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Introduction. The investigations of homotopy classes of maps of an =~
sphere S™ into a given topological space X lead us to the concept of homotopy
group which was introduced by W. Hurewicz. Dually to this, by the con-
sideration of homotopy classes of maps of X into S™ we arrive at the concept
of cohomotopy group which was intrcduced by K. Borsuk (1J°. In 1949, E.
Spanier [10) proved that if (X, A4) is a compact pair withdim(X—A4)<2n-1,
then the homotopy classes of maps of (X, A) into (S*, p) form an abelian
group, and he investigated these cohomotopy groups in detail.

Homotopy groups can be defined for any topological space, while for
cohomotopy groups the dimensional restriction stated above seems to be
essential. But the condition of compactness is undesirable. Therefore, it will
be interesting to show that cohomotopy groups are able to be defined for a
wider class of spaces.

The purpose of this paper is to generalize the theory due to E. Spanier
concerned with cohomotopy groups to the case of paracompact spaces.

The generalizations are able to do in two directions. One of these is
based on the concept of usual homotopy and the other is based on that of
uniform homotopy which was used by C. H. Dowker (3). More precisely, we
shall show that if (X, A) isaparacompact pair with dim (X—A)<2x-1, then
both homotopy classes 7#"(X, A) and uniform homotopy classes #}(X, A) of
maps of (X, A) into (S®, p) form abelian groups. Thus, for a paracompact
pair, we have two kinds of homomorphism sequences which will be called
cohomotopy and uniform cohomotopy sequences respectively. These results
are obtained in §§ 1-8.

In § 9 we shall establish the general limiting process. This will be an
important tool, because, by means of this process, many results with respect
to complexes will be extended to cases of paracompact spaces. By application
of this process to the cohomotopy sequence we have the decomposition
theorems (Theorem 9. 5) of cohomotopy and u-cohomotopy sequences into
direct spectrums. Thus the exactness of these sequences which is the most
important property is reduced to that of cohomotopy sequence for any sim-
plicial complex. The proof of exactness is stated in § 10.

The relations between cohomotopy sequence and Cech cohomology sequence

1). Numbers in brackets refer to the references cited at the end of this paper.



84 H. MIYAZAKI

based on infinite coverings are discussed in § 11. As direct consequences from
these we have the generalized Hopf's classification theorems (Theorem 11.3
and 11.4).

1. Preliminaries. Let X be the set of sequences of real numbers ¥=(¥:)
G=12, et ), where y’s are zero except for a finite set of integers i. X is
metrized by

dis (9, ) = ) @i — yHD
=1
DerFiNITION 1.1. The sets below are defined by the corresponding condi-
tions on the right.

S" = (EX|y =0fori>n+1 > 9 =1,

1<i=a+t

Evi= (0 EX|yi=0fori>n+1 D> 3 =0D,

l<isn+tl

Epfl= 0 € S" |y = 0), Evl= (¥ € S" | Yo = 0),

E, =p=(1,0,-.- 0, ), E. = p= (=10, 0, DR

DErFINITION 1,2, A pair (X, A) is a topological space and a closed subset
A. If X is paracompact, then A4 is also, and such a pair (X, A) is called a
paracompact pair. A map f of a pair (X, A) into a pair (Y, B) is a conti-
nuous function from X to Y which maps A into B, and will be denoted by

f: X, A — (%, B).

Let I denote the closed real number interval 0 <¢=-1 with the customary
topology. If f, g: (X, A) —> (Y, B), then f is homotopic to g (denoted by
f =~ g), if there is a map

F:(XxXLAXID—>(Y,B
such that
F(x,0 = f(x)
Fx1) =g
If f(x) = g(x) for all x & A, then f is homotopic to g relative to A (f=g
rel. A), if f is homotopic to g and if the homotopy
F:(XxXxILAxI— (Y, B
can be chosen so that
F(x,t) = f(x) forallx € A, t & L

It is obvious that homotopy and homotopy relative to A are both proper
equivalence relations so that they divide the set of continuous maps of (X, A4)
into (Y, B) into disjoint equivalence classes called homotopy classes or
homotopy classes relative to A, respectively. If f: (X, A) —> (Y, B), then
{f} denotes its homotopy class and {f}, denotes its homotopy class relative
to A,

} for all x € X.
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Dermnition 1.3, Let (Y, B) be a metric pair, i. e. Y is a metric space.
For maps f, g: (X, A) » (Y, B), f is uniformly homotopic to g (denote by
fZ g) if there exists a homotopy F between f and g which satisfies the:
following condition: for a given real number € >0, there is a number ¢ >0
such that if |#- #/| < ¢ then ‘

dis (F(x, D), F(x, 1)) < ¢
holds for any point x & X. Such F is called a u-homotopy.

Uniform homotopy is also proper equivalence. For a map f: (X,4) —
(Y, B), {f}. denote its uniform homotopy class.

Throught the present paper all spaces considered will be assumd to be
normal space.

2. Some properties of dimension. DEFINITION 2. 1. A covering of a space
X by open sets is said to be of order less than or equal to #, if no collection
of »n + 2 distinct elements of this covering have a point in common. A space
X is said to have dimension less than or equal to # (deroted by dimX = #),
if every finite open covering of X has a finite oren refinement whose order is
less than or equal to ».

LemMMmA 2.1. If dim X =< n and A is clesed in X, then dim A = n.
For a proof see (6, p. 14].

Lemma 2.2. If X is a paracompact space, and Y is a compact space with
dm X =< #nand dim Y < m, then dm (X X Y) < » + m.

This is proved in (7).

3. Nerves and canonical maps. DEFINITION 3. 1. Let {U,} be a locally
finite covering® of a space X. By the nerve of the covering {U.} we mean a
simplicial complex which is a geometric realization of {U.}. A simplicial
complex is topologized by the weak topology in the sence of J. H. C. Whitehead
(11, §15; 12, §57. Let K be the nerve of {Us}. Then the vertices {#.} of
K correspond with the sets {U,} in one-to-one, and finite vertices uq, ‘-, %, of
K form a simplex in K if and only if Uz N -+ ) U; == ¢. Let A be a closed
subset of X. Let L denote a subcomplex of K consisting of simplices #, -
#; of K such that U, N - N U; N A == ¢. Then L may be regarded as the
nerve of the covering {U. (1 A} of A.

DerFINITION 3.2, Let 1 = {U,} be a locally finite covering of X, and K
the nerve of U, and L be the subcomplex corresponding to a closed subset A
C X. A mapping ¢ : (X, A) — (K, L) is said to be canonical if, for each

2) By a covering we mean an open covering and by a locally finite covering mean a
neighborhood finite covering in the sense of Lefschetz (6, p.13].
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vertex # of K, the inverse image of the open star of x with respect to K
under the map ¢ is contained in the corresponding element U of 1.

LEMMA 3.3. For a locally finite covering W of X, there exists a canonical
map ¢:(X, A) > (K, L).

For a proof see (7, Lemma 2).

Let f: (X, A) —» (Y, B) be a map of a pair (X, A4) into a simplicial pair
(Y, B) (i. e. Y is a simplicial complex and B is a closed subcomplex of Y).
Let U1 be the covering of Y consisting of the point sets open stars of the
vertices of Y. Then W/ = f(11) is the covering of X consisting of inverse
images of elements of . If % is a vertex of Y its star will be denote by U
and f(U) will be denote by U’. If 1”7 is a locally finite refinement of W/,
choose for each vertex #” of the nerve K of 117 a vertex u# of Y such that U”
is contained in U’. The correspondence #” — % is a simplicial map of K
into Y and if it is extended linearly over the simplexes of K, is a continuous
map

t: (K, L) - (Y, B).
LemMmA 3. 4. Using the above notation h:(X, A) — (K, L) is canonical

then f ~ th. If Y is a finite complex®, then f = th.
This lemma is easily proved (cf. (9, Lemma 3.4)).

LeMMA 3.5, Let (X, A) be a pair such that dimF < n for any closed
subset F C X—A. Given a continuous map f : (X,A) - (Y,B) into a finite
simplicial pair (Y, B), and given an open (n -+ 1)-simplex o of Y whose
closure doesn't meet B, there is a map g : (X, A) > (Y, B) suc’t that f 2 g rel.
U (Y-0) and g(X) C Y—o.

Proor. Notice that in the proof of Lemma 3. 5 of (10], as a homotopy
F:(MX I, NX I - (c,0) between f/ and f| N relative to N we can

choose a u-homotopy F relative to N. Then the proof of the lemma is quite
parallel with that of Lemma 3.5, (10].

LEmMA 3.6. Let (X, A) be a paracompact pair with dim(X-—-A) =n. If
F is any closed subset of X X I — A X I, then dimF < n+ 1.

Proor. Using of our Lemma 2. 3 instead of Lemma 2.3 (10), this lemma
is proved by the same fashion as the proof of Lemma 3. 6 (10].

4. Deformations in spheres. In order to define the group operaton for
uniform cohomotopy groups, it is necessary to rewrite the lemmas in § 4 of
(10) by means of uniform homotopy.

DEFINITION 4.1, A subset A of a space X is called a deformation retract
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of X, if there is a homotopy
F:(XXI,AXI)—/ (X, A

such that
F (x,0) = p
F(xz)EA f orall x & X
F(x,1) =« forallx € A,+t € L

In this case F is termed a retracting deformation of X onto A.

If X is a metric space, and a retracting deformation F of X onto A is a
uniform homotopy, then A is said to be a uniform deformation retract (z-
deformation retract) and such F is called a retracting uniform deformation
(retracting z-deformation).

LemMMA 4.2, Let A b2 an u-d2formation rztract of a metric space X and
let f: (X, A) > (Y,B) be an open and wuniformly continuous map of (X, A)
onto a metric pair (Y, B) which maps X— A homeomorphically onto Y — B.
Then B is a u-deformation, retract of Y.

Proor. Letg : (XX I, AXI)—> (YXI, BXI)be the map defined by
g(x, 1) = (f(x), t). Since fis an open and uniformly continuous map, g
is also. It is clear that g maps X X I — A X I homeomorphically onto ¥ X I
— B X I. Let F be a retracting deformation of X onto A. Define a map

F :(YXI,BXI - (Y, B
by F'(y,t) = (fFg™) , B).
Then F’ is single valued and continuous, and this is a retracting deformation
of Y onto B (cf. Proof of Lemma 4.2 (9)).

Since f, g are uniformly continuous and F is uniform homotopy, it is
clear that F’ is a uniform homotopy.

From Lemma 4. 2 we have the following corollaries. Proofs of these are
similar with that of Corollary 4.3 and 4. 4[10], and so we shall omit the proofs.

COROLLARY 4. 3. In the product space S™ X S™, the subset (S" X p) U
(p X S™) is a u-deformation retract of S* X S*"— (%, p) if n = L
COROLLARY 4. 4. In the product space S* X S™ X S", the subset
(S*"xXS*"X p) U (S*"XpXSD U (pXS*X S
is a u-deformation retract of S™ X S* X S*—(5,9,9) if n = 1.

5. Definitions of additions. Let «, 8 be two maps of a pair (X, 4) into
a pair (Y, ») consisting of a space Y and a point ¥ € Y. Then a X  will
denote the map of (X, 4) into (Y X Y, (¥, ¥)) defined by
(axp) (x) = (a(x), B x)).
DerFINITION 5.1 Let f: (X,4) » (Y XY, (¢,5)). A homotopy
F:(XXIL,AXI) > (YXY, (3,y))
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will be called a normalizing homotopy for f, if
F(x, 0) = f(x)
Fx, DE(XY X U@ XY)
The map f' : (X, 4) - (Y x») U (@ X Y), (,9)] defined by
) = Fx, D
is called a normalization of f.

If Y is a compact metric space and the homotopy F in the above defini-
tion is a uniform homotopy, then F will be called a normalizing uniform
homotopy (normalizing u-homotopy) for f and the map f’ is called a uniform
normalization (u-normalization) of f.

In the sequel Y V Y will denote the space (Y X ) U (y X Y)-.

Let 2:(YVY, (3,9~ Y,y
be defined by

} for all x € X.

20\»=y for W, )EY Xy,
2 v,y =y" for 0,y Ey X Y.

DEFINITION 5.2. Let a, B: (X, A) —» (Y, ») and assume that « X B:
(X,A) > (Y X Y, (»,)) can be normalized. Let f: (X, 4) » (Y V Y ,(1,5))
be a normalization of & X 8. The sum with respect to f (denoted by a<f>f)
is defined to be the composite map a<f>fp=2f

Let Y is a compact mzatric space and a¢ X B:(X,A) - (Y X Y, (»,¥))
can be uniformly normalized. Letf: (X,A) > (YVY, (,9)) be a u-
normalization of & X 8. The u-sum with respect to f (denote by a <f > [3)
is defined to be the composite map @ <f >uf = 2 f.

6. The cohomotopy and uniform cohomotopy groups. LEMMA 6.1 and 6.2
in (10]) are easily modified to following forms.

LEmMMA 6. 1. Let (X, A) be a pair with dimF < 2n for any closed set
F C X-A. For any map f:(X,A) > (S* X S*, (p, D)), there exists a u-
normalization g of f such that f % g rel. {7 (S V S").

LEmMA 6, 2, Let (X, A) be a paracompact pair with dim(X—A4) <2n-1

Ifa, B, o, p': (X,A) > (S",p) with a % a'and B Y% B’ and if g:(X,A)
- (S*VS®, (p, D)) is a u-normalization of & X B and g’ : tX, A) - (S*V S?,
(2, ) is a u-normalization of o’ X [/, then Qg % Qg'. If a>~a!/, B=p
then for any mormalizations g, g’ of a X B, and o/ X B’ wz havz: Qg =~ 2g'.

THEOREM 6. 3. If (X, A) is a paracompact pair with dim (X—A) <2n—1,
the homotopy classes {a} of maps of (X,A) into (S*, p) form an abzlian
group with the law of composition {a} + {B} = {a < f > B}, where f is an
arbitrary normalization of a X p.

A proof of this theorem is quite similar with that of Theorem 6.3 in(10].
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THEOREM 6,4 If (X, A) is a paracompact pair withdim(X—-A) <2n-1,
the uniform homotopy classes {Q}u of maps a of (X, A) into (S",p) form an
abelian group with the law of compcosition {a}u+{B}u = {cat <f >u B}u, where f
is an arbitrary w-normalization of o X B.

This theorem will be proved, if, each lemma used in the proof of Theorom
6.3 of (10) is replaced by the corresponding lemma in the paper.

The groups whose existences were proved in Theorem 6.3 and 6.4 are
called the z#-th cohomotopy group and uniform cohomotopy group and these
are denoted by n"(X, A) and =" (X, A) respectively.

ReMARK 1. In the following, we shall use 7n"(X,A4) and =2(X, A) to
denote the sets of homotopy classes and uniform homotopy classes of maps
of (X, A) into (S*, p) respectively, even if (X, A) dossn’t satisfy the hypothesis
of Theorem 6.3. Hence n"(X, A) and n"(X, A) are sets of homotopy classes
and uniform homotopy classes and are defined for any pair (X, 4).

If (Y, A) is a compact pair, then 7"(X,A) and =»"(X, A) are the same
set. It is obvious that z"(X,A4) and 2"(X,A) for a paracompact pair
(X, A) withdim(X-—-A4) <2#n—1 are both generalizations of Borsuk’s cohomo-
topy group for a compact pair.

NotaTIoNs. 7*(X) and 7,(X) will denote z"(X, 0) and #2(X, 0) respecti-
vely.

THEOREM 6. 5. If P is a space consisting of a single point, then n"(P)
=0, z(P) = 0 for n = 1.

7. The induced homomorphisms. Let (X, A) and (Y,B) be two pairs
and let f : (X,4) - (Y, B) be continuous. If a : (Y, B)— (S*, p), then «af :
(X, 4) > (S",p), and if @~ (or a % B), then af~Bf (or a f% Bf). Hence,
f induces two mappings

Aot (Y, B) » o (X, A),
#:an (Y, B) » n® (X, A)

defined by f*{a} = {af} for {a} Ez"(Y,B) and by fH{al = {af} for
{a}u € n" (Y, B) respectively.
f# and f# are to be considered here as merely set transformations as no
dimension restrictions have been imposed on either pair (X, A4) or (Y, B).
ReEMARK 2. Let K be a CW-complex ([12] consisting of at most (2 #n—

2)-dimensional cells. Then, by (7, Lemma 5J, dim K <2xz—1 and also K is

paracompact (9]). Therefore, for any closed subsst L of K, z"(X, L) and

7 (K, L) are abelian groups. )
LemMma 7. L If (X,A) and (Y,B) are paracompact pairs with dim(X—A)
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<2n-1 and dim(Y-B) <2n-1, then f*: z"(Y, B) » n(X,A) and f#:
(Y, B) — n(X,A) are bith homomorphisms.

THEOREM 7.2. If f: (X,A) - (X, A) is the identity, then f* and fF
are the identity transformations on n"(X,A) and n7{X,A) respectively.

THEOREM 7.3. If f: (X,A) » (Y, B) and g: (Y, B) » (Z, C), then
(fg)# =f#g#r and<gf)u = f{f x°

THEOREM 7. 4. If f, g : (X, A) — (¥, B) are homolopic, then f* = g*.

THEOREM 7.4'. If (Y,B) a compact pair and f, g : (X,A) - (Y, B)
are u-homotopic® then fif = gk
- If (X,A4) is a pair, let (X4,94) be the pair consisting of a space Xu
obtained from by identifing A to a point g., and the point g¢..
Let f: (X, A) — (Xa,94) b2 the natural map.which maps Y—A homeomor-
phically onto Xa—qua.

THEOREM 7.5. With thz above mnotationm, f* is a 1-1 map of n"(Xu,qs)
onto n*(X,A). Also fi is a 1-1 mop of n"(X4,qa) onto ny(X, A).

THEOREM 1.6, Let V be an open set contained in A andj:. (X—V,A-V)
— (X, A) be the identity map. Then j* is a 1-1 map of n™(X, A) onto n"
(X—V,A-V),and also j¥ is a 1-1 map of = (X, A) onto n (X—V,A-V).

The above results are easily proved and so we shall omit the proofs (cf.
€10, § 7).

8. The coboundary operators. In this section set transformations from
a"(A) into #"*'(X,A) and from n?(A) into #"*'(X,A) will be defined.

Let (X, A) be a pair and let «: A— S”. Then there exists an extension
‘a of & which maps (X, A4) into (E**, S, Let ¢: (E¥** X LS*X I)— (S,
E?*) be defined so that if ¢ = ¢| (E?* X £), then

¢o = identity map of (E7*',S*) into (S**!, E**)
@10 (ER, S) — (S**, p) is a- homeomorphism of
EP — S*  onto S™!' — p,

LEMMA 81 If an,as: A — S are homotopic and if ay,on: (X, A) —
(EH, S"‘) are extensions of o and oy respectively, them ¢ 3[1 ~ ¢ &:.
Moreover, if ou, Q= are uniformly homotopic, then ¢ c;; X dh .

‘PrOOF, Let F: (((XXOUWUXDUEXD), AXD— (E¥,S™) be
defined bs; "

3) See (8; p. 84).
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F(x,0 = a ()
Fx1 =a (®
F| A X I = a homotopy between a; and a, in S*.
Then, F has an extension F': (XX I, AXI) — (E®,S") and ¢\ F' is a
homotopy between ¢a; and s .
Let ay = a,. We define amap F: ([((Xx0) U (AxD U (X x D],
AXI) » (E2*,S™) by taking
F(x, 0) = an(x)
F(z, 1) = a:(x)
F |A X I = a u-homotopy between a1 and az in S™.
Let ¢ : Z —» B (X) be the Cech compactification of X ([2]), and set ¢ (4) =
B(A). Then, by [3, Proof of Theorem 9.3], there exists a map G: ([ (B(X)Xx0)
U@ XD U BX) XD, B(A) X I)— (Ex*, S%) such that G (¢ (£), 1)
= F(x,D) EX X0 U (AXD U (Xx1)). By the homotopy extension
theorem G has an extension G’: (B (X) X I, B (4) x I) > (E***,S*). We put
F' (x,8) = G'(6(x),t). Then F’ is an extension of F. Since 8(X) is compact,
G’ is a uniform homotopy, hence F’ is also uniform homotopy. Since ¢1 is

Il

} for all x € X,

uniformly continuous, ¢:F’ is a uniform homotopy between ¢.a1 and ¢rcs, i. €.
%

¢ion £ pa,
DEeFmniTION 8. 2 The coboundary operator 4 is a szt transformation of
7™ A) into n"*'(X, A) defined by
4 {a} = {¢ha} for {a} € ="(4),
where «: X — E7*' is an extension of « .
The uniform coboundary operator 4. is a set transformation of #” (A4) into

(X, A) defined by v
du{at = {¢rad} for {a} E x"(A),

where & X — E™*! is an extension of «.

Lemma 8. 1 shows that {¢» @i} and {¢1 & }u are indepedent of the choice
of a € {a} and a & {a}« and of the extension 57, hence are uniquely deter-
mined by {a} and {a}« respectively.

We have following results and proofs of these are quite parallel with that
of Lemma 8. 3 and Theorem 8.4 (10].

LemMmA 8.3. If (X, A) is a paracompact pair with dimA < 2»n-1 and
dim (X—A) <2n — 1, then 4: 7" (A) - 7" (X, A) and 4u: n"(4A) —
7" (X, A) are both homomorphisms.

THEOREM 8.4. For any map f: (X, A) - (Y, B) commutativities hold in
the diagrams
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’ A du
a"(B) — ="' (Y, B) aW(B) —> =y (Y, B)
' | # ’#
] lf‘* (flA)u\lf u Lr
a"(A) —>» =*'(X, A), z(A) —> nt(X, A).

9. The limiting process. Let (X, A) be a pair, and (M,m) be a sim-
plicial pair consisting of a simplicial complex M and its vertex m. Let 1,
be a locally finite covering of X, and denote by (X,, L,) the nerve of U.

Lemma 9.1, If ¢,6': (X, A) ~ (K,, L)) are canonical, then ¢ =¢'. In
particular, W\, is finite, then ¢ % ¢'.

This lemma is easily proved (cf.[10,Lemma 13.1])

If U, is a locally finite refinement of U,, (denote by U, > W,), let

'T/lvi (K, Ly) - (K,, L)

be a projection from (K, L.) to (K,,L,) (by a projection is meant a simplicial
map Tu with the property that if T (#i) =uj then Ui (Z Uj). Such a map
exists because . is a refinement of U,. If 7, is another such projection,
then it is easily verified that 7 ~ T and if Il, is finite, 7w % Thu.

Let D(Kpu, Lu; M, m) denote the homotopy classes of maps of (Kgu, Lu)
into (M, m). Then Tuw and T, induce a unique transformation

T4 = T, : D(K,,L; M, m) = D(Ku, Luy; M, m).

If Ui >U,>1U, and let Tau, Tw be projections, then T Tin is a projection
of (Ka, L) into (K,,L,). Thus the system {D(Kpu, Ly M,m), T}} forms a
direct spectrum, where {U,} is the totality of all locally finite coverings of X.
Denote by D(X, A; M, m) the limit set of this spectrum. Let {U.}r be the
totality of all finite coverings of X. Lst Dr(X, A; M, m) be the limit set of
the spectrum {D(K,, L., M, m); T} } based on {I.}r.

For each element U, & {U.}, choose a canonical map

byt (X,A) > (Ku, Lp).

Such a map exists by Lemma 3. 3.

LEmMMA 9.2, If h,: (X,A) > (Ku, Ly) is canonical and Tp : (Kup, Ly)
- (K,, L)) is a projection, then Tuw hu: (X, A) > (K,, L) is canonical, where
U, > W, are locally finite coverings of X.

Proor. See (10, Lemma 13. 2).

COROLLARY 9.3. Ay, is homotopic to T ph,. If W, is finite, then h, is
uniformly homotopic to T whp.

This corollary immediately follows from Lemma 9.1 and 9. 2.
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If ww € D(K,,L.,; M,m), [w] and [« ]#* denote the elements of
D(X, A; M,m) and Dr(X,A; M, m) determined by #,.

If o & [w ], then there is 4> u,v, such that T% w = T§{s upr By
Corollary 13, 3,

B uy = (Tin hd)*uy = b Theu.
Similarly k% up = hf Tjrun. Hence h¥wu, = hf upu. Also, if u. € [w]r,
then we have hff»wu, = hjinu,.  Therefore, we can define
h: D(X,A; M,m) » D(X,A; M, m).

and hu:Dr(X, A; M,m) > Du(X,A; M,m)
by B 1= b#u,, and hulwu]r = hiwu,, where DY, A; M,m) denotes the
uniform homotopy classes of maps of (X, A) into (M, m).

THEOREM 9.4. If (X, A) is a paracompact pair, then h maps D(X, A;
M, m) 1-1 onto D(X,A; M,m). huis a 1-1 transformation of Dr(X,A; M,m)
onto Du(X, A; M, m), where M is finite complex, but the paracompactness of X
is not assumed.

ProoF. By Lemma 3.4 it is obvious that %z and %. are onto. First, we
prove that % is one-to-one.

Let Alu,] = hlv.] so that hiu, = hiva. Let {a} = w,, {B} = vp
Then ah, =B hy,. We have to prove that there exists A>#,Y such that
& Tax>=B Ti. Therefore we can assume that & and B are simplicial maps.
If «, B are not simplicial, then by [11l; Theorem 36] there are simplicial
approximations «/, B’ of a, B with respect to suitable subdivisions K./, Ki' of
K., K, respectively. Let 11,/ be the covering of X consisting of the sets kz'
(star u,), where star . is the open star of a vertex . & K, with respect
to K./. Let 1,/ be the corresponding covering for K, and k.. Since X is
paracompact, there exist locally finite refinements U.” and W,” of 11,/ and W,/
respectively. Let 7u: (Ku”,Ls") > (K., L,) and 7, : (K,”, L,’)—>(K,’, L)) be
mappings corresponding to v which is used in Lemma 3.4. Then, by Lemma
3.4, v, W = hy, Tp hy"” > by, where (K,”,L,"”), (K."”,L,"”) are nerves of W.”,
W,"” and h,”,h,” are canonical maps. In this case, 7, and t. are projections,
and o' 7y B" =P tuhy", and &’ vy, B’ v, are simplicial maps. Therfore we
may assume that « and B are simplicial maps with respect to K, and K.
respectively.

Now, let I be the covering of X consisting of the open stars of vertices
of K. Let E: (XXI, AXI)— (M, m) be a homotopy between a h, and « A
Then F* (11) covers X. Chose a locally finite covering 1; = {U3} and finite
coverings W, = { Wi, i = 1,---,h(a)} corresponding to each suffix & such that

4). In this case it is always assumz1 that all coverings 1, are finite anl M is finite.
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(a) WU, is a common refinement of 1, and U,.

(b) totality of products U} X Wi (¢ =1, ---, n(a)) forms a renfiement of
F'(A). Since X is paracompact and [ is compact, it is not difficult to show
that such coverings U,, W, exist (see [7, p. 91].

Let & (@) be the Lebesgue’s number ([6, p. 39]) of the covering .. Put
L) ={a|&(a)>1/2"} and let K? denote the subcomplex of the nerve
(K, L1) of Ux consisting of vertices #4 such that ¢« € 2(#n).

Then KiCK,C--CK;C -,
and > Kj = K
i=1

Let a* : (Kix 0, Ly X 0) > (M,m) and ¥ : (KaXx 1, Ly X 1) > (M, m)

be the maps defined by
a*(p,0) =aTi(p), BBV =B8Tn(p) (& K.
We shall prove a*‘: f*. This proof is the induction on .

Let » be a fixed integer, and we divide I up 2" minor intervals I =
[{=1/2, i/2"] G =1, -, 2*). Put . = a*|K}, Bi "= p*|Kj;. For each set
Ui (@ € 2 (n)), each I} is contained in a some element of .. Hence, by (b),
each product U} X I’ is contained in a s3t F (star m*!), where m* is a
vertex of M. Let 8. (#*) = m?, then it is obvious that f8i (=1, ---, 27) are
simplicial maps of K% into M and B (L?) =m, where L} = K\ Li Thus
Bi: (K% L) > (M, m).

If «° -+, u» are vertices of a simplex of K, then U° [} -+ N UP#¢. It
is obvious that ’

F (ﬁu starf (u?) N ﬁu star B (u)) O (F}J UixI r’ﬁu UIXI*),  where
=0, = = =

0<i<<2" and I3, I?"** are to mean the point ¢ = 0, f = 1 respectively. Since
the set on right equals

,.60 Wxt) = () UD x t % ,

where i == It (| Ii*! = {/2. Hence, for each 0<(i<(2", B («), -, BL (w"),
Bi*t (4%, -, Bit' (uP) are vertices of a simplex of M. Thus B} (x) and Bi*'(x)
both belong to a closed simplex of M for any x & K and for each 0 <C1 <2~
Moreover, if x € L3, Bi (¥) = m. Thus we can define a map G}: (K} X I,
L% X L) - (M, m) which maps x X I linearly onto the segment of M joining
Bi(x) to Bj*'(x) (xE K%, 0<<i<<2"). Define a map G»: (K} X I, Ly X I)
— (M, m) by taking
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i+1

Gi(x,2t—~1), zn <t<ge, i=0,1, -, 202

Gu(z,d) = { G (x2 =D+ 1), & ‘] <ic=l 1

Ay - N 2 o+l
1 1

Gy (x 27 (¢t— 1)'*'1), + g << L

Then G» is a homotopy between a*| K" and 5*| K%
Next, in the same way we define /,,: (K"™, L") - (M, m) (j=1,--,2"*)
under the following additional condition: if j = 27, j = 2{—1 and if a & 2,then
e (u?) = Bi(u®). If j = 2i or j = 2i—1, then I,,C Ii, therfore this restriction
is consistent with the above definitions of f’s. Thus £,, have been defined,

'n

hence, by the same way as the preceding, we have a homotopy Gy : (K7™ X
I, L X I) - (M, m) between a*| K%+ and B K7t

By the additional condition for f,,it is easily seen that G~ Gny1 K% X 1.
Hence, by (12, (), p- 228), there exists a homotopy Hn.1 betwéen o|K%*
and B*IKQ‘“ such that A" K% X I = H"(= G).

Starting with /71 = Gi it follows by induction on # that there exists a
sequence of homotopies Hn: (K% X I, L% X I) > (M, m) between o*| K7 and
B*| K% such that Hnp| K7 = H"(n = 1,2,---). Define a homotopy H: (K1 X I,
Lix I)- (M, m) by

HIK* X I = Ha
Then, by [12, (I), p. 228], H is continuous. Therefore H is a homotopy
between a* and (%, i.e. a* =~ f*. Thus our assertion has been proved.

Next, we shall prove that, if M is finite, then /4. is one-to-one. Let
mluplr = h[v, 1w so that Af.ux= hi,v,.. Let {a}=uu {B}=v. Then
ahﬂg B .. We have to prove that there exists a finite covering U; such that
Ui is a common refiniement of U, 1, and & Tin =B Ta. To prove this we
may assume without any loss Vof generality that x4 = v.

Let ¢: X— B(X) be the Cech compactification of X, and let 8(A) = ¢(A).
Since A is closed, ¢| A: A — [(A) is also the compactification of A. For each
open set #} of Uxwe put Vi = B(X) — 6(X~U%). Then{Vi} forms a covering
U, of B(X). (cf. [3, b), p- 229]).

Since K. is compact there exists the unique map #%: (B(X), B(A))—
(K u,Ly) such that

ke = hid.

Let W be the covering consisting of open stars of vertices of K. and let
us put B = 252(W). Let B, be a common finite refinement of B, and B ./
and let U, = ¢-1(B,). Since ¢1(B,) is a refinement of ., U, is a refinement
of U, and (F*¢)* (W) = A 1(W). The nerve (K,, L) of U, may be regarded
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as the nerve of ®,. Let h: (X, A) — (K,, L) and & : (B(X), B(A)) - (K., L)
be canonical maps. Then it is obvious that %f¢ is a canonical map of (X, A4)
into (&,,L,). Hence, by Corollary 9.1, we have

2 RS

Let 7,. be a projection of the nerve (K,,L,) of W, into the nerve

(Ku,L)) of U, Then, by Corollary 9.3, we have

TonhXho
Since «, /§ and 7. are uniformly continuous, we have

o h,uga Twzhffz‘ and f hﬂgﬁ T ulilg.

But « h/lgﬁ hu, hence

Ty uhif$ 2B T uto.

Therefore we have
) a Toulik ~ BT, .h.

Sirce B(X) is compact, by the first part of Theorem 9.4, there exists a finite
refinement B; of B, such that

(64 T»/xT/lu ~ B Tv,uTlu,
where T, is a projection of the nerve (Ki, Li) of B, into the nerve (X,,L))
of ¥,, Let Uy=¢"%(B,). Then (K, L) may be regarded as the nerve of
; and T may be regarded as a projection of the nerve of U; into the nerve
of ,. Hence TvxTi = Tu, where Ta is a projection of the nerve (K2, Li)
of U, into the nerve (K, L.) of Uu. Hence we have a Tix =B Tin. There-

fore our assertion is proved. Thus the theorem has been completely
established.

ReMmaArk 3. Let {U,} and {1.}'+ be cofinal parts of {U.} and {U.}r
respectively. We remark that the limit sets of {D(Ku, L.; M,m)} based on
{U,} and {U.}#»’ are same with D(X, A; M, m)} and Dr(X, A; M,m) respec-
tively.

We shall now apply Theorem 9.4 to cases of cohomotopy and u-cohomo-
topy groups.

Let (X, A) be a paracompact pair with dimX < 2% ~1. We consider the
totality of all locally finite coverings of X with order <2z—1. Let (K, L)
be the nerve of Wi. Then dim Ki <2r-1([7, Lemma 5]), and K is para-
compact ([7,Lemma 4]), therefore m.(K2, L) is an abelian group. If Ux > Uy,
then T#. is a homomorphism, thus we have a direct spectrum of homomor-
phisms. Let 7z°(K, A) denote the limit group of this spectrum.

Also, let 77.(X, A) denote the limit group of the direct spectrum of
homomorphisms based on all finite coverings with order < 2z—1. From
Theorem 9. 4, Remark 2 and [3, Theorem 3. 5], we have immediately the
following theorem.
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THEOREM 9.5. If (X, A) is a paracompact pair with dim X < 2n—1, then
& maps 7 (X, A) isomorphically onto n"(X,A), and hu maps 7%.(X, A) isomor-
phically onto ni(X, A).

Let (X, A) be a paracompact pair with dimX <2z—1,and let i: A— X,
j:X—> (X, A) be identity maps. The cohomotopy and u-cohomotopy sequences
of the pair (X, A) are sequences

i

O S "
7%, A Dm0 5 mm ()5 e (X A -,

and

VAL R - S i
(X, A)> o r(X)-ony (A)->ny (X, A)>- .

Let I, be as before and let 7,:L,— K, and j,:K,— (K,,L) be the
identity. Then the cohomotopy sequence of (X,,L,) is the sequence

i i i 4, 7
(K, L,)—>--—>ra"(K,)>n"(L,)—> n"?(K,, L) .
If 4 <v, then T#. commutes with each map of the cohomotopy sequences of
(K,,L)) and (K, L,), and therefore, can be regarded as a homomorphism of
the cohomotopy sequence of (K,,L,) into that of (Ku,L.). Hence, we have
a direct limit of sequences whaose limit sequence is denoted by

0.1 (X, A)l,...l,ﬁ(x,A)iﬁn(A)i’Em“(X,A)i»-- .

Since % commutes with each map in this sequence and the cohomotopy
sequence of (X, A), it can be regarded as a homomorphism of the sequenece
(9.1) into the cohomotopy sequence of (X, A). Also we have a direct limit
sequence

©2)  mX DD DEx, DSma il b

and /. may be regarded as a homomorphism of the sequence (9.2) into the
u-cohomotopy sequence of (X, A). Thus Theorem 9.5 can be given the
following forms.

THEOREM 9.6. If (X,A) is a paracompact pair with dim X < 2n—1,
then h maps the sequence (9.1) isomorphically onto the cohmotopy sequence of
(X, A), and hu maps the sequence (9.2) isomorphically onto the wu-cohomotopy
sequence of (X, A).

10. The exactness axiom. DEerFINITION 10.1. A sequence of groups and
homomorphisms

G]_‘g-)‘1 ")GngbGn+1£7L+l"'

is said to be exact sequence if the image of g; equals the kernel of &+ for
all 7.
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THEOREM 10.2,®  The cohcmoloty axd wu-cckcmiolofy sequences of a para-
compact pair (X, A) with dim X <2un—1 are both exact.

Theorem 10.2. is called the exactness axiom. In virtue of Theorem 9.6
and (5, p. 689, it is sufficient to prove the exactness axicm for simplicial pair
&, L.

Spanier’s proof of the exactness axiom for finite simplicial pair (X, L) is
based on Lemma 15.1 (10). We shall prove that this lemma is also true for
arbitrary not necessary locally finite simplicial pair (X,L). To this end we
must prove the following lemmas. '

LemMma 10.3. Let K be an infinite simplicial ccmplex with the weak
topology, L be a closed subcomplex and V be a neighborhood of L. Put
V = V—V. Then there exists a real continuous function 0 <<&(x) <1 defined
on V such that &x) =1 if x € V and £(x) = 0 if and only if x € L,

ProOOF. Let N(KX) be the complex K topologized by the natural metric,
and 7/: N(K) — K be the identity transformation. It is obvious that i is an
open (not necessary continuous) trarsformation. Since N(X) is a metric
space, there exists a sequence {U.’} of open reightorkocds of N(L) such
that N U.' = N(K). ‘Therefore {U.} (Ur. = iU.’) is a sequence of open
neighborhoods of L such that () Un=L. Let Va=V (N U.n Then N Va=1L
and V. are open in the normal subspace V. By Urysohn’s lemma there exist
real continuous functions 0 <C &x(x) <1 defined on V such that &(x) =0 if
xEL, &(x)=1if xEV—-Va. We define

&) = X2 ex)/2n @EV),
then &(x) is a real continuous function defined on V such that 0 << &(x) << L
If x € V-V, then obviously &(x) = 1. If &(x) = 0 then, for each # &.(x) = 0.
Hence x & V—Va, ie. £ Vo Therefore x & ] Vo = L. Thus the function
&(x) is required.

LemMMmA 104. Let X be a paracompact space and let }A( denote the joint of
X with a point P. For any neighborhood U of X containing P, there exisls a
real continuous function 0 <t(x) <1 defined on X such that {(x,t(x))|xE X}
cC U.

ProOF. By the topology of }2, for each point x & X there exists a
neighborhood x & V- in X and a real number 0<C &(x) <1 such that (y,?)
EUif y&E Ve, E(x) <f<<1l. Such V.'s form a covering of X. Since X is
paracompact, there exists a locally finite refinement {U,} of this covering.
For each set U, & {U.} we choose a set Vx:C Vi, and we associate to U, a
real number & = &(x). Let N be the nerve of the covering {U.} with the
natural metric (cf, (3, 1]), and ¢: X—> N denote a canonical map. Denote
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by {¢a(2)} (Z¢a(x) = 1) tke barycentric cccrdinates of ¢(x) (¥ & X),then, for
each «, ¢, is a continuous function defined on X ard ¢.(x) are zero except a
fininite set of them. Thus
Hx) = Zafa(x) Ea

has the meaning and is continuous. Since YqP.(x) =1 and 0=&,<1, Min
(&) =it(x) <1 for all x& X. Thus the function {(x) is desired.

Let X; denote the set of points which are represented by (x, ¢{(x)). Then
it is easily verified that the correspondence x — (x, {(x)) gives a homeomor-
phism of X onto X.

LemMmA 10.5. Let K be a (Anot necessary locally finite) simplicial complex
with the weak topology and let K denote the joint of K with a point P. If dim
K< 2n-1, then 4 maps n"(K) onto n"*l(/}(, K).

ProoF.  The prcof of this Ien}\ma is parallel wit/\h Spanier’s proof of
Lemma 15.1 (10). Let {a} € 2" (K, K) so that a: (K, K) (S*, p). Let q
be the north pole $**' (g is the center of E}*'). By the simplicial approxima-
tion theorem (11, Theorem 36J, we may assume that « has been c}}\osen in
{a} so that a™*(g) has dimensioAn less than #. Let L= a?*(q) and L = the
joint of L with P. Then dim L<n+ 1.

Let o be a closed simplex on S containing p in its interior and not
containing ¢. Let o be the boundary of ¢ and let M = a™'(¢), N = a~'(o).
Define M’ =1L M, and N' = L (| N. Then dim M’ <z + 1 and & M’ maps
(M, N) into (o, a'). Hence, by Lemma 3.5 there is a map F : (M’ X I,
N’ x I) - (o, ¢) such that

F(x, 0) = alx)
Fx, DE o
F(x, t) = a(x for all xEN/, tE L.
Define F': ((M x 0 U (M U K U N) x I) > (o, o) by
F(x, t) if x & M
F'(x, t) = { a(x) ifrx EKUN
alx) ifx & Mand £ = 0.
Since o is a contractible space, there is an eAxtension G of F' which maps
M X I, N X I) into (o, o). Define a’: (K, K) - (S", p) by
, _ G(x, D if x € M,
@) = { a®) if x € K- M.
Then o’ is continous, o/ E{a}, a’~*(¢) = L and o’ (IA,) does not meet p.

Hence there is a neighborhood V of 2\2 such that the closure V of V does
not map onto p under a’. Put V= V—V. Since V and L are disjoint closed
sets In V, by Lemma 104, there is a real continuous functlon 0=ex =1
such that €(X) =1if x & V and &(x) =0 if and only if x EL For xE 7V,

} for all x E M’
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let a(x) te tteroirt ¢f £**'—p wkich divices 1le segmmert frcm a’(x) to ¢ in
the ratio 1—&(x): &(x). Defre a Lomolepy H of o as follows. If xE T,
H maps x X [ lirearly onto the segment of S"*'—p joining a/(x) to a(x). If
x€EV, H maps x X I onto a’(x). Let f(x) = H(x, 1). Then o’ >~ rel. K
and F7'(q) = L.

For x €V, let b(x) be the point on the segment frem x% to P which
dAivides this segment in the ratio 1—-&(x) : &(x). Define a deformation H’ of
K on itself as follows. If xAElf, H’ maps x X I linearly onto the segment
joining «x to b(x).A If xEIAf-V, H’' maps x X I onto x. Then H’ is con-
tinuous. Let f: (K,K) - (K,K) be deﬁnedAby f(x) = H'(x,1). Then Af 1As
homotopic rel. KX to the Aiden’ci’cy map Aof K onto itself, and f maps K--L
homeomorphiczlly onto K—P. Let 7: (K, K) — (S*", p) be defined by

x) = { B (%)) %f x #+ p,
q if x = p.
Then it is obvious that 7 is continuous and 7 H’ is a homotopy rel. K between
T and 7f = B.  Also 77'(gq) = P.
Let T be a small closed (# + 1)-cell on S**! with center at ¢ and boundary
''.  Let U be a neighborhood of the point P wPich is mapped into 7 by 7.
Such a neighborhood U exists certainly. Since K is paracompact ({7, Lemma
43), by Lemma 104, there is a real continuous function #(x) defined on K so
that 0 <#(x) <1. Let K1 be the set of points (x, #(x)) (x & K). Let D define
to be the set {(x,#)|f <#(x)}. Since Ki$H P and 7*(q) = P, Y(X1) D g. Push
7(K1) along geodesic arc from g until K, is mapped into S? and follow this
by a deformation of 7 (keeping the inverse image S"*'—int T pointwise fixed)
to/\get a new map 7/ =7 rel. K with 7/*(q) = P. Deform 7/ to a map 7" :
(K,K) = (S**,p) such that 7” agrees with on K—D, v”(D) C S**'—intT and
™" >~7 rel. K.

Deform S™** into itself along arcs from ¢ so that at the end of the
deformation (7, S?) is mapped homeomorphically onto (£%+*, S*) and S*** —int T'
is mapped into E"*' with p and ¢ kept fixed during the homotopsAf. Let the
final map of (S™*!, p) into (S**!, p) be g. Then gr” maps (K, K) into
(S"*', p), maps K into S® and D into E”*' and is homotopic to a rel K.
Let % be a correspondence x — (x,¢(x)). Then,as we have already noticed, % is
a homeomorphism of K onto K. Define ¢ = gv”h. Then ¢ maps K into S,
and it is obvious that 4{¢} = {g7”} = {«a}. Thus the lemma has been proved.

ProOF oF THEOREM 10.2,  Spanier’s proof [10, § 16] of exactness axiom
for a finite simplicial pair is applied to an infinite simplicial pair without any
modification, if we use Lemma 10.5 instead of Lemma 15.1 [10]. Therefore,
the cohomotopy sequence of any simplicial pair satisfies the exactness axiom.
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Hence, by Theorem 9.4 and (5, p 689), the cohomotopy and u-cohomotopy
sequences of a paracompact pair are both exact. ’

If XD2ADB and 7: A -> (A, B) denotes the identity map, then the composi-
tions 4i*: 7"(4,B) — a"*'(X,A) and 4ui*: n"(A,B) — n%(X,A) will also
be denoted by 4 and 4. respectively. If (X,A,B) is a triple consisting of a
paracompact space X with dimX < 2z—1 and closed subset A, B with B (_ 4,
let 7: (A,B) » (X,B) and j: (X,B) —» (X,4) denote the identity maps.
Then the cohomotopy and u-cohomotopy sequences of the triple (X, A, B) are
the sequences of groups and homomorphisms

o o JFgF ¥ 4 o
(X, A)>>n(X, B)»r"(A, B) > (X, A)—> -,
and
L JE g g A Ji
(X, A= > (X, B)- (A4, B)- it (X, A)>- .
THEOREM 10.5. The cohomotopy and u-cohomolopy sequences of a para-
compact triple (X, A, B) with dimX < 2n—1 are both exact.

As is well-known, this theorem may be derived in a purely algebraic
fashion from Theorem 6.5, 7.2, 7.3, 7.5 and 10.2.

REMARK 4, L%‘c (X, A) be any arbitrary pair withdimX < Zn_—l and let
¢ : X - B(X) the Cech compactification of X ared put BC(A) = ¢(A). Then
dim B(X) <2rn—1land g | A: A—>B(A) is the Cech compactification of A.
Thus ¢ induces a 1-1 transformation ¢. of the u-cohomotopy sequence of the
compact pair (B(X), B(A)) onto the sequence of sets and set transfromations

L oaJe JE g du .

(10.DH (X, A)—> (X, A)-rm(A)-> (X, A)> - .

Therfore we can define the group operation for each set of (10.1) so that ¢.
becomes the isomorphism, then we have an exact homorphism sequence of
(X, A), which will be also called the u-cohomotopy sequence of (X,A4). If X
is paracompact, then (10.1) is a homomorphism sequence of groups, and @u is
an isomorphism. Therefore the above definition ¢ is consistence with that of
the u-cohomotopy group of a pair. Also we can define the group operation
for each set of (10.1) so that /. in Theorem 9.5 becomes the isomorphism. It
is easily seen that two definitions of gr‘oup operations are the same. Moreover
we notice here that Part II of (10])is extended to any (not necessary para(ilom—
pact) pair (X, A), by using of u-cohomotopy sequence and ordinary Cech
cohomology sequence of (X, A4).

11. Comparision with cohomoelegy groups. y Let (X, A) be a pair. Let
H'(X, A; G) and H1.(X, A; G) denote the n-th Cech cohomology groups of (X,
A) with coefficients in an abelian group G, based on infinite coverings, and
finite coverings respectively.
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If {a} & z"(X, A), then a*s® \3 H"(X,A;#n) and if a E{«a}, then [*s" =
a*s™ by the homotopy axiomv for Cech theory (cf. [4, E 4]), where o, f* are
induced homomorphism of Cech cohomology groups, #* is the z-th homotopy
group of the sphere S7, and s* is a generator of H"(S", p; n*) = H(S™, p; n*)
(for the convension of the orientation of s see [10, § 17]).

Hence, there is induced a transformation

6 (X, A) - H(X,A; n")
defined by ¢{a} = a*sm

If {a} € 7(X, A), then a*s © H3(X,A; n*) and if BE {a}«, then it is
easily verified that B*s® = a*s®, where a*, * : H%.(S", p; nv) — H3H(X, A; #)
are induced homomorphisms of «, f. Hence, there is induced a transform-
ation

$u 2 7 X, A) > HWX, A; nv)
defined by ou{ate = a¥sm.

TueoreM 111. If dim (X—A) < 2n—1 then 0u is a homomorphism, and
furthermore, if X is paracompact, then ¢ is a homomorphism.

TueoREM 112, If fis a map of any pair (X, A) into another (Y, B), then
commutativities hold in the diagrams:
r* fi
a(Y,B) —> n(X, A) (Y, B) = (X, A)
s Lo Bu | ul
f* f*
H(Y,B;n") » HY(X,A;n) HY,B;n") > HWX,A;n").
It is not difficult to prove thesz two theorems and so we shall omitt the
proofs (cf. [10, § 17]).
Combining Theorem 9.5, 11.1 and 11.2 with the Hopf classification theorem
for simplicial pair ({12]), we have easily the following generalized Hopf
classification theorems.

THEOREM 11.3, If(X, A) is a paracompact pair withdim (X—A) <n
(n>1), then & maps n"(X, A) isomorphically onto H*(X, A; n™).

THEOREM 114. For any pair (X, A) with dim X < n (u>1), 6u maps
ni(X, A) isomorphically onto H*(X, A; n*), wheve n* denotes the group mwn(s™).
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