence, we have

a direct limit of sequences whose limit sequence is denoted by

(9.1) ^QX,A^

Since h commutes with each map in this sequence and the cohomotopy

sequence of {X,A), it can be regarded as a homomorphism of the sequenece

(9.1) into the cohomotopy sequence of QX, A~). Also we have a direct limit

sequence

(9. 2)

and hu may be regarded as a homomorphism of the sequence (9.2) into the

u-cohomotopy sequence of QX,A). Thus Theorem 9.5 can be given the

following forms.

THEOREM 9.6. If (JX,A) is a paracompact pair with dimX < 2 » - l ,

then h maps the sequence (9.1) isomorphically onto the cohmotopy sequence of

QX, A), and hu maps the sequence (9.2) isomorphically onto the u-cohomotopy

sequence of ζX,A).

10. The exactness axiom. DEFINITION 10.1. A sequence of groups and

homomorphisms

Gi~» —> &n—> Gw+1—> *

is said to be exact sequence if the image of gt equals the kernel of gi+% for

all i.
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THEOREM 10.2.t:> The cohcmotopy and u-cckcmctopy sequences of a para-
compact pair {XyA) with dim X<2n—1 are both exact.

Theorem 10. 2. is called the exactness axiom. In virtue of Theorem 9. 6
and C5, p. 689Ί, it is sufficient to prove the exactness axicm for simplicial pair

Spanier's proof of the exactness axiom for finite simplicial pair QKfL) is
based on Lemma 15.1 C10Ί. We shall prove that this lemma is also true for
arbitrary not necessary locally finite simplicial pair QKy L). To this end we
must prove the following lemmas.

LEMMA 10.3. Let K be an infinite simplicial ccmplex with the weak
topology, L be a closed subcomplex and V be a neighborhood of L. Put
V = V—V. Then there exists a real continuous function 0 < £ θ ) < 1 defined
on F such that £(*) = 1 if x <E V and £(#) = 0 if and only if x E L.

PROOF. Let N(K) be the complex K topologized by the natural metric,
and i: iV(/Γ) -> K be the identity transformation. It is obvious that i is an
open (not necessary continuous) transformation. Since NQIΓ) is a metric
space, there exists a sequence {UJ} of open reighborhceds of N{L) such
that Π Unf = N(fΓ). Therefore {Un} (Un = iUnO is a sequence of open
neighborhoods of L such that Π Un = L. Let V « = 7 f l Un. Then fl Vn = L
and Vn are open in the normal subspace V. By Urysohn's lemma there exist
real continuous functions 0 < £™(» < 1 defined on V such that SnQx) - 0 if
χ(EL, εn<ix) = 1 if x G F - Vn. We define

fW = Σ £ίχ)βn Qx E. ΐθ,
then £ θ ) is a real continuous function defined on V such that 0 < £ θ ) < 1.
If x E V-V, then obviously £(#) - 1. If £ θ ) = 0 then, for each n £n{x) = 0.
Hence x^zV-Vn, i.e. x GΞ Vn. Therefore x E ΓΊ Vn = L. Thus the function
£ θ ) is required.

LEMMA 10.4. Let X be a paracompact space and let X denote the joint of
X with a point P. For any neighborhood U of X containing P, there exists a
real continuous function 0 < /O) < 1 defined on X such that {Qx, /(ΛO)! x EΞ X}
dU.

Λ

PROOF. By the topology of X, for each point x E X there exists a
neighborhood x E Vx in X and a real number 0 < £ ( » < 1 such that (y, ί)
E U if y E Vχy £0*0 < / < 1. Such Vχfs form a covering of X. Since X is
paracompact, there exists a locally finite refinement {Ua} of this covering.
For each set Ua^{Ua} we choose a set VxCZ Va, and we associate to Ua a
real number £α = £(ΛΓ). Let N be the nerve of the covering {Ua} with the
natural metric (cf, C3, ID), and φ: X~^N denote a canonical map. Denote
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by {̂ αOO} (2YαOO = Ό the bεrycentric cccrdinates of 000 Qx£ΞX),then, for

each a, φa is a continuous function defined on X and 0αOO are zero except a

fininite set of them. Thus

has the meaning and is continuous. Since Σaφatx) = 1 and 0 5 j £ α < l , Min

(£0 S f e ) < l for all J C E X Thus the function Kx) is desired.

Let A\ denote the set of points which are represented by Or, /00) - Then

it is easily verified that the correspondence x—>(x9 /CO) gives a homeomor-

phism of X onto -XΊ. "

LEMMA 10.5. Let K be a {not necessary locally finite) simplicial complex
Λ

with the weak topology and let K denote the joint of K with a point P- If dim

K<2n-1, then Δ maps πn(K) onto πn+ι(K, K).

PROOF. The proof of this lemma is parallel with Spanier's proof of

Lemma 15.1 CIO} Let {a}^πn+1(K, K) so that a: (if, IQ (Sn+ι, p). Let q

be the north pole Sn+ι Qq is the center of El+ι~). By the simplicial approxima-

tion theorem CH, Theorem 36^, we may assume that a has been chosen in
Λ

{a} so that orx(jq) has dimension less than n. Let L = ar\q) and L = the
Λ

joint of L with P. Then dim L < n + 1.

Let σ be a closed simplex on Sn+ι containing p in its interior and not

containing q. Let σ be the boundary of σ and let M = a~Y{jr),N = α^Cσ).

Define M7 = Z fl Λf, and N' = L f] N. Then dim M7 < » + 1 and α| M7 maps

(Λf', iVO into (<7, σ). Hence, by Lemma 3.5 there is a map F : QMf X /,

Nr X /) ^ C<r, σ) such that

FO, 0) =

FQx, 0 = αCO for all x<EN',t<BL

Define F ; : ((Tkf X 0 U CM; U ^ U W X /) -> (σ, <τ) by

r F(ΛΓ, 0 if * e M r

F'CΛ, O = I « W if AT e Γ̂ U iV
1 #0*0 if A E M and ί = 0.

Since σ is a contractible space, there is an extension G of Fr which maps

(Λf X /, N X /) into Co", σ). Define α'\ QK, FT) -> QSn, p) by

CΛ:, 1) if A; E M,ί

Λ

Then α 7 is continous, α7 ^{<^>, α 7 " 1 ^ ) = L and α7(ZΓ) does not meet p.
Λ

Hence there is a neighborhood V of L such that the closure V of F does
Λ

not map onto p under α1. Put V = V— V. Since V and L are disjoint closed

sets in V, by Lemma 10.4, there is a real continuous function 0 <Γ £(#) ^J 1

such that 6CX) = 1 if ΛΓ e V and 6(Λ;) = 0 if and only if x e ί. For * <E F,
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let « O ) t e 1 he point cf £%^—p which ci\x€S 1he εe£irei.t fπm a'(x) to q in

the ratio 1 —£(». ' £O0 Defre a horr.otcpy ϋΓ of a' as follows. If x £Ξ F,

/7 maps x X / linearly onto the segment of Sn+1-p joining a\x) to #(>)• If

* ^ F, £f maps # X / onto α'OO Let £ 0 0 = # ( # , 1). Then α ' 2^ /3 rel. AT

and /3-ιCtf) = ί.

For xEi V, let Z>QO be the point on the segment from x to P which

divides this segment in the ratio 1-£O) : £O) Define a deformation W of
Λ

K on itself as follows. If # EΞ F, //' maps * X / linearly onto the segment

joining x to Z>O) If x^K—V, W maps # X / onto x. Then //' is con-

tinuous. Let/: (£,/f) -> ίk,K) be defined by /GO = H'(x,l). Then / is
Λ Λ Λ

homotopic rel.K to the identity map of K onto itself, and / maps K-L

homeomorphicclly onto K-P. Let T: (/Γ, K) -> QSn+\ p) be denned by

q if x = p.

Then it is obvious that T is continuous and T Hf is a homotopy rel. K between

T and.7/ = ft Also r - 1 ^ ) = P.

Let T b e a small closed O + l)-cell on Sn+ι with center at # and boundary

S[\ Let Z7 be a neighborhood of the point P which is mapped into T by T.
Λ

Such a neighborhood £/ exists certainly. Since K is paracompact (C7, Lemma

43), by Lemma 10.4, there is a real continuous function tOO defined on K so

that O g ^ X l , Let K\ be the set of points Qx, /O0) Cx^K). Let D define

to be the set {Qx,t)\ίS*(#)}• Since ^ ^ P and Γ" 1^) = P, TQKi) φ-ζ?. Push

rC^Γi) along geodesic arc from q until A\ is mapped into Sf and follow this

by a deformation of Γ (keeping the inverse image Sn+ι — int T pointwise fixed)

to get a new map Ύf ̂ Ύ rel. K with ^/~1(^) = P Deform Tr to a map T" :

(K,K) -> QSa+\p') such that r7/ agrees with on K-D, rf/QD) a S » + 1 - i n t Γ and

r " - r rel. /Γ.

Deform 5W + 1 into itself along arcs from # so that at the end of the

deformation (71, Sf) is mapped homeomorphically onto (u?++\ Srt) and S'Λ+1 - i n t T

is mapped into £ ΐ + 1 with ^ and ^ kept fixed during the homotopy. Let the

final map of (S n + 1 , p) into ( S n + ι , ί ) be g. Then ^ r " maps OK, ΛΓ) into
(5 W + 1 , />), maps Ki into Sw and i) into En+γ and is homotopic to a rel. /Γ.

Let h be a correspondence #-> C-̂ , ^W) Then, as we have already noticed, h is

a homeomorphism of K onto iΓ. Define C = gT"h. Then C maps K into Sra,

and it is obvious that 4{ζ} = {g f"} = {α}. Thus the lemma has been proved.

PROOF OF THEOREM 10.2. Spanier's proof CIO, § 163 of exactness axiom

for a finite simplicial pair is applied to an infinite simplicial pair without any

modification, if we use Lemma 10.5 instead of Lemma 15.1 C10D Therefore,

the cohomotopy sequence of any simplicial pair satisfies the exactness axiom.
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Hence, by Theorem 9.4 and C5> p 689), the cohomotopy and u-cohomotopy
sequences of a paracompact pair are both exact.

If XΏAZDB and /: A—> ( A, B) denotes the identity map, then the composi-
tions Δi#: π"CA,B) -> πn+XX,A) and Δui*: π%AyB) -> <+ ι(Z,.4) will also
be denoted by Δ and Δu respectively. If QXf A, B) is a triple consisting of a
paracompact space X with dimΛ'< 2n-l and closed subsets, B with BCIA,
let i: QA,E) -> QX,E) and j : QX,B) -» (Z,^) denote the identity maps.
Then the cohomotopy and u-cohomotopy sequences of the triple Oί,A,E) are
the sequences of groups and homomorphisms

/# y* p Δ x

and

THEOREM 10.5. The cohomotopy and u-cohomotopy sequences of a para-
compact triple QX,A9E) with dimZ<2/?-l are both exact

As is well-known, this theorem may be derived in a purely algebraic
fashion from Theorem 6.5, 7.2, 73, 7.5 and 10.2.

REMARK 4. Let QX,A) be any arbitrary pair with dimZ < 2^ — 1 and let
0 : X -> β(JΩ the Cech compactification of X and put β(A) = 0(^4). Then
dim βQO < 2/2-1 and φ \ A: A-> /3G4) is the Cech compactification of A.
Thus 0 induces a 1-1 transformation φu, of the u-cohomotopy sequence of the
compact pair QβQX), #04)) onto the sequence of sets and set transfromations

(10.1) nlQXfAy^''^QXfAY^:QA^n'^KXtA)^ •• .
Therfore we can define the group operation for each set of (10.1) so that φu

becomes the isomorphism, then we have an exact homorphism sequence of
(Z,^4), which will be also called the u-cohomotopy sequence of QX,A). If X
is paracompact, then (10.1) is a homomorphism sequence of groups, and φu is
an isomorphism. Therefore the above definition φ is consistence with that of
the u-cohomotopy group of a pair. Also we can define the group operation
for each set of (10.1) so that hu in Theorem 9.5 becomes the isomorphism. It
is easily seen that two definitions of group operations are the same. Moreover
we notice here that Part II of C10J is extended to any (not necessary paracom-
pact) pair QX,A\ by using of u-cohomotopy sequence and ordinary Cech
cohomology sequence of CX',̂ 4).

11. Comparision with cohomology groups. Let QX, A} be a pair. Let
HKXjA; G) and Hn

F{X,A\G) denote the n-th Cech cohomology groups of CX",
A) with coefficients in an abelian group G, based on infinite coverings, and
finite coverings respectively.
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If {a} e πnίX, A), then a*sn B HnQX, A; nn~) and i f α E {α}, then /3*s» -

a*sn by the homotopy axiom for Cech theory Ccf. [4, E 4]), where a*, j3* are

induced hornomorphism of Cech cohomology groups, nn is the n-th. homotopy

group of the sphere Sn, and sn is a generator of HnQSn, p; nnr) = H$QSn, p; #Ό

(for the convension of the orientation of 5 see [10, § 17]).

Hence, there is induced a transformation

J' πnίX,A) -> H«QX,A;nn)

defined by ~φ{a} = a*sn.

If {a}uEπlQX,A), then a*s E. HF(X, A; n71^ and if β (Ξ {a}u, then it is

easily verified that β*sn - a*sn, where a*, /5* : H%QSn, p\rF) -> H^QXfA;nn')

are induced homomorphisms of α, j9. Hence, there is induced a transform-

ation

Jn : πlίX,A) -> / / ^ U , ^ l ; ^ )

defined by 0ι«{αc}ι« = cc*sn.

THEOREM 11.1. // dim (X—A) < 2 ^ ~ 1 then ψu is a homomorphism, and

furthermore, if X is p aracorn pact t then ψ is a homomorphism.

THEOREM 11.2. / / / is a map of any pair ίX,A) into another QY,B')9 then

commutatiυities hold in the diagrams:

πnQY,B^ C π»QX,A) nTL(Y, E) fA π%ίX, A)

Hn(Y, B; nn) -> HntX, A; nnϊ HnQY, B; «w) C H"FίX9 A; nn^.

It is not difficult to prove thesa two theorems and so we shall omitt the

proofs Ccf. [10, § 17]).

Combining Theorem 9.5, 11.1 and 11.2 with the Hopf classification theorem

for simplicial pair ([12]), we have easily the following generalized Hopf

classification theorems.

THEOREM 11.3. IfQX, A) is a paracompact pair with dim QX—A) < n

( w > l ) , then ~φ maps πnQX, A) isomorphically onto HnQX, A; nn^

THEOREM 11.4. For any pair QX, A) with dim X < n («>1), ~Φ* maps

πlQX,A^) isomorphically onto ίfndX,A;nn^t wheυe nn denotes the group 7r-Λ(s
ra).

REFERENCES

H i ] K. B0R3UK, Sur les groups des classes ds transformations continues, C. R. Acad. ScL,
202 (1936), 1400-1403.

[ 2 ] E. CECH, On bicompact spaces, Ann. of Math., 38, (1937), 823-844.
[ 3 ] C. H. DDWKER, Mapping theorems for nDn-compacί: spaces, Amer. J. Math., 69

(1947), 200-242.



THE COHOMOTOPY AND UNIFORM COHOMOTOPY GROUPS 103

v
[ 4 J C. H. DOWKER Cech cohomology groups and the axioms, Ann. of Math., 51 (1950),

278-292.

Γ 5 J J. L. KELLEY AND E. PITCHER, Exact homomorphism sequences in homology

theory, Ann. of Math., 48 (1947), 682-709.

[ 6 J R. LEFSCHETZ, Algebraic topology, Amer. Math. Soc, New York, 1942.

[ 7 ] H. MiYAZAKl, A note on paracompact spaces, Tδhoku Math. Journ., 4 (1952),88-92.

C8] H. MiYAZAKl, On covering homotopy theorems, Tδhoku Math. Journ., 4 (1952), 80-87.

C9 J H. MiYAZAKl, The paracompactness of CW-complex, Tόhoku Math. Journ.,

[10j E. SPANIER, Borsuk's cohomotopy groups, Ann. of Math., 50 (1949), 203-245.

[11J J. H. C. WHITEHEAD, Simplicial spaces, nuclei and m-groups, Proc. London Math.

Soc, 45 (1939), 243-327.

D2] J. H. C. WHITEHEAD. Combinatorial homotopy I, Bull. Amer. Math., Soc, 55 (1949),

213-245.

[13 J H. WHITNEY, The maps of an n-complex into an n-sphere, Duke Math. Journ , 3

(1937), 51-55.

+) ADDED IN PROOF. Prof. K. Morita has obtained the same result independently. Cf. K.

Morita, Cohomotopy groups for fully normal spaces, Science Report of the Tokyo Bunrika

Daigaku, 4, No. 98(1952;.

MATHEMATICAL INSTITUTE TOHOKU UNIVERSITY.




