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Introduction. Concerning the representation of functions by the gener-
alized Fourier integrals, H.Hahn [4] proved the following theorem (cf.Titch-
marsh [7, p. 14]):

Let f(x)/(l -f \x\) belong to L{ — oo, oo) and write

- (f + f)
1

f y
- 1 - o o 1

Let f{t) satisfy a condition of convergence of Fourier series in the neighbour-
hood of t = x. Then

f(x) = — / {cos vxdΦi(v) + sin vxdΨι{v)},
7t J

where the integral is defined appropriately.

Another Hahn's generalization [3] is of the following form :

Let f(x)/(l -f I ΛΓj -) belong to L( — oo, oo) and write

= f/(y) ^=ψ^dy - (/' + fy(y) ^SL dy,
- 1 -oo ϊ

for v>0, and

φ&) = ΨM = o,

for v < 0. Then

fix) - ί(C,I) fΊcosvXψ + s i π , ^
Γ J I ί/̂  dυ

-o

almost all x, where

(C,, 1) / ( ) ^αws lim lim f f 1 - — ) ( ).
J λ̂ oo e->0j V λ, /
- ϋ - 6
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Professor S.Izumi [6] further generalized these theorems for the case
/(*)/(l + 1*1") € L( - oo, oo), where 1 < a < 2, or a = 2,3,4, Although
Professor Izumi used the mean convergence for a. = 3,4,.. . . , this is seemingly
unnatural. The object of this paper is to generalize these theorems for the
arbitrary a. Since the equivalence of Bessel summation and Cesaro sum-
mation is well known (cf. Hardy-Littlewood [5]), we shall use Bessel sum-
mation. This is suitable for the behaviour of f{%) at the infinity. In § 1, we
summalize some results of Bessel summation. The generalized Stieltjes inte-
gral of Hahn-Izumi type is defined in §2. The main theorem is proved in
§3. In §4 we extend BurkilΓs theorem. Our theorems are refinement and
generalization of Izumi's. In the last paragraph we shall treat the case
where

l/Wlp/(l + 1*1*) belongs to Z(—oo, oo) for p > 1 and a > 1.

1. Bessel summation. K. Chandrasekharan and O.Szasz [2] derived
many valuable results concerning Bessel summability. For the use of the
following articles, we present some results of this summability.

Let Jμfjt) denote the Bessel function of order μ:

and let

aμ(t) =

then we have
αμ(0) = 1

and

*μ(t) = O(jt-*-i), as t-> +00.

Since

t > 1,
0

we have

where

Putting

0

a,

we

Ax) cos

get

xtdx - {

•i

( i -

)/(v

0 , * > :
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From the inversion formula we get

— / ( I - fψ-i cos xtdt = C{μ)aμ.{x).
7t J

0

Under these preparations we can prove

LEMMA 1. If f(x)/(l+ \x\") belongs to £( —oo, oo) for a>l, then ive

have

/(*)= -1 limj f(y)dy ί ί l - Z' — JV^cosvίy - x)dv, a.e.

- β β 0

PROOF. From the above formula,

^ J /OOrfv J f 1 - (~-)1 '""^cos v(y - x)dυ
0

= f f(y)Kμ{\(y-x)}dy,

say. Since a,&t) is bounded in the neighbourhood of t = 0,

#μ{λ(:v - *)} = O(λ), for b - ί l g i

and

Kμ{\{y - ΛΓ)> = *

Further,

/

oo Λ

ΛζiίλCy - * ) } ^ = lim f

and

limim I
— oo

If /(#)/(! + |Λ;|'X+^) € Z( ~ OO, OO), and μ + -— > 1, then we have
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lim ί f{y)K,.{\(y - x)}dy = /(*), a.e.,
λ->oo J

by the general convergence theorem (cf. Titchmarsh [7, p. 28]). Let μ + -^

= a, we get the desired results.

2. Generalized Stieltjes integral. H. Hahn [3] defined the following
Stieltjes integral. Let f(x) and g(x) be defined in {a, b), and suppose that g(x)
is absolutely continuous and f(x) is bounded and continuous in (<z. b). Then
g\x)f{x) is integrable in (a, b), and we define the integral of g(x) with
respect to f{x) by the equation:

f g{x)d/(x) = g(b)f(b) - g{d)f{a) - J gf(x)f{x)dx.

It is easily seen that this integral coincides with the ordinary Lebesgue-
Stieltjes integral when/(#) is of bounded variation. Prof. Izumi [6] generalized
this definition. Further we generalize it in the following manner. Let a
be any positive real number, then there is an interger k such that

k - 1< a <Ξ k,

and let

Put the integral

if
5

I /(*), if h = 0

and denote

Δfc lhf{x) = 2 ^ " f c - 1 ) A ^ + ̂ £)>

where

Suppose that g(x) is everywhere differentiable (^ — 1) times and g^'
is absolutely continuous in (a, b), and that f(x) is continuous and bounded
in (a,b). If the limits

lim φr\a + (k-r
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lim g^{o - (ft - r - 1)8} A*-'-1 P

exist and are finite, we define

J g{X)Ί^S = ήb)P-
a

- J ϋ\x)V--«f{x)dx,
a

if 0 < a < 1, and for any positive α, we define by induction
h

J ax *• e->o e

- lim Ko + (* - Df }Δ*-17V(α)/θ*-i - f A*)*?*? •

Then we have

LEMMA 2. If f{x) is differentiable {a — 1) times at x— a and x = b, then

/
ot a

Proof. Immediate.

LEMMA 3. Iff(x) is everywhere differ entiable {a — I) times, and fΛ~ι>>(x)
is absolutely continuous in (a, b), then

PROOF. This is proved by the repeated use of integration by parts.

LEMMA 4. Let{fn(x)} be a uniformly bounded sequence of continuous
functions, such that

lim fn(x) = f(x)

uniformly in (a, b) and further

lim lim g^{a + (k - r - l)θ}Δfc-r"1 Ifιfn(a)/alΰ-r'1

= lim g<n{a + (k - r - 1)8} Ak-r-

lim lim g«Kb -(k-r
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= lim g<r>{b-(k-r-

(r = 0,l>2, k-2),

then we have KmJ «x)*%β = / o(x) f ^ f
a a

PROOF. This is proved by the definition of the integral and Lebesgue's
convergence theorem. (See Izumi [6]).

3. Main theorem and its proof.

THEOREM 1. If f(x)/(l f \x\*) is absolutely integrable in ( — oo, + oo) for
a > 1, then

for almost all x, where (B, a — 1) / ( ) means

l i m Γ ί l f V
— δ

ί/ & /s βw integer such that

k — l<a

and if k is even, that is k = 2m,

ψy + (J +

- o o 1

Ψ ^ ) - f wCηί&

Φ«(») = Ψβ(t;) = 0, (z; < 0)

is Oί/J, /Λα/ is k = 2w + 1,

- o o 1
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and

Φa(v) = ΨΛ(v) = 0 (υ<0),

Ca(u) being Youngs function.

PROOF. We shall prove for k = 2m. The case k = 2m + 1 is treated
similarly. The following properties of Young's function are well known.
They are

and

From Lemma 1,

/(#) = l im— I f(y)dy J {1 — ( — ) } cos v(y — x)dv ~ lim 7λ(#),
o

say. Then

7A(^) = l i m — / fίy)dy I < 1 — ( — ) ) cos ẑ (jy — x)dυ
-n 0

= lim— I {1 — (— ) \ cosυxdυ\ f(y)cosvydy
0 -n

+ / | l — ( — ) 1 s i n vxdv\ f(y)sinvydy\
o - w

If we put
-1 n

- 1

= 0
and

f^~dy - (f
n-1

= 0 (v< 0),
then, from Lemma 3 and by the properties of Young's function, we have

"* — f — ) \ cos vx
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— δ

where δ > 0.

On the other hand, since

and

v~a) for

Φa,n(v) a n ^ Ψ«,n(̂ ) are uniformly bounded in any finite interval of v, and
tend uniformly to Φ(v) and Ψ(v) in that interval.

In order to verify the condition of remainder terms, for r = 0 we put

fφ(^, if) = [ 1 - { ~ {k

χ

 l) } J cos {x - (ft -

= Γi - ί λ ~ ( ^ ^ Γ Γ cos{x-(ft-i)g}agf f d y

_ [ Ί I λ -{k -pe γγ->- cos{\ - (k -l)ε}x ^ ( iy/k -1\

1

X Γ L
ϋ

J"° - l o

Similarly

7, - w^/ + /)«?*!< - «f J') -^J α -»)'-* -
,xC2-Λ{(λ — jS)uy}du
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1

X J (1 - «)"-[ {λ - (j + WC2-ft({λ - (/ + 1)S}«>) - (λ -

-n 1

cos [{λ -<J+ l)€}y] - cos{(λ - jS)y}

say#

lim Mn = ) Γ
J

.y> rf

1 ί»o 1/6

say, where nQ is determined for given η > 0 such that

LfljOl < »7, for all M > M0.

Then

["/(yyylBinx'
J y" yh d.

-*) f
y--i

where λ - S < λ' < λ.
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gy [sin λ".y] d

= O(£
[-h)f

y" y

-k dy
y

\f(y))\

\M =

n0

) / \ny)\ A~ dy <i O(£~h£h) I
j y& yh J

l/e

ββ

- lim f O(θi-Λ) + 0(77) + 0(1) f :WΆdy) = 0(77).

Thus we get

lim lim Mn

Since η is any small number, we have
lim lim Mn = 0.

Consequently the required formula
lim lim Γ£%(£, n) = lim lim Vfφ(βί n) == 0

is derived easily. Similarly we obtain
lim lim Γ£%(£, n) = lim lim Γg», {8, n) = 0.

We can treat the case r = 1,2,3, , & — 2 analogously and then we get
the theorem from Lemma 1 and Lemma 3.

4. BurkilΓs generalization of Fourier integral.

LEMMA 5. Suppose that, (1°) F(0) = 0, (2°) F\x) is continuous in any finite
interval, (3°) F(x) = o(|#|*) as \x\ -> oo β ^ (4°) F(x)/(1 + |Λ:|*) € £ ( — c»,
°°λ force > 1, £/&£# we /ία^β

lim — ί 'dF(y) [ K^xζy - u)}du = F(*),

where



GENERALIZED FOURIER INTEGRALS 253

PROOF. We have

— f dF{y) [ Kμ{\(y - u)}du = lim-ί [ dF(y) [ Kμ{\(y - u)}du

- o o 0 - W O

= lim In(x), say.

X X

= W Γ ϋΓμ{λ(^ - «)}rf« - ^ ^ / ΛΓμ{λ(^ ~ u)}du
π J π J

0

Ky

/

x x

K,{\(n - uftdu - ^ ^ / iSΓμ{λ(ιι - u)}du
π J

o o
n

+ — / F(yχjrM<λ(y - x)} - Kμ{\y)]dy
7t J-n

say.
Then

^F{n) θ(\ \-μH(?ι - ur f-τs dtΛ

= o(l), as n~> oo,

and J2 = o(l) is proved similarly. Concerning/3, we get from Lemma 1,

lim lim J3 = Fix) - F(0) = F(«),

for F(0) = 0.

THEOREM 2. Suppose that (1°) F ( 0 ) = 0, (2°) F(#) be continuous in any
finite interval of ( - oo, oo), (3°) F(Λ:) = O(|ΛΓ[Λ) ΛS |ΛΓ| -> oo for a > 1 and (4°)
F(#)/(l + | Λ | * ) #£ absolutely integrable in ( — oo, + oo). £?£ & £# «w integer

such ask — Ka^k, k - ac = h. If k — 2 = 2m (m = 0; 1,2 . . . ) , w

/
— 1
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and if k - 2 = 2m + 1 (m = 0,1,2, . . . ),

- c o 1

o

PROOF. From Lemma 5,

- u)}du

— / ιdF(y) I du\ 1 - ( — ) \ cos v{y - «)
π J J J [ \ λ / J

n 0 0

0

The proof is almost identical with that of Theorem 1, But the lower
limit of integral is not —0, but i t . i s exactly 0. This is an essentially
different point. To clarify this circumstance, we prove the case k = 2 for
the sake of simplicity.

Let us put

- (/" +
- l -n

Then integrating by parts, we get
Λ

I - Γ Λ V \SWJW dΦznig)
J V λ / v dv
o

λ
• / Λ v \l — COSZ Λ: d2φ2,n(υ)
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We shall show that
lim lim Tφ(£, n) = lim lim Vφ(8, n),

lim lim Γψ(£, n) = lim lim
n>co e>0 €>0 n»oβ

where

Γ,(£, ») = ( l - - f

Now

1 - c o s f i J >

= 7ι-Λ, say

lim/,- i

l i m Λ = Λ_ j _
e->0 \ λ

= 0.
On the other hand,

= 0 ,

For a given ?; > 0, we take a large iV for a fixed £ such that

and

lim Γ
e->0 J

1 y2 — sin Sy — 2y(l — cos 8y)
^ F(y) dy = 0.

Therefore
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lim lim \JZ\ < η,

that is,

lim lim J2 = 0.

Thus we get

lim lim Γφ(n, £) = lim lim Vφ(n, £).

The remaining part is analogous. Burkill [1] proved the case a = 1, and
the summability is replaced by ordinary convergence. S. Izumi [6] proved
the case a = 2, but he has put — 0 at the lower limit of integral.

§ 5. The Lp (p > 1) ease.

LEMMA 6. Let

ϊ ϊψ(^dx< oo for p>l and a
— oo

// (1°) J K(x) dx = 1,
— CO

(2°) \K(x)\

and

(3°) |ΛI+^ if(*)| g M as | * | -»oo, for β > ,

then

lim λ f f(yyK<My - x)}dy = fix), a. e.
— CO

PROOF. We may assume without loss of generality that x = 0 is the
Lebesgue point of f(x) and /(0) = 0. Therefore it is sufficient to prove

limλ ίlim
0

Let us put

/= λj f(x)K(λx)dx = J + J + J = /ι + h + /3,
0 0 1/λ

say. Since x = 0 is the Lebesgue point,

== θ(\J = 0(1), as λ
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If we write

\f(x)\dx=F{t),

then \F(t)/t\ < 6, for all t such as 0 < t S v Therefore

|/2 |SλJ \f(x
Vλ

Mx-n lf(χ)\~~
I Xr
l/λ

l/λ

/
Vλ

= /«+ h.

Then

V l/λ

l/λ

On the other hand, putting 1/p + 1/q = 1, we have
oo oo

where 8 = β - a/p > 0. Therefore

IΛI ̂  ( f ^
η λη

\η

-»0, as λ->oo.

Thus we get the lemma.

LEMMA 7. Let

ilQ
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1 > 1 and a > 1,
— CO

lim — I f(y)dy I \ 1 ~ ( — M cosv(y- x)dv = /ϊ^), α.e.
λ->oo 7f J J l • \ Λ / J

- o o 0

PROOF. Substituting

kβaΛ+±(x), where, ^ s = _ ^ + ) o ' , β = ^~χ- H δ,

in the place of UΓ(ΛΓ; in Lemma β, we can prove the lemma similarly as
Lemma 1.

LEMMA 8. The inverse difference
Ίc

Sκμ(cos\x) = 2 ^ - ι Γ 1 C(>s {λ - (n — v)S}x
v = ΰ

satisfies

(1) S^fs*" (cosλ*)[ = ΔϊcosλΛΓ, k = /A + p,
I J e

(2) 5-^(cos \x) •=

Proof. Immediate.

THEOREM 3. Let

o, for /? > 1,
— oo

then

{ j
- 0

^.^., where Φ*(v) and ΨΛ(v) are defined in Theorem 1.

PROOF. The method of proof is almost identical with that of Theorem
1. The existence of φa(v) and Ψoc(v) is proved by Holder's inequality. The
essentially different point lies in proving the condition of the end points.
For instance we shall prove

βl-^—i dy = o(l) as
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Let us put

Γf (£, n) =
/

1 2V

~ /i + Λ + /s,

say, where we select iV such that

for arbitrarily small given η > 0. Then

17,1 =

Using Holder's inequality

as

l /e

Γ
l/e

and as

(Λ - lip) + δ -

we obtain

- δ = 0, and

l/e

Lastly from Lemma 8,

) (J

(cos \y) f

dy

1/β

d y

ilP

X
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and

</">
* » )

1/β

+qia-np+s-k+v dy) [j ^

q((a - l)/ί + δ - k + 1)
δ -

Therefore
1/6

lim |Λ I Sv

Since 77 is arbitrarily small, we get

lim L\(θ, n) = 0.

The other estimations are derived by the similar way.
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