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It is well known that if («fc) is a sequence of integers with the Hadamard
gap:

nk+,/nk > 0 > 1 (*= 1,2, . . . . ) ,
then the sequence (cos?^*), which is a subsequence of (cosnx), is "almost
independent". Then arises the problem: does any sequence of functions
contain an ''almost independent" subsequence? To treat this problem, the
definition of the "almost independence" is the key point. We give two
definitions of such concept.

1. Let (fn(t)) be a sequence of integrable functions defind in the interval
(0,1). If the sequence (/,»(/)) is independent, then for any m and n, and for
any interval (a, b) in (0,1),

J U(t)fn{t)dt = J fm(t)dtj fn(t)dt (m Φ n)
b b b

Let (fn(t)) be a sequence of positive integrable functions defined in (0,1).
We define that (fn(t)) is quasi-independent in (0,1), if for any λ (0 < λ < 1)
and for any interval (a, b) in (0,1), there exists an integer N such that

J An(t)fn(f)dt>\J fjt)dtj fn(t)dt
b & b

for any m,n^ N, m Φ n.

Positive independent sequence is evidently quasi-independent. In the case
of uniformly bounded independent sequence, its sum with an adequate con-
stant is also quasi-independent. For example, (1 + vn{t)),vn{t) being Rade-
macher function, is so.

For example, the sequence (1 4- cos2πnht) is quasi-independent when
(nk) has the Hadamard gap.

Hence our problem becomes: under what condition a sequence (fn(Φ
contains a quasi-independent subsequence ? The solution is given in Theorem 2
in the following.

2. We prove the following
THEOREM 1. If (fn(t)) is a sequence of positive and uniformly bounded

measurable functions such that

r"
(1) lira sup I fn{t) dt>0

b

for any interval (a,b) in (0,1), then there is a subsequence (fnk(t)) such thaty
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for any λ (0 < λ < 1) and for any interval {a, b) in (0,1), there exists an integer
N such that

(2) j min( fn/t), fnk(t))dt > λ J fuβ)dt j fnk(t)dt
a

for any j , h > N.
PROOF. ° Let M > fn(t) > 0 for all n and t, and let μ be the left member

of (1) where we can replace lim sup by lim, since otherwise it is sufficient
to consider a suitable subsequence. We denote by fC\9 the minimum of f(t)
and g(t), and we put

g\=fv,g>z = fp+ι — fv+) Πfv, Qz =fv+z — fv+>2 Π (/„ ΠΛ+i),

g* =Λ+3 —Λ+3 Π fv U Λ+i U fv+z)

w h e r e v is taken such that

J fΨdt= J gydt > μ/2.
a a

If we suppose that

j ifi Π h)dt <p {v^i,k^v+n- 1),

then we have

J 9idt > /x2? J flTarfί > μ/2 -p, J g»dt >μ/2-2p,...
a OJ a

n

Since 2#(i)SM, we get

^Mφ ~ β) > Γ f 2 ^ ) dt^j?tϊgidt>nμl2- ~-n(n -

If we take /V2£ < ^ S /χ/2/> + 1, then

> ^ μ i e ϋ > - ^ >

Hence there is a pair of v<:i,k<in-{-p —I such that

(3) J (fιf\A)dt^μηiOM,
a

and then there are infintely many pair of such i,j\
Now, considering the sequence of functions defined in the τr-dimensional

1) Method of proof depends on the idea of J. Visser, On Poincare's recurrence
theorem, Bull. Amer. Math. Soo, 42(1936).
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unit cube:

in place of Λ»(£), we can show that

instead of (3), for infinitely many pair of /, k. Thus, taking π sufficiently
large, we see that

(4) J (Λ
for infinitely many pair of i, k and for λ', 1 > \r > λ.

We can further find a subsequence (ficp(t)) such that

(5) f (/* fl hP) dt ̂  λV for all p.
a

For, if otherwise, there is an integer pn, for any n, such that

j <fn n/-)# < λ V for all w > n + />n.

Let us put

?ii = 1, n2 =

then

/»< n/wfc) < λ V for all /,&.

Thus contradicts (4), applied to (fnk(t)). Thus we have proved (5).
Hence we can see that the sequence (/WΛ(/)) such that

(6) limj fHk(t)dt~μ
a

contains a subsequence (Λp(0) such that

(7) J (Λ, flΛ Λ S λ V for all *,/.
α

By (β), (7) may be written as

f * ΐ f*
I (A* Π /fcj) dt>\\ fki dt I fkJ dt

J J J
a a a

for sufficiently large i and j.
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By the diagonal method we get the theorem.

3. THEOREM 2. If (fn{t)) is a sequence of functions positive and uniformly
bounded measurable such that there is a sequence (nk) of integers, satisfying

lim inf fnk(f)>μ>0,

then the sequence contains a quasi-independent subsequence.
PROOF. Since we can suppose μ = 1, we have

fφ)f«β) ^ f4f) Π/«//).
Hence Theorem 2 follows from Theorem 1.

4. We shall give the second (stronger) definition of quasi-independence.
Let (/»(*)) be a sequence of measurable functions defined in (0,1). We

define that (/„(*)) is quasi-independent, if for any λ(0< λ < 1) and for any
intervals {a, b) and (c} d) there exists an integer N such that

meas (t; a < fjt) <b,c< fn(t) < d)

>λ meas (t; a < fjjt) < b) meas (t; c< fn(t) < d)

for any m, n>N.

This definition is closely related to that of A .Renyi2>. His definition
reads as follows: if for any intervals (a,b) and (c,d)y

meas (t;a<fm<b,c<fn<d)
meas (t;a< fm < b) meas (t c <fn< d)

where 2δ w < °°
For example, (COS^Λ;) is quasi-independent (in the second sense) when

%+iM -> °°.
Then we have

THEOREM 3. Let (fn(t)) be a sequence of measurable functions such that

lim sup meas (t a < fn(t) < b) > 0

for any interval (α, b). Then (fn(t)) contains a quasi-independent sequence {in
thte second sence).

PROOF. Let ψn&uijt) be a characteristic function of the set (t;a< fn(t)
< b) and let F2n^(t) = ? W ( * ) , Fin{t) = <Pn,cΛt) (n = 1,2, . . . . ) . '

Applying Theorem 1 to the sequence (Fu(t)), we get the theorem.
We can easily see that, under the hypothesis of Theorem 3, (fn(t)) con-

tains a quasi-independent sequence in the A.Renyi sense.
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