HANKEL DETERMINANTS AND BERNOULLI NUMBERS

L.CARLITZ

(Received December 1, 1953)

1. Introduction. A *Hankel determinant* is one of the type (1.1) $\Delta = |a_{i+j}|$ $(i, j = 0, 1, \ldots, r),$ where $\{a_i\}$ is an arbitrary sequence. It follows at once that (1.2) $\Delta = |\Delta^{i+j} a_0|$ $(i, j = 0, 1, \ldots, r),$ where

$$
\Delta a_m = a_{m+1} - a_m, \ \Delta^r a_m = \Delta^{r-1} a_{m+1} - \Delta^{r-1} a_m.
$$

(See for example $[4, \S 51]$). Now suppose the a_i are rational integers such that

$$
\Delta^r a_0 \equiv 0 \pmod{M^r} \qquad (r \geq 1),
$$

where M is some fixed integer. It follows at once from $(1, 2)$ and $(1, 3)$ that (1.4) $\Delta \equiv 0 \pmod{M^{r(r+1)}}$.

Indeed $(1, 4)$ holds when the a_i are rational numbers that are integral (mod *M)* and satisfy (1.3).

We shall now construct some examples of Hankel determinants of Bernoulli and Euler numbers that satisfy congruences of the form **(1.4).**

2. Euler.numbers. The *Eider numbers E^m* may be defined by means of

$$
\frac{2}{e^x+e^{-x}}=\sum_{m=0}^\infty E_m\frac{x^m}{m!}.
$$

It is well known that they satisfy Rummer's congruences:

$$
(2.1) \qquad \sum_{s=0}^r (-1)^{r-s} {r \choose s} E_{m+s} = 0 \pmod{p^m} \qquad (m \geq r e),
$$

where p is a prime ≥ 3 , $e \geq 1$ and $p^{e-1}(p-1)|b$. For proof see for example [5, Chapter 14]. Hence if we put

$$
a_i=E_{m+ib} \qquad (i=0,1,2,\ldots),
$$

it is clear that (1.3) is satisfied with $M = p^e$; we may therefore assert that (2.2) $|E_{m+(i+j)b}| \equiv 0 \pmod{p^{er(r+1)}}$ $(i,j=0,1,\ldots,r)$

provided $m \geq re$.

Somewhat more generally, the numbers $E_{m}^{(k)}$ of order *k* defined by [6, p. 143]

$$
\left(\frac{2}{e^{x/2}+e^{-x/2}}\right)^k = \sum_{m=0}^{\infty} E_m^{(k)} \frac{x^m}{m!},
$$

where k is an integer ≥ 1 , also satisfy the congruence (2.1) so that

(2.3)
$$
\left|E_{m+(i+j)}^{(k)}\right| \equiv 0 \pmod{p^{cr(r+1)}} \qquad (i,j=0,\ldots,r),
$$

provided $m \geq er$. For $k = 1$, (2.3) reduces to (2.2). A like result holds for the numbers $C_m^{(k)}$ defined by [6, p. 143]

$$
\left(\frac{2}{e^x+1}\right)^k = \sum_{m=0}^{\infty} \frac{C_m^{(k)}}{2^m} \frac{x^m}{m!}.
$$

Additional examples of the same kind are easily constructed.

3. Bernoulli numbers. The *Bernoulli numbers B^m* may be defined by means of

$$
\frac{x}{e^x-1}=\sum_{m=0}^\infty B_m\frac{x^m}{m!}.
$$

They satisfy [6, Chapter 14]

(3.1)
$$
\sum_{s=0}^{r} (-1)^{r-s} {r \choose s} \frac{B_{m+sb}}{m+s b} \equiv 0 \pmod{p^{er}} \qquad (m > re),
$$

where as above $p^{e-1}(p-1)|b$; in addition we must assume $p-1 \nmid m$. Hence if we put

$$
a_i = B_{m+lb}/(m+ib) \qquad (i = 0, 1, 2, \ldots),
$$

(1.4) implies

(3.2)
$$
\left|\frac{B_{m+(i+j)b}}{m+(i+j)b}\right| \equiv 0 \pmod{p^{er(r+1)}} \quad (i,j=0,1,\ldots,r),
$$

provided $m > re$ and $p - 1 + m$.

A result like (3.2) for the determinant $\left|B_{m+(i+j)b}\right|$ can also be obtained. Indeed Nielsen has proved [5, Chapter 14] the congruence

(3.3)
$$
\sum_{s=0}^{r} (-1)^{r-s} {r \choose s} B_{m+sb} \equiv 0 \pmod{p^{s(r-1)}} \qquad (r \ge 1),
$$

provided $p - 1 \nmid m$ and $m > er$. Hence modifying (1.4) slightly we get (3.4) $\vert B_{m+(i+j)\delta} \vert \equiv 0 \pmod{p^{er(r-1)}}$ $(i, j = 0, 1, \cdots r),$ provided $p - 1$ f m and $m > er$.

The condition $p - 1 \nmid m$ may be waived in certain cases. Vandiver [7] has proved the congruence

(3.5)
$$
\sum_{s=0}^{r} (-1)^{r-s} {r \choose s} B_{(m+s)p-1} \equiv 0 \qquad (\text{mod } p^{r-1}),
$$

where $m \geq 1$, $r \geq 1$, $m + r < p - 1$. This result evidently implies

$$
(3.6) \t |B_{(m+i+j)p-1}| \equiv 0 \pmod{p^{r(r-1)}} \t (i,j=0,1,\ldots r),
$$

provided $m \ge 1$, $m + r < p - 1$. The writer [1] has extended (3.5) in several directions. We quote two such extensions. In the first place

(3.7)
$$
\sum_{s=0}^{\infty} (-1)^{r-s} {r \choose s} \sigma_{(m+s)(p-1)} \equiv 0 \pmod{p^r},
$$

where $m \geq 1$, $r \geq 1$, $m + r \geq p - 1$, and

$$
\sigma_{m(p-1)} = (B_{m(p-1)} + \frac{1}{p} - 1)/m;
$$

we remark that $\sigma_{m(p-1)}$ is integral (mod p). It evidently follows from (3.7) that

(3.8) $|\sigma_{(m+t+j)(p-1)}| \equiv 0 \pmod{p^{r(r+1)}}$ (i, j = 0, 1,*r*),

provided $m \geq 1$, $m + r \geq p - 1$. Secondly we have

(3.9)
$$
\sum_{s=0}^{r} (-1)^{r-s} {r \choose s} B_{n+sb} \equiv 0 \pmod{p^{re-h}},
$$

where $(p - 1)p^{n-1} \mid b, p - 1 \mid m, m > re$, and $h = e$ for $r < p$ (except perhaps when $r = p - 1$, $e = 1$ and $h = 2$), while for $r \ge p$, h is the least integer \ge $(re + 1)/p$. In particular therefore (3.9) implies

(3.10)
$$
|B_{n+(i+j)b}| \equiv 0 \pmod{p^{cr(r-1)}} \qquad (i,j=0,1,\ldots,r),
$$

provided $m > re$, $r < p - 1$. For $e = 1$, (3.10) evidently includes (3.6). Turning next to the Bernoulli numbers $B_{n}^{(k)}$ of order *k* defined by [6, *p*.

143]

$$
\left(\frac{x}{e^x-1}\right)^k = \sum_{m=0}^\infty B_m^{(k)} \frac{x^m}{m!},
$$

we quote the results [2, Theorems 5,6]

(3.11)
$$
\sum_{s=0}^{r} (-1)^{r-s} {r \choose s} T_{m+sb}^{(k)} \equiv 0 \pmod{p^{re}}
$$

where

$$
T_m^{(k)} = B_m^{(k)}/(m)_k, \qquad (m)_k = m(m-1)\dots(m-k+1);
$$

(3.12)
$$
\sum_{s=0}^{r} (-1)^{r-s} {r \choose s} B_{m+ss}^{(k)} \equiv 0 \pmod{p^{(r-1)s}}.
$$

In both (3.11) and (3.12) it is assumed that

 (3.13) $k < p-1$; $m \not\equiv 0, 1, \ldots, k-1 \pmod{p-1}$; $m \geq re + k$. (Note that the condition $m \ge r b + k$ in Theorems 4, 5, 6 of [2] may be replaced by $m \ge r e + b$.) In (3.12) it is also assumed that $r \ge k$.

An immediate consequence of (3.11) and (1.4) is

(3.14) $|T^{(k)}_{m+(i+j)b}| \equiv 0 \pmod{p_{e}^{r(r+1)}}$ $(i, j = 0, \ldots, 1, r),$ provided (3.13) holds. Making use of (3.12) we get (3.15) $|B_{m+(i+j)b}^{(k)}| \equiv 0 \pmod{p^{e(r-k)(r-k+1)}} \quad (i,j=0,1,\ldots,r),$

provided (3.13) holds and $r \geq k$. For $r < k$ we can only assert that the left member of (3.15) is integral (mod *p).*

4. Coefficients of the Jaeobi elliptic functions. Not only the Euler and Bernoulli numbers satisfy Rummer's congruences but certain other sequences as we'll. In particular if

$$
\mathrm{sn} \ \ x = \ \mathrm{sn}(x,u) = \ \sum_{m=1}^{\infty} A_m(u)x^m/m!
$$

denotes the Jacobi elliptic function, then it is familiar that the $A_m(u)$ are polynomials in *u* with integral coefficients. The writer has proved [3] that the $A_m(u)$ satisfy the congruence

(4.1)
$$
\sum_{s=0}^{r} (-1)^{r-s} {r \choose s} A_{p}^{r-s}(u) A_{m+s(p-1)}(u) \equiv 0 \quad (\text{mod } p^{r}) \quad (m \geq r),
$$

and indeed

(4.2)
$$
\sum_{s=0} (-1)^{r-s} {r \choose s} A^{(r-s)b/(p-1)p}(u) A_{m+s}(u) \equiv 0 \pmod{p^{cr}} \ (m \geq er),
$$

where $p > 2$, $p^{e-1}(p-1)/b$ and u is an indeterminant. Both (4.1) and (4.2) are to be understood as meaning that after expansion each coefficient in the left member $\equiv 0$. Hence modifying (1.4) slightly it is clear that (4.2) implies (4.3) $|A_{m+(i+j)b}(u)| \equiv 0 \pmod{p^{er(r+1)}}$ $(i,j=0,1,\ldots,r),$ provided $m \geq er$. In particular if we put *u* equal to a rational number *c* which is integral (mod p) and let $a_m = A_m(c)$, (4.3) becomes

$$
|a_{m+(i+j)b}| \equiv 0 \pmod{p^{er(r+1)}} \quad (m \geq er).
$$

In the next place if we define $\beta_m(u)$ by means of

$$
\frac{x}{\operatorname{sn} x} = \sum_{m=0}^{\infty} \beta_m(u) \frac{x^m}{m!},
$$

then $\beta_m(u)$ is a polynomial in u with rational coefficients. Then we have

(4.4)
$$
\sum_{s=0}^{\prime} (-1)^{r-s} {r \choose s} A^{(r-s)b/(p-1)p}(u) \tau_{m+s0}(u) \equiv 0 \pmod{p^{sr}},
$$

where

(4.5)
$$
(p-1)p^{e-1}|b, p-1|m, m>er,
$$

and

$$
\tau_m(u)=\beta_m(u)/m.
$$

We have also

$$
(4.6) \qquad \sum_{s=0}^r \left(-1 \right)^{r-s} {r \choose s} A^{(r-s)b/(p-1)}(u) \beta_{m+s}(u) \equiv 0 \pmod{p^{e(r-1)}}
$$

provided (4.5) holds. It evidently follows from (4.4) that

(4.7)
$$
|\tau_{m+(i+j)b}(u)| \equiv 0 \pmod{p^{er(r+1)}}
$$

while (4.6) implies

$$
(4.8) \qquad |\beta_{m+(i+j)b}(u)| \equiv 0 \pmod{p^{er(r-1)}},
$$

where in both (4.7) and (4.8) it is assumed that (4.5) holds.

REFERENCES

- [1] L. CARLITZ, Some congruences for the Bernoulli numbers, American Journal of Mathematics, 75(1953), 163-172.
- [21 L. CARLITZ, A note on Bernoulli numbers and polynomials of higher order, Pro ceedings of the American Mathematical Society, 3(1952), 608-613.
- [3] L. CARLITZ, Congruences connected with the power series expansions of the Jacobi elliptic functions, Duke Mathematical Journal, 20(1953), 1-12.
- [4] G. KOWALEWSKI, Determinantentheorie, Leipzig, 1909.
- [5] N. NIELSEN, Traité élémentaire des nombres de Bernoulli, Paris, 1923.
- [6] N. E. NÖRLUND, Vorlesungen über Differenzenrechnung, Berlin, 1924.
- [7] H. S. VANDIVER, Certain congruences involving the Bernoulli numbers, Duke Mathematical Journal, 5(1939). 548-551.

DUKE UNIVERSITY.