SOME TRIGONOMETRICAL SERIES VI.

Shin-ichi Izumi

(Received January 4, 1954)
The object of this paper is to treat the convergence of the series

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|s_{n}^{*}(x)-f(x)\right|^{2} n^{\alpha} \tag{1}
\end{equation*}
$$

for $\alpha>0$, where $s_{n}^{*}(x)$ is the nth modified partial sum of the Fourier series of $f(x)$, and is to derive an approximation theorem of infinitely differentiable functions.

1. Theorem 1. If the function
(2)

$$
g(t)=\varphi_{x x}(t) /(2 \tan (t / 2))
$$

where $\varphi_{x x}(t)=f(x+t)+f(x-t)-2 f(x)$, is L^{2}-integrable and

$$
\begin{equation*}
\int_{0}^{2 \pi} \int_{0}^{2 \pi} \frac{\mid g(t+h)-g\left(\left.t\right|^{2}\right.}{h^{p}} d t d h<\infty \tag{3}
\end{equation*}
$$

for a $p>\alpha+1 \geqq 1$, then the series (1) converges for $\alpha(1 \geqq \alpha \geqq 0)$. If (3) holds with $p(2<p<3)$, then (1) converges for $\alpha=p-1$.

The L^{2}-integrability of (2) is stronger than the Dini's condition and (3) holds when

$$
\int_{0}^{2 \pi}\left|\frac{\varphi_{x}(t+h)}{t+h}-\frac{\varphi_{x}(t)}{t}\right|^{2} d t=O\left(h^{\beta}\right)
$$

for a $\beta>\alpha$. This is stronger than the convergence criterion due to Pollard.
We shall now prove the theorem,

$$
\begin{aligned}
s_{n}^{*}(x)-f(x) & =\frac{1}{\pi} \int_{0}^{\pi} \frac{\varphi_{x}(t)}{2 \tan (t / 2)} \sin n t d t \\
& =\frac{2}{\pi} \int_{0}^{2 \pi / \cdot 2}\left\{\sum_{k=0}^{n-1} \frac{(t-\pi+2 k \pi / n)}{2(\tan (t-\pi+2 k \pi / n) / 2)}\right\} \sin n t d t
\end{aligned}
$$

Let us put

$$
F_{n}(t)=\frac{2 \pi}{n} \sum_{k=0}^{n-1} \frac{\varphi_{x}(t-\pi+2 k \pi / n)}{2(\tan (t-\pi+2 \pi / k n) / 2)}
$$

which is the Riemann sum of $g(t)=\varphi_{x}(t) /(2 \tan (t / 2))$ in the interval ($-\pi$, $\pi)$. By the assumption, $g(t)$ is integrable. If $g(t)$ is continued periodically and is expanded in Fourier series such that

$$
g(t) \sim \sum_{\nu=-\infty}^{\infty} c_{i} e^{t i t},
$$

then

$$
F_{n}(t) \sim \sum_{\nu=-\infty}^{\infty} c_{\nu n} e^{\cdot v n t}
$$

Hence

$$
\begin{aligned}
s_{n}^{*}(x)-f(x) & =\frac{n}{\pi^{2}} \int_{0}^{2 \pi / n} F_{n}(t) \sin n t d t \\
& =\frac{n}{\pi^{2}} \int_{0}^{2 \pi / n}\left(F_{n}(t)-c_{0}\right) \sin n t d t \\
\left|s_{n}^{*}(x)-f(x)\right|^{2} & \leqq \frac{n^{2}}{\pi^{4}} \cdot \frac{2 \pi}{n} \int_{0}^{2 \pi / n}\left(F_{n}(t)-c_{0}\right)^{2} d t \\
& =\frac{2}{\pi^{3}} \int_{-\pi}^{\pi}\left(F_{n}(t)-c_{0}\right)^{2} d t \\
& =\frac{2}{\pi^{2}} \sum_{\substack{k=-\infty \\
k \neq 0}}^{\infty} c_{k n}^{2}
\end{aligned}
$$

since $F_{n}(t)$ has the period $2 \pi / n$. Thus ${ }^{1)}$

$$
\begin{aligned}
\sum_{n=1}^{\infty} n^{\alpha}\left|s_{n}^{*}(x)-f(x)\right|^{2} & \leqq \frac{2}{\pi^{2}} \sum_{n=1}^{\infty} n^{\alpha} \sum_{\substack{k=-\infty \\
k \neq 0}}^{\infty} c_{k n}^{2} \\
& =\frac{2}{\pi^{2}} \sum_{\substack{\nu=-\infty \\
\nu \neq 0}}^{\infty} \sigma_{\alpha}(|\nu|) c_{v}^{2}
\end{aligned}
$$

where

$$
\sigma_{\alpha}(\nu)=\sum_{\alpha \mid \nu} d^{\alpha}
$$

It is known that

$$
\begin{array}{ll}
\sigma_{\alpha}(\nu)=O\left(\nu^{\alpha}\right) & (\alpha>1) \\
\sigma_{\alpha}(\nu)=O\left(\nu^{\alpha+\epsilon}\right) & (1 \geqq \alpha \geqq 0)
\end{array}
$$

for any $\varepsilon>0 .{ }^{\text {2) }}$
If $0 \leqq \alpha \leqq 1$, we put $p=(\alpha+\varepsilon)+1<2$. Then, by (5), we have

1) Cf. Marcinkiewicz and R. Salem, Fund. Math, 30(1949).
2) The author learned these relations from J. Uchiyama. He proved more precise results than (5).
(6)

$$
\Sigma\left|s_{n}^{*}(x)-f(x)\right|^{2} n^{\alpha} \leqq \text { const. } \sum_{\nu=-\infty}^{\infty}|\nu|^{p-1} c_{\nu}^{2} .
$$

On the other hand,

$$
\begin{gathered}
\int_{0}^{2 \pi}|g(t+h)-g(t)|^{2} d t=4 \sum_{-\infty}^{\infty} c_{\nu}^{2} \sin ^{2} \nu h, \\
\int_{0}^{2 \pi} \int_{0}^{2 \pi} \frac{|g(t+h)-g(t)|^{2}}{h^{p}} d t d h=4 \sum_{-\infty}^{\infty} c_{\nu}^{2} \int_{0}^{2 \pi} \frac{\sin ^{2} \nu h}{h^{p}} d h \\
\geqq \text { const. } \sum_{-\infty}^{\infty}|\nu|^{p-1} c_{\nu}^{2} .
\end{gathered}
$$

Hence

$$
\Sigma n^{\alpha}\left|s_{n}^{\prime \prime}(x)-f(x)\right|^{2} \leqq \text { const. } \int_{0}^{2 \pi} \int_{0}^{2 \pi} \frac{|g(t+h)-g(t)|^{2}}{h^{p}} d t d h
$$

Thus we get the first part of the theorem. The second part may be proved similarly, using (4) instead of (5).
2. Theorem 2. If the function $g(t)$ is k-times differentiable and $g^{(k)}(\boldsymbol{t})$ belongs to L^{2}, and if further

$$
\begin{equation*}
\int_{0}^{2 \pi} \int_{0}^{2 \pi} \frac{\left|g^{(k)}(t+h)-g^{(k)}(t)\right|^{2}}{h^{p}} d t d h<\infty \tag{7}
\end{equation*}
$$

for $a p>\alpha-2 k+1 \geqq 1$, then the series (1) converges for $\alpha(2 k \leqq \alpha \leqq 2 k$ +1). If (7) holds for $p=\alpha+1,2 k+1<\alpha<2 k+2$, then (1) converges for such α.

For the proof we use the notation of the proof of Theorem 1, then we have (6). Further we have

$$
\begin{aligned}
& \int_{0}^{2 \pi}\left|g^{(k)}(t+h)-g^{(k)}(t)\right|^{2} d t=4 \sum_{-\infty}^{\infty} \nu^{2 \pi} c_{\nu}^{2} \sin ^{2} \nu h \\
& \begin{array}{c}
\int_{0}^{2 \pi} \int_{0}^{2 \pi} \frac{\left|g^{(k)}(t+h)-g^{(k)}(t)\right|^{2}}{h^{p}} d t d h \\
\quad=4 \sum_{-\infty}^{\infty} \nu^{23 k} c_{\nu}^{2} \int_{0}^{2 \pi} \frac{\sin ^{2} \nu h}{h^{\nu}} d h \\
\geqq \text { const. } \sum_{-\infty}^{\infty}|\nu|^{3 i+p-1} c_{i}^{2}
\end{array}
\end{aligned}
$$

Hence, for α and p in the theorem.

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{\alpha}\left|s_{n}^{*}(x)-f(x)\right|^{2} \leqq \mathrm{const} . \int_{0}^{2 \pi} \int_{\pi}^{2 \pi} \frac{\left|g^{(k)}(t+h)-g^{(k)}(t)\right|^{2}}{h^{p}} d t d h \tag{8}
\end{equation*}
$$

Thus the theorem is proved.
3. Theorem 3. If $f(x)$ is differentiable infinitely man; times and

$$
A_{k}=\max _{0 \leqq x \leqq 2 \pi}\left|f^{(k)}(x)\right| \quad(k=0,1,2, \ldots)
$$

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{A_{k+2}^{2}}{k^{2}}\left\{\frac{1}{\psi(2 k)}+\frac{1}{\psi(2 k+1)}\right\}<\infty \tag{9}
\end{equation*}
$$

then the series

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|s_{n}^{* *}(x)-f(x)\right|^{2} \varphi(n) \tag{10}
\end{equation*}
$$

converges uniformly, where

$$
s_{n}(x)=\int_{-\pi}^{\pi} f(x+t) \frac{\sin n t}{t} d t \int_{-n \pi}^{n \pi} \frac{\sin t}{t} d t
$$

and

$$
\varphi(n)=\sum_{k=1}^{\infty} n^{*} / \psi(k)
$$

Especially there is a trigonometrical polynomial $t_{n}(x)$ of order n such that

$$
\begin{equation*}
t_{n}(x)-f(x)=O(1 / \sqrt{\varphi(n)}) \tag{11}
\end{equation*}
$$

uniformly.
For, since we can verify that (8) holds for

$$
\delta_{九}(x)=\frac{1}{\pi} \int_{0}^{\pi} \varphi_{x}(t) \frac{\sin n t}{t} d t, g_{1}(t)=\frac{\varphi_{x}(t)}{t}
$$

instead of $s_{n}^{*}(x)-f(x)$ and $g(t)$, we have

$$
\begin{gather*}
\sum_{n=1}^{\infty} \delta_{n}^{2}(x) \varphi(n)=\sum_{n=1}^{\infty} \delta_{n}^{2}(x) \sum_{k=1}^{\infty} \frac{n_{k}}{\psi(k)} \tag{12}\\
=\sum_{k=1}^{\infty} \frac{1}{\psi(k)} \sum_{n=1}^{\infty} \delta_{n}^{2}(x) n^{k} \\
\leqq \text { const. } \sum_{k=1}^{\infty}\left\{\frac{1}{\psi(2 k)}+\frac{1}{\psi(2 k+1)}\right\} \int_{0}^{2 \pi} \int_{0}^{2 \pi} \frac{\left|g_{1}^{(k)}(x+h)-g_{1}^{(k)}(x)\right|^{2}}{h^{p}} d t d h .
\end{gather*}
$$

If we put

$$
\max _{0 \leqq x \leqq 2 \pi}\left|g_{1}{ }^{(k)}(x)\right|=B_{k} \quad(k=0,1, \ldots)
$$

then

$$
\sum_{n=1}^{\infty} \delta_{k}^{2}(x) \psi(n) \leqq \text { const. } \sum_{k=1}^{\infty} B_{k+1}^{2}\left\{\frac{1}{\psi(2 k)}+\frac{1}{\psi(2 k+1)}\right\}
$$

Now,

$$
\begin{aligned}
g_{1}^{(k)}(t)= & \sum_{\nu=0}^{k} \frac{k(k-1) \ldots(k-\nu-1)}{\nu!} \varphi_{x}^{(k-\nu)}(t) \frac{d^{\nu}}{d t^{\nu}}\left(\frac{1}{t}\right) \\
= & \sum_{\nu=0}^{k}(-1)^{\nu} k(k-1) \ldots(k-\nu-1) t^{-\nu-1} \varphi_{x}^{(k-\nu)}(t) \\
= & (-1)^{k+1} \frac{k!}{t^{k+1}}\left\{f(x)-\sum_{\mu=0}^{k}(-1)^{u} f^{(\mu)}(x+t) \frac{t_{\mu}}{\mu!}\right. \\
& \left.\quad+f(x)-\sum_{\mu=0}^{k} f^{(\mu)}(x-t) \frac{t^{\mu}}{\mu!}\right\} \\
& =\frac{1}{k+1}\left\{f^{(k+1)}(x+\theta t)+f^{(k+1)}\left(x-\theta^{\prime} t\right)\right\},
\end{aligned}
$$

where $0<\theta<1,0<\theta^{\prime}<1$. Hence

$$
B_{k} \leqq 2 A_{k+1} /(k+1)
$$

Thus we have

$$
\sum_{n=1}^{\infty} \delta_{n}^{2}(x) \varphi(n) \leqq \text { const. } \sum_{k=1}^{\infty} \frac{A_{k+2}^{2}}{k^{2}}\left\{\frac{1}{\psi(2 k)}+\frac{1}{\psi(2 k+1)}\right\},
$$

which is finite by the assumption.
For the proof of (11), it is sufficient to put

$$
\left.t_{n}(x)=\int_{-\pi}^{\pi} f(x+t) \frac{\sin n t}{t} d t \right\rvert\, \int_{-n \pi}^{n \pi} \frac{\sin t}{t} d t
$$

For example, let us consider the function

$$
(x)=\sum_{n=1}^{\infty} \frac{\cos n x}{e^{n}}
$$

and let $s_{n}(x)$ be the nth partial sum of the series.
Then

$$
\begin{equation*}
f(x)-s_{n}(x)=O\left(1 / e^{n}\right) \tag{13}
\end{equation*}
$$

which is the best approximation. A little weak estimation is derived from our theorem. For $A_{k}=\max \left|t^{(k)}(x)\right|=O\left(\sum_{n=1}^{\infty} \frac{n^{k}}{e^{n}}\right)=O(k!)$, and the series

$$
\sum \frac{A_{k+2}^{2}}{k^{2} \psi(2 k)}=\sum \frac{((k+2)!)^{2}}{k^{2} \psi(2 k)}
$$

converges when $\psi(2 k)=\{(k+2)!\}^{2} k^{-\alpha}(0<\alpha<1)$ and then it is sufficient to
take

$$
\psi(k)=k^{4+\epsilon} k^{k} e^{-k} / 2^{k}
$$

Hence $\boldsymbol{\psi}(n)=\Sigma 2^{k} n^{k} / k^{k} e^{-k} k^{4+\varepsilon} \sim e^{2 n} / n^{2+\varepsilon}$.
Thus (11) becomes, for any $\varepsilon>0$,

$$
t_{n}(x)-f(x)=o\left(n^{2+e} / e^{n}\right)
$$

which is weaker than (13) a little.
Secondly, let us take $\psi(k)=k!$, then $\varphi(n)=e^{n}$. In this case, Theorem 3 becomes :

If $A_{k} \leqq$ const. $2^{2} k!/ k^{2}(k=1,2, \ldots$.$) , then there is a trigonometrical poly-$ nomial $t_{n}(x)$ of order n such that

$$
\sum_{n=1}^{\infty} e^{n}\left|f(x)-t_{n}(x)\right|^{2}<\infty
$$

Further, if

$$
A_{k} \leqq \text { const. }(2 k)!,
$$

then there is a trigonometrical polynomial $t_{n}(x)$ of order n such that

$$
\sum_{n=1}^{\infty} \frac{e^{n}}{n^{\epsilon}}\left|f(x)-t_{n}(x)\right|^{2}<\infty
$$

for any $\varepsilon>0$, and then

$$
f(x)-t_{n}(x)=o\left(n^{\epsilon} / e^{\sqrt{n}}\right) .
$$

Mathematical Institute, Tokyo Toritsu University, Tokyo.

