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Introduction. In the previous paper [8] we proved a theorem on absolute
Cesaro summability at a point for the Fourier series of functions in
Lp(0,2τr) and stated that the summability \C,r\ (r>l/p) is of local
property for the class Lp(p >1); but this result is incorrect for p >2.x>

Indeed the summability C, 2 is not of local property even for the class

of continuous functions; this fact will be shown here in §2. In §1 we
shall give an improvement of the summability theorem.

On the other hand, as Bosanquet-Kestelman and Yano have shown [3; 9],
the summability \C,l/p\ (l^p< 2) is not of local property for the class
Lp we shall give a proof of this by a counter example in § 3.

1. The summability theorem of the author [8; Theorem 5] will be
improved as follows:

THEOREM 1. Let I < ί g 2 and let f{t) €'^(0,2π). If the integral

(1) logy di
0

is convergent for some a > p — 1, where

<P*(t) = Ax + *) + Ax -ί)~ 2f(*),
then the Fourier series of'/(/) is summable \C, δ| for every δ > 1/P at t = x.

We obtain this result replacing the condition (1) by the stronger con-
dition :

(2) YJ \φjjt)\»du = O (log j (£ > 0) as * - * ) ,

from which it follows easily the convergence of the integral (1).
LEMMA 1. (i) The Cesaro kernel of order r, —Kr<l, is written as

Kl{t)=
where

sin [(» + -g- + -J-)* ~ T
2 2/ 2
2sin|-)

1) Throughout the Part II of the previous paper [8], the condition uρ>l" sjiould be
replaced by the condition *
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\lC(t)\ ^Cn and \Hn{f)\ %

C being a positive constant.2)

(ii) I/O < r < 1, we have

\KHf)\ ̂  Cn-Π-i-r for τr/
The first part of the lemma is due to Kogbetlianz (Cf. Hardy-Li ttlewood

[4] or Zygmund [10], p. 212), and the second is well known (Cf. Zygmund
[10], p. 48).

PROOF OF THEOREM 1. Denote by σ%t) the n-th (C,S) mean of the
Fourier series of f(f). Since we have

= Si 4- S2 say,

it is sufficient to prove the ίiniteness of the sums Si and S2 for δ such as

For the sum S2 we have

f0 τι/n

= A + B say.

By Lemma 1 (ii) we get
oo ηt\n oo oo τt\TC

0 τr/(fc+l)

oo τr/fc

2) In what follows C,CUC% ...are positive constants independent of the variables.
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c±±f
n=i n J

it In

< : C , 2 — [ %? dt<σά dt

dt.

Applying the Holder inequality we have easily
It "• l - l / o i

the first factor on the right-hand side is finite as a > p — 1 and so is the
second by the assumption. Thus we get at once: S> < oo.

Now we estimate the sum Sι. We divide it into two sums:

^ i 1
7ΐSι =

n
J

, 1
»2?*

By Lemma 1 (i) we have

—t 1 *f-j _

say.

< 4C2 2- / Î WI dt S. C3 2 I
- o
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which is finite as in the former case. The sum Q will be further divided
into two sums :

n - 0

ι (t)dt

- l 2W+1-1 r *

2^2 φS)
= Oi + Qa say.

By the Holder inequality, if we put q = p/(p — 1),

I 2?*(δ-l/2>) I 2L^ J

A8'1 (2 sin —

^ φx{t) cos (Jlgt - ~π) q\llq

cos ktdt

φx{t) Sin ( 4 * " Ύ

Applying the Hausdorff-Young inequality (Cf. [10J, p. 190) we get easily

Ql ^ ^^4 ZΛ 2n<β-i/p)( /
(2 sin -g

-1/2?) I I /δi)

By the Holder inequality, if a > p — 1 we have

2»C«P-1) J

UP

71—1 *

M I _ n • '

1/2̂

τt/2m+l

1/P
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SC,
HP

which is finite by the assumption. Finally, by Lemma 1 (i) we get

on ^£af / \φJL*)\-βrdt

«-» t2

-c,±f^f'

2 Λ J t* dt

? j- j and whose Fourier series is not summάble4 /

which is also finite.

Combining the above estimations we complete the proof.

2. The theorem just proved is not true for p >2, and indeed the sum-

mability \C,S\ ( δ ^ ^ - ) of the Fourier series is not decided by the local
behaviour of the function in the neighbourhood of an assigned point, More
precisely we shall prove the following theorem.

THEOREM 2. There exists α continuous function of period 2τr, which

vanishes in the interval ( — -?-
V 4

C, ~2 at the origin.

For the proof we shall use the following lemmas.
LEMMA 2. Let {rf(«)} be the Rademacher system. For a given set Ec(0,1),

\E\ > 0, there correspond a positive integer N = N(E) and a positive constant
A = A{E) such that for any sequence of real numbers {aϊ} and for any integer
P > N we have

p

E ι = N

further, if 2^1 < oo, then P may be infinite.
This lemma is essentially known (Cf. [8], Lemma 1).
LEMMA 3. If Xal (log n)1+* < oo (£ > 0), then for almost all u the series
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(3) an cos nt

is a Fourier series of a continuous function.
This is due to Paley and Zygmund [7]. (Cf. [10]. p. 127)
PROOF OF THEOREM 2. Let us put

(4) = 2 C o s 2 n t f o r Ύ<XS

= 0 for O^z^y

fu{t) = /„( - /) and /„(/ + 2π) = /„(*) for all £, — oo < * < oo. We shall first

prove that the Fourier series of the function fu(t) is non-summable C, -ψ at

t = 0 for almost all u. To show this we consider the series

where σΊ/n(t,u) is the w-th (C, -s-) mean of the Fourier series of /«(/).

Suppose, on the contrary, that the Fourier series of /M(£) is summable

at t = 0 for all w in a set E cz (0,1) of positive measure, that is,IC, -o-

the series (5) is convergent for u € E. We can suppose that the sum (5)
is majorated uniformly by a constant M for every u € E. Then using the
well known formula we have

M\E\
E nml

[), u)\du

(6)

rm{u)

τr/2

2 Γ °°

^ cπ 2 ^7r I 2
M-97V *1_ *w — '7

TO-2

rm(u)

cos 2mtdt du

m1

ίϊf ( cos kt cos 2m/ *// du
τf/2
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= CiiS — C\\T

say, where N is an integer determined in Lemma 2. From the Khintchine
inequality the second sum T in the last expression is majorated by

k

lnm
/ •

/
v

2;—1

)}

(7)
2 / - 1

2 1/2

,

(2/ - I f - (2m)

1 ( *»* \V
>g nif \4(» — 2w* + I ) 1 ' 3 / J^M 2m +

= Ti + T2 say.

The third sum in the expression Tτ is, in absolute value, not greater than

(2m - i y "
j ^ (w - 2/

(2m + iy

(2m - l ) a -

(2m + iy ~ (2my ^ (n - 2/

where l < ^ < m , m + l<Ξμ.<i [w/2J in virtue of the mean value theorem.
As 1 fS m < N this expression is again majorated by a constant depending
only on N. Hence, as we see easily, the sum 7\ is not greater than a con-
stant C(N). For the sum T2 we obtain

2.1/2

which is clearly less than a constant Q(N). Therefore we have from (7)

(8) T^Tλ+T2^ C(N) + CitZV) < oo.

On the other hand for the sum S, using Lemma 2, we get easily
Oβ CO ' " Λ

s>Ay — ΓT 1 (2 _ * f

(9) > A j V ί T 1 ( ^2-
wΐuv w L ^^T^ m(log my {(n — ί

τr/2

7T

2m + 1) 4

(2my-(2j-iy
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Among Ithe three terms in the last curly bracket, the second, say, S' is
positive because its summand is an increasing function of j in absolute
value and its m-th term is positive. We consider the third term:

t»/]

= 2 ( - iy-m-ιaAm, n)

say. By elementary consideration we shall see that there exists an integer
v, m < v <i [n/2] such that, when j varies from m + 1 to [n/2], as{n, ni) de-
creases for m<j^v and increases for v <j<^[n/2]. Hence (10) can be
written as

V

2 ί-iy- -

say the first sum S" is positive since its first term is positive , and we get
easily

/•m I c"/ι < (M — ±r

Therefore we deduce from (9) that
r[«/2]-l -.

oo [ϊl/2]-l - f _ _ Λ 2 ,1/2

> *-.A 2 - ^ 2 — ^
- [«/2]-l _i/2
1 ' V 1 ς^/2

say. From (11) we have

^ , 1
3^ ((«-l)ϊ-(2fff> 7 J

[ίl/2J-1 j -.1/2
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Since S' and S" are positive we get

m
(14)

(log w)3(ra - 2m + 1)
1/2

Hence from (12), (13) and (14) we obtain S = oo, and from the estima-
tion (8) we get easily a contradiction with the inequality (6). Therefore we
conclude that the series (5) diverges for almost all u, that is the Fourier

series of fM(t) is non-summable C, 1 at t = 0 for almost all u.

From the definition of fu(t), it is continuous in the closed interval

-Q- , n I for almost all u as we see by Lemma 3. Consequently we can

choose a u, say u0, such that the function fm(t) is continuous everywhere

except perhaps at t = -? (mod TΓ) and its Fourier series is not summable

C, -g- at £ = 0. Since the function /Mo(/) may have a discontinuity of finite

jump at Λ= ^ (mod π),we add it a suitable even function l(t) of period

2π which vanishes for 0 <i / <Ξ ^ and for ~ <t<^π and is linear for

-j < t < •— with a resulting continuous function:

The function /(/) being of bounded variation its Fourier series is summable
\C,B\ for every δ > 0 at t = 0 in virtue of the Bosanquet theorem. [1].
Therefore by the above result for fUo(t) the Fourier series of g(t) is not

summable at ί = 0. Obviously #(*) = 0for - ~ ^ ί ^ ^ and we

complete the proof.

3. The summability |C,δ| is of local property for the class Lp if δ >
l/i> and I ^ ^ g 2 . The case /> = 1 is due to Basanquet [21 and the case
l < ί S 2 is a consequence of the Theorem 1. But the summability | C, l/p\
is not of local property for the class Lp (l^p< 2). This fact was already
proved by Basanquet and Kestelman [3] for p = 1 and by Yano [9] for
p > 1 . We shall show this by a simple counter examples.
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THEOREM 3. For 1 <: p < 2, there exists a function € Lp of period 2π

which vanishes in the interval - -̂  g ^ $ ^ and whose Fourier series is

not summable \C,l/p\ at the origin.

LEMMA 3. If a series %cn is summable |C,δ | (δ > 0), then, the series
Σ\cn\/n* is convergent.

This is due to Kogbetliantz [6].

PROOF OF THEOREM 3. We suppose first that 1 < p <; 2. Let us consider
the series

which is the Fourier series of a function € Lp (Zygmund [10], 9, 501, p. 212).
Let us define:

= 0 for 0 S x S 2 ,

f(x) = / ( - * ) and f{x + 2τr) = fix). Obviously /(*) € L» (0, 2τr). We shall
prove t hat its Fourier series is not summable \C,l/p\ at x = 0. Denote by
βt the ^-th Fourier coefficient of fix). We have

2 Γ
^ f c = π J

^ cos 2nx

1

since the termwise integration is permitted by the well known theorem
(Cf. [10], p. 91). Therefore we get

and lit fails the necessary condition for the summability [C, l/p\ at the
origin by Lemma 3.

In the case ί = l w e consider instead of (8) the following series:

cos nx

which is a Fourier series of an integrable function ([10], p. 109). Con-
structing an analogous function using (9), we can easily obtain a required
example.
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