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1. G.Sunouchi has proved the following theorem [1]:
THEOREM 1. Let A=qv/B8=1. If

1) Pe(t) = oY) (t->0),
where Pg(t) is the Bth integral of ®(¢), and further if

@ f ld@*P@)] = O)" (0<t<n),
0

then the Fourier series of ®(#) converges at ¢ = 0.

He proved this by a Tauberian theorem due to F.T.Wang. We give a
direct proof of this theorem and some generalizations.

2. Proor orF THEOREM 1. The method of proof is similar as G. Sunouchi’s
1], except that the Tauberian theorem is not used.

Let @ =1/&nt/A, and let
T . ] 4 .
f ¢’(t)§’r’t—"tdt = f + f ¢(t>—s—‘—“{£dt= I+].
0 0 o«

If we put

13
o) = o), 00 = [ 1dow),
0
then we have, by (1) and (2),
3) a(t) = Ot), 4t) = 0({).
Hence we have

'1! 2
]=f sp(t)s—mtitdtzf e(t)S;‘f:t dt
[ @*

= — f O(B)AA(L),
a
where
L £
At) = f S*;l%ﬁ#tdt: 111+Af sinnt dt = O(1/nt1+5),
t t

By integration by parts, we have
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= [aamm]z + f ’ A@do®) = I + I,

say. Then
Ji = O(a[nar+1) = O(1/nad) = O(E?),

7= o L [1d801)

n
—o(L[00 ] 1 L[ e i)

y”

tA+1

|

O(1/nat) + O(1/n) + 0(% f

= 0(1/na*) + o(1) = O(&%) + o(1).

Thus J =], + J. tends to zero as #-> o and then € - 0.
Let us now estimate I. For this purpose we distinguish the cases con-

<erning B. Firstly, let 0 < 8 < 1. By integration by parts, we have

. L] .
I= f OREC
0

@ @
in# o
= {:¢](t) —iji ] + f ¢1(t) nt cos n:a sin nt dt
0 0

=I + Iz,
say. Since
Pu(t) = o(t1*7=8) = o(t) (>0,
‘we have I, = 0(1). On the other hand
7 . t
L= f ntcosmt — sinnt ;, f Do)t — u)P du
0

t!
0

1

o o
f Do) duf nt cos ntt;— sin nt(t_ WP dt,
0

w

where the inner integral becomes

ne
n1+Bf TCOST —SIn T (r — nu)-Pdr = O(n®|u).

2
T
nw

“Thus we have
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L= o(nﬁ |Pa()| -1du) = o(nPar) = o(1)
0

and hence I'= I, + I, = o(1).
Secondly consider the case 1< 3 < 2. We have

(t) S ~—]¢ [ wu(t) 2 S";"t T
)

(]
d? ( sinnt , , ,
- f OB <~—t—)a’t =L+ I+1,
0

say. Since ?(t) = O(t*-2) by (3), we have, by the convexity theorem due to
G. Sunouchi,
Pi(t) = o(t+-FYE%) = o(t)
and Pu(t) = o(t+1-F).
Hence we get
I = o(1),
I, = o(a**7-F(n/a)) = o(a**¥~Fn) = o(1),

o
_ d: ( sinnt f L \Z=B)-1
I = f dt2< Yt | pataxt — ) du

f Pa(ee) duf i ( sin st ) @t —urtdt
0

ni+s f Pa(u) du f & () — muy-p
y J dt T

1l

= o(nﬂof u¥-1 du) = o(nPaY) = o(1).

Thus I =1, + I, + I, = o(1).
The proof of the general case k< B< k+1 (k=0) is now in hand. It is
sufficient to use that, if ®g(f) = o(?), then- ‘
P () = o(ti+@w-DYIB+Ky-B)ED)
= o(#1+(-DA)

for 0 < v < 3, and that

T Oty (k=1,2,.)

The case 3 = k (integer) is easy, so That the theorem 1 is proved.
8. As a generalization of Theorem 1, we get
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THEOREM 2, Let A=+/8=1. If
1) Pe) = o) (t>0)
and

PO _ P )| gy

6)) lim lim sup 7 i win

k->oo N>

1/(eny 1A
then the Fourier series of ®(¢) converges at ¢ = 0.
THEOREM 3. Let A=qv/8=1. If

@D Pa(t) = o(t) (> 0)
and
vl
® lim lim sup f 190) = Pt + W)l gy _ o
K>eo w->0 1a t

(ku)

then the Fourier series of ®(f) converges at ¢ = 0.

There are generalization of not only Theorem 1 but theorems due to
Gergen [2] and Sunouchi [3], which includes Pollard’s theorem and many
others.

By proving that (5) implies (6), we deduce Theorem 2 from Theorem 3.
Proof of Theorem 3 is analogous to that of Gergen’s theorem, which is the
case A = 1.

4. ProoF oF THEOREM 3. We need a lemma, whichis a simple modifi-
cation of a lemma due to J.J.Gergen [2].

LeMMA 1. Under the conditions of Theorem 3

4) @ft) = o+ =Ha)y (25> 0)
for integral »,0< v < 3.

Proor. Let @ be non-integral and w = [@]+ 1. Then, by (1), we have

¢“(t) = oY+ (=P = (1 +(n-1A)
In order to prove the lemma, it is sufficient to prove that ®,.,(¢) = o(#1*™)
implies ®(¢) = o(f1+"-DA) for 0 < r < u. For this purpose we consider the
integral
(Vzu,

f dff {Z( =1y (T ) praatao + ut)}dw

(u)UA v=0

(hu)* th multiple of which is the sum of ¢, linear combination of @, and
the term majorated by the integral in (6). Thus we get the required. The
detail will be seen from the Gergen’s paper [2].

Let us now prove Theorem 3. Let u = z/n,a = (ku)l* If we put

f 20 SJ—’i"l at,
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o+ 2U 'q+‘ll: 0+ 20

Bn, k) = (f +2f +f f )co(t)s‘“"’ dt,

then, by Lemma 1, we can prove as in the proof of Theorem 1 that

lim hm sup B(n, k) =

k>eo

‘We have also
) Urn 7+ 20 A
—Bn k)= (f +2f +f )fp(t)Sl—nt-@dt
@« a+U a+2u

r’l
_?i(!ﬂ)t_ sinnt dt

= 2“"{ W+ u)(t + 2u)

7
Pt + 2u) — Pt +u) _ P+ u)—PE) |
+f { b+ 2u ¢ }Smntdt

[

=2v(n, k) + 8(n, k),
say. By the condition (6)
lim lim sup &, k)= 0
n-poe

k>0
We have also
lim 11m sup ¥(n, k)

) k>co
by (4) and the integration by parts. Thus the Theorem is completely
proved.
5. Proor oF THEOREM 2. It is sufficient to prove that (5) implies (6).

For sufficiently small %
£

@ sup f
0<v=u (m)llA

by (5). We can suppose 2= 1 in (7). Let us define a sequence (x) by the
relation

2O _ P+ |\ <y
t t+wv =

xl—u,xy+1+x+1—xy(y—<23 )

Then x, ¥ , and then it converges; the limit must be 0. Let », = %, — %1
(r=1,2,....). For a fixed & we have

f lp(Dldt = z f I<P(t)|dt<2 : f 1ote)l

=$f y

xl} +1

§+u £+u

I‘P(t)l
L
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“Ee (] e [ f 0

Tya1

co

= =1x”<f£f - t+u,

I¢’(t)l N
p ;@
v v+1
E4+u t
oo [ 1200 ar)
3
Thus we have
f |2(b))dt = O(u).
0
Now,
P®) =@ +u)l 4 <f O _ |y
Gewyl/d t Gouyl/A l+u
(3
|9t + u)|
+u f ~——t ¢+ ) dt
< f sv(t) _ PR+ ) ‘dt
eyl A t+u
£ £ dt t+U
+ [ f | P(w)] dw } + 2uf 7-———[ |P(w)| dw
t(t + u) euylld (ku)”At (t+ u)0
L) P+ u) ' Mu 3MEr-+iA
= t T L N 7
(ku)”A
Thus (6) implies (5).
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