ON SOME INVARIANTS OF MAPPINGS

Kiyoshi Aoki

(Received May 15, 1953)

1. Introduction. In the study of homotopy groups of sphere there are very few methods for determining whether a mapping of one sphere on another is essential or not. One such method is furnished by Brouwer degree of a mapping of S^{r} on itself. Another is furnished by the Hopf invariant of a mapping of $S^{2 r-1}$ on $S^{r}[3,4]$. These methods are used only for mappings of S^{n} on S^{r} with $n=r$ or $n=2 r-1$. Freudenthal's results [2] are applied for the case $r<n<2 r-1$ but almost nothing are known about $\pi_{n}\left(S^{r}\right)$ for $n>2 r-1$. L. Pontrjagin [6] succeeded in the enumeration of the homotopy classes of maps of a 3-complex K^{3} on S^{2} and obtained the result that Hopf's invariant determines completely homotopic classes of the maps of S^{3} on S^{2}; Whitney [8] reformulated another Hopf's theorem [5] and introduced two deformation theorems. In this paper we shall at first attempt to generalize both Hopf's invariant and Brouwer degree. Such quantity will be used for mappings of S^{n} on S^{r} with $n=(k+1) r-k(k=0,1,2,3, \ldots)$. Secondly for this quantity we shall attempt to generalize Pontrjagin's and some other theorems.
2. Hopf [3] studied many interesting properties of maps of S^{3} on S^{2} and he stated [4] the generalization of these results for the maps of $S^{2 r-1}$ on S^{r} but he omitted these proofs.

We now consider maps f of S^{m} on $S^{n}(m>n)$ and denote by T^{n} any n dimensional simplex on S^{m}, by τ^{n} a fined n-dimensional simplex on S^{n}. Let ξ be an interior point of τ^{n}. When ξ has only one interior point x in T^{n} as inverse image of f, we denote $\varphi_{T}{ }^{n}(\xi)= \pm x$. The signs of x will be + or according to whether T^{n} is mapped on τ^{n} positively or negatively. If $\boldsymbol{\xi}$ does not have inverse image of f in T^{n}, we define $\varphi_{r}{ }^{n}(\xi)=0$. We consider any integral complex $C^{n}=\Sigma a_{i} T_{i}^{n}$ and define by $\varphi_{c^{n}}(\xi)=\Sigma a_{i} \varphi_{T_{i}^{n}}(\xi)$ the inverse image for C^{n}. This integral complex is clearly 0 -dimensional. From the definition the following relations are introduced:
(3)

$$
\begin{gather*}
\boldsymbol{\rho}_{C_{1}^{n}}^{n}+C_{2}^{n}(\xi)=\varphi_{C_{1}^{n}}^{n}(\xi)+\boldsymbol{\varphi}_{C_{2}^{n}}(\xi) \tag{1}\\
\boldsymbol{\varphi}_{-C^{n}}(\xi)=-\boldsymbol{\varphi}_{C^{n}}(\xi) \tag{2}\\
\boldsymbol{\varphi}_{0}(\xi)=0
\end{gather*}
$$

Secondly we consider any r-dimensional simplex $(m \geqq r \geqq n+1) T^{r}$ and denote by $\varphi_{T^{r}}(\xi)$ the intersection of the inverse image of ξ and T^{r}. From the definition the following relations are introduced;
(2')

$$
\begin{align*}
& \boldsymbol{\Psi}_{c_{1}^{r}+c_{2}^{r}}^{r}(\xi)=\boldsymbol{\varphi}_{C_{1}^{r}}^{r}(\xi)+\boldsymbol{\varphi}_{c_{2}^{r}}^{r}(\xi) \\
& \varphi_{-c^{r}}(\xi)=-\boldsymbol{\varphi}_{c^{r}}(\xi)
\end{align*}
$$

$$
\begin{align*}
& \dot{\varphi}_{0}(\xi)=0 \\
& \dot{\dot{\varphi}}_{c^{r}}(\xi)=\dot{\varphi}_{\dot{c}} r(\xi) \tag{4'}
\end{align*}
$$

From the property $\dot{S}^{m n}=0$ and $\left(3^{\prime}\right)$, $\left(4^{\prime}\right)$, we know $\dot{\varphi}_{S^{m}}(\xi)=0$. On the other hand S^{m} is a manifold and $\varphi_{S^{m}}(\xi)$ consists of finite numbers of closed manifolds $M_{1}^{m-n}, M_{2}^{m-n}, \ldots M_{k}^{-n m}$ which are disjoint each other. If we apply the Freudenthal's Lemma [2] for our mappings, we may assume $k=1$ without any loss of generality. We consider $r+1$ points $\xi_{0}, \xi_{1}, \ldots \xi_{r}$ on S^{n} and denote by M_{i}^{m-n} the inverse image of ξ_{i}. Let $K^{m}, \stackrel{*}{K^{n}}$ be simplicial subdivision of $S^{m} S^{n}$ respectively. We introduce the standard map which has at first been introduced by Whitney and which the author has defined for more general case[1]. The following Lemma is the immediate result from the definition. Its proof is similar to the one of the preceding paper [1].

Lemma 2.1 Let f be a map of S^{m} into S^{n}, then there exists a standard map which is homotopic to f.

As $M_{i}^{m-n} \sim 0$ in S^{m}, there exists a complex K_{i}^{n-n+1} bounded by M_{i}^{m-n}. We shall take useful one as K_{i}^{m-n+1} and following Lemma is used in studing the special one of $K^{i m-n+1}$.

Lemma 2.2. Let Z^{p}, Z^{q} be any manifold of Euclidean space R^{m} which are fremed each other. The regular connected complexes which are bounded by Z^{p}, Z^{q} respectively can be deformed so as to hold at most $p+q-m+2$ dimensionalsimplexes in common.

Proof. We can assume $p>q$ without any loss of generality. Let K^{p+1}, K^{q+1} be regularly connected complexes bounded by Z^{p}, Z^{q} respectively and holding in common ($q+1$)-dimensional simplex ($a_{0}, a_{1}, \ldots a_{q+1}$). If $q+1 \leqq$ $p+q-m+2$, then this Lemma is evident. Thus we assume $q+1>p+q$ $-m+2$ and consider ($q+2$) - simplex ($a_{0}, a_{1}, \ldots, a_{q+q}$) and its interior point b. We replace the simplex ($a_{0}, a_{1}, \ldots, a_{q+1}$) of K^{q+1} by
$\left[\left(b a_{1} \ldots a_{q++}\right)-\left(b a_{0} a_{2} \ldots a_{q+1}\right)+\ldots .+(-1)^{q+1}\left(b a_{0} a_{1} \ldots a_{q}\right)\right]$.
If this process is done for every common $(q+1)-$ simplex of K^{p+1} and K^{i+1}, then they have common simplexes which are at most q-dimensional. If $q=p+q-m+2$, this Lemma was completely proved. Thus we assume $\boldsymbol{q}>\boldsymbol{p}+\boldsymbol{q}-m-2$. Let $\left(a_{0} a_{1} \ldots \boldsymbol{a}_{q}\right)$ be any common simplex of K^{p+1} and ($a_{0} a_{1}$ $\left.\ldots a_{q} a_{q+1}\right),\left(a_{0} a_{1} \ldots a_{q} a_{q+1}^{\prime}\right)$ be a pair of $(q+1)$ - simplexes of K^{q+1} which have the common q-simplex $\left(a_{0} a_{1} \ldots a_{q}\right)$. We consider their interior points b, b^{\prime} respectively. At first we replace $\left(a_{0} a_{1} \ldots a_{q} a_{q+1}\right),\left(a_{0} a_{1} \ldots a_{q} a_{q+1}^{\prime}\right)$ by

$$
\begin{gathered}
C_{1}^{q+1}=\left[\left(b a_{1} \ldots a_{q} a_{q+1}\right)-\left(b a_{0} a_{2} \ldots a_{q} a_{q+1}\right)+\ldots+(-1)^{q}\left(b a_{0} a_{1} \ldots\right.\right. \\
\left.\left.\boldsymbol{a}_{q-1} a_{q+1}\right)\right], \\
C_{2}^{q+1}=\left[\left(b^{\prime} a_{1} \ldots a_{q} a_{q+1}^{\prime}\right)-\left(b^{\prime} a_{0} a_{2} \ldots a_{q} a_{q+1}^{\prime}\right)+\ldots+(-1)^{q}\left(b a_{0} a_{1} \ldots\right.\right. \\
\left.\left.a_{q-1} a_{q+1}^{\prime}\right)\right]
\end{gathered}
$$

respectively. As $q>\boldsymbol{p}+\boldsymbol{q}+2-\boldsymbol{m}$, we can construct regularly connected complex C^{q+1} bounded by

$$
\left[\left(b a_{1} \ldots a_{q}\right)-\left(b a_{0} a_{2} \ldots a_{q}\right)+\ldots .+(-1)^{q}\left(b a_{0} a_{1} \ldots a_{q-1}\right)\right]
$$

and $\left[\left(b^{\prime} a_{1} \ldots . a^{\imath}\right)-\left(b^{\prime} a_{0} a_{2} \ldots a_{q}\right)+\ldots .+(-1)^{\imath}\left(b^{\prime} a_{0} a_{1} \ldots a_{q-1}\right)\right]$
which have common simplexes at most of $(q-1)$-dimensions with K^{p+1}. We replace $\left(a_{0} a_{1} \ldots a_{0} a_{q+1}\right)+\left(a_{0} a_{1} \ldots a_{1} a_{1+1}^{\prime}\right)$ by $C_{1}^{q+1}+C^{q+1}+C_{2}^{q+1}$. If such a process is done for every common q-simplexes of K^{p+1} and K^{q+1}, then they have common simplexes at most of ($q-1$)-dimensions. If we take care of only fact that every simplex at most of ($q-1$)-dimensions is a common one face of some ($q+1$)-simplexes (its number need not to be two for the common ($q-1$)-simplex)), we can perform similar process. By a repetition of similar processes, we can lower the dimension of common simplexes of K^{p+1} and K^{j+1} untill at most $p+q+2-m$, where the dimension of the last common simplex is calculated from the dimensions of S^{m}, K^{p+1} and K^{q+1}.

Lemma 2.3. Let Z^{p} be any manifold of Euclidean space $R^{m p}$. If we construct a complex projecting Z^{p} from a fix point, the resulted $(p+1)$-dimensional complex may be deformed so as to have singular simplexes [1] at most of ($2 p$ $+2-m)$-dimension.

Proof. By the similar deformations of Lemma 2.2, we can prove immediately.

Theorem 2.1. K_{i}^{m-n+1} may be chosen as a manifold which has some singular simplexes at most of ($m-2 n+2$)-dimension.

Proof. Let us consider that a fixed point of S^{n} is a point at infinity, then S^{m} may be regarded as the sum of the point at infinity and a m-dimensional Euclidean space R^{m}. Of course, we don't take the point at infinity on M_{i}^{m-n}. We project M_{i}^{m-n} from a suitable point O and denote by [O, M_{i}^{m-n}] the resulted sets. [O, M_{i}^{m-n}] are special complexes bounded by M_{i}^{m-n} and are one of K_{l}^{m-n+1}. By Lemma 2.3, the dimension of singular simplex of [O, $\left.M_{l}^{n-n}\right]$ is at most

$$
2(m-n+1)-m=m-2 n+2 .
$$

LEMMA 2.4. $\bigcap_{i=1}^{r}\left[O, M_{i}^{m-n}\right]$ is a sum of finite manifolds which are at most of $(m-r n+r)$-dimension haying some singular simplexes at most of $[m-$ $(r+1) n+r+1]$-dimension.

Proof. By $\xi_{i} \neq \xi_{j}(i, j=0,1,2, \ldots, r, i \neq j)$, we know that

$$
M_{i}^{m-n} \bigcap M_{j}^{m-n}=0(i, j=0,1,2, \ldots . r, i \neq j)
$$

If we consider [O, M_{2}^{m-n}] and [O, M_{2}^{m-n}] except for singular simplexes, [O, $\left.M_{1}^{m-n}\right] \bigcap\left[O, M_{2}^{m-n}\right]$ are of at most of dimensions

$$
2(m-n+1)-m=m-2 n+2
$$

By Theorem 2.1, the singular simplexes of $\left[O, M_{i}^{n-n}\right]$ are at most of ($m-$ $2 n+2$)-dimensions. Therefore the dimensions of singular simplexes of [O, $\left.M_{1}^{m-n}\right] \cap\left[O, M_{2}^{m-n}\right]$ are at most of dimensions

$$
(m-2 n+2)+(m-n+1)-m=m-3 n+3
$$

On account of singularity of $\left[O, M_{i}^{m-n}\right],\left[O, M_{1}^{m-n}\right] \cap\left[O, M_{2}^{n-n}\right]$ are a sum of some manifolds having singular simplexes.

By Lemma 2.2 and Theorem 2.1, the intersection of $\left[O, M_{1}^{m-n}\right] \cap[O$, $M_{2}^{m_{i}-n} 1$ and $\left[O, M_{3}^{m-n}\right]$ is studied. As the general case $\bigcap_{i=1}^{r}\left[O, M_{i}^{m-n}\right]$ are a sum of some manifolds whose dimension are at most

$$
r(m-n+1)-(r-1) m=m-r n+r
$$

where the dimensions of those singular simplexes are at most

$$
(m-2 n+2)+(r-1)(m-n+1)-(r-1) m=m-(r+1) n+r+1
$$

LEMMA $2.5 M_{k}^{m-n} \cap\left\{\bigcap_{i=1}^{k-1}\left[O, M_{i}^{m-n}\right]\right\} \cap\left\{\bigcap_{j=k+1}^{r}\left[O, M_{j}^{m-n}\right]\right\}$ are a sum of finite manifolds which are at most of $(m-r n+r-1)$-dimensions having some singular simplexes at most of $(m-(r+1) n+r)$-dimension.

Proof. If we replace r by $r-1$ in Lemma 2.4, $\left\{\bigcap_{i=1}^{l i-1}\left[O, M_{i}^{m_{i-p}}\right]\right\} \cap$ $\left\{\bigcap_{j=k+1}^{r}\left[O, M_{j}^{n-n}\right]\right\}$ are at most of $[m-(r-1) n+(r-1)]$-dimensions having some singular simplexes at most of $[m-r n+r]$-dimensions. Therefore the dimension of $M_{k}^{m-n} \cap\left\{\bigcap_{i=1}^{k-1}\left[O, M_{i}^{m-n}\right]\right\} \cap\left\{\bigcap_{j=k+1}\left[O, M_{j}^{n-n}\right]\right\}$ is at most $[m-$ $(r-1) n+(r-1)]+(m-n)-m=m-r n+r-1$.

The dimensions of the singular simplexes of those complexes are at most

$$
[m-r n+r]+(m-n)-m=n-(r+1) n+r
$$

LEMMA 2.6. If $m=(r+1) n-r$, the intersection number $\phi\left(M_{0}^{n-n}, \bigcap_{i=1}^{r}[O\right.$, $\left.M_{i}^{m-n}\right]$) can be defined uniquely.

Proof. For $\bigcap_{i=1}^{r}\left[O, M_{i}^{m-n}\right]$ of Lemma 2.4, we give an orientation as follows : We know an orientation for the faces of simplexes of $\left[O, M_{1}^{m-n}\right]$ and by this orientation we introduce an orientation on $\bigcap_{i=1}^{r}\left[O, M_{i}^{m-n}\right]$. This orientation does notldepend upon the singular simplexes of $\bigcap_{i=1}^{r}\left[O, M_{i}^{m-n}\right]$. Similarly we introduce an orientation for $M_{k}^{m-n} \cap\left\{\bigcap_{i=0,1,2, . ., \hat{k}, . . r}\left[O, M_{i}^{m-n}\right]\right\}$ by the faces of simplexes of M_{k}^{m-n}. This orientation does not depend upon the singular
simplexes of $M_{k}^{m-n} \cap\left\{\bigcap_{i=0,1,2 \ldots, \hat{k}_{1} \ldots r}\left[O, M_{1}^{m-n}\right]\right.$. Then, by lemma 2.4,

$$
\operatorname{dim}\left\{\bigcap_{i=1}^{r}\left[O, M_{i}^{n-n}\right]\right\}=m-r n+r=n .
$$

The intersection of M_{0}^{m-n} and $\bigcap_{i=1}^{r}\left[O, M_{0}^{m-n}\right]$ are at most of dimensions $n+$ $(m-n)-m=0$.

From the orientations of R^{m}, M_{0}^{m-n} and $\bigcap_{i=1}^{r}\left[O, M_{i}^{m-n}\right]$ we know the intersection number $\phi\left(M_{0}^{m-n}, \bigcap_{i=1}^{r}\left[O, M_{i}^{m-n}\right]\right)$.

Lemma 2. 7. $\phi\left(M_{0}^{m-n}, \bigcap_{i=1}^{n}\left[O, M_{i}^{m-n}\right]\right)$ does not depend on a choice of a fixed point O.

Proof. We consider m-dimensional Euclidean space R^{m} as in the proof of Theorem 2.1 and fixed point O^{\prime} which is in $R^{m}-\bigcup_{i} M_{i}^{m-n}-O$.

By the projection from O^{\prime}, we get a similar complex $\left[O^{\prime}, M_{i}^{m-n}\right]$. If the bounded set containing O and O^{\prime} are covered by sufficiently fine open set, we can choose a finite covering, which refine the given covering. If we consider point-pairs in the same element of covering at first and remove from one element to the adjacent secondly, we can remove from O to O^{\prime} by finite processes. Therefore we can assume without any loss of generality that O^{\prime} exist in sufficiently small neighborhood of O. We shall prove

$$
\phi\left(M^{m-n}, \bigcap_{i=1}^{n}\left[O, M_{i}^{m-n}\right]\right)=\phi\left(M_{0}^{m-n}, \bigcap_{i=1}^{n}\left[O^{\prime}, M_{i}^{m-n}\right]\right) .
$$

As O and O^{\prime} lie in sufficiently near, for $k=0,1, M_{k}^{m-n} \cap\left(\bigcap_{i=2}^{r}\left[O, M_{i}^{m-n}\right]\right)$ and $M_{i}^{m-n} \cap\left(\bigcap_{i=2}^{r}\left[O^{\prime}, M_{i}^{m-n}\right]\right)$ are situated sufficiently near in R^{m} and are fremed each other. We consider a complex X which is bounded by M_{0}^{m-n} $\cap\left(\bigcap_{i=2}^{r}\left[O, M_{i}^{m-n}\right]\right)-\boldsymbol{M}_{j}^{m-n} \cap\left(\bigcap_{i=2}^{r}\left[O, M_{i}^{m-n}\right]\right)$ and is fremed from $M_{1}^{m-n} \cap$ $\left(\bigcap_{i=2}^{r}\left[O, M_{i}^{m-n}\right]\right)$ and $M_{1}^{m-n} \cap\left(\bigcap_{i=2}^{r}\left[O^{\prime}, M_{i}^{m-n}\right]\right)$. Similarly we consider a complex Y which is bounded by $M_{1}^{m-n} \cap\left(\bigcap_{i=2}^{r}\left[O, M_{i}^{m-n}\right]\right)-M_{1}^{m-n} \cap\left(\bigcap_{i=2}^{r}\right.$
$\left.\left[\boldsymbol{O}^{\prime}, \boldsymbol{M}_{i}^{m-n}\right]\right)$ and is fremed from $\boldsymbol{M}_{0}^{m-n} \cap\left(\bigcap_{i=2}^{r}\left[O, \boldsymbol{M}_{i}^{n-n}\right]\right)$ and $\boldsymbol{M}_{0}^{m-n} \cap\left(\bigcap_{i=2}^{r}\right.$ $\left.\left[O, M_{i}^{m-n}\right]\right)$.

$$
\begin{aligned}
& \boldsymbol{R} \partial\left\{\left[O, M_{1}^{m-n}\right] \cap\left(\bigcap_{i=2}^{r}\left[O, M_{i}^{m-n}\right]\right)\right\}=\boldsymbol{M}_{1}^{m-n} \cap\left(\bigcap_{i=2}^{r}\left[O, \boldsymbol{M}_{i}^{m-n}\right]\right), \\
& R \partial\left\{\left[O^{\prime}: M_{1}^{m-n}\right] \cap\left(\bigcap_{i=2}^{r}\left[O^{\prime}, \boldsymbol{M}_{i}^{m-n}\right]\right)\right\}=\boldsymbol{M}_{1}^{m-n} \cap\left(\bigcap_{i=2}^{r}\left[O^{\prime}, \boldsymbol{M}_{i}^{m-n}\right]\right) .
\end{aligned}
$$

Then

- $R \partial\left\{\left[O, M_{1}^{m-n}\right] \cap\left(\bigcap_{i=2}^{r}\left[O, M_{i}^{m-n}\right]\right)-Y-\left[O^{\prime}, M_{1}^{m-n}\right] \cap\left(\bigcap_{i=2}^{r}\left[O^{\prime}, M_{i}^{m-n}\right]\right)=0\right.$,

$$
\begin{array}{r}
\phi\left\{M_{0}^{m-n} \cap\left(\bigcap_{i=2}^{r}\left[O, M_{i}^{m-n}\right]\right),\left[O, M_{1}^{m-n}\right] \cap\left(\bigcap_{i=2}^{r}\left[O, M_{i}^{m-n}\right]\right)-Y-\right. \\
\left.\left[O^{\prime}, M_{1}^{m-n}\right] \cap\left(\bigcap_{i=2}^{r}\left[O^{\prime}, \boldsymbol{M}_{i}^{m-n}\right]\right)\right\}=0 .
\end{array}
$$

On the other hand,

$$
\begin{aligned}
& \phi\left(M_{0}^{m-n}, \bigcap_{i=1}^{r}\left[O, M_{i}^{m-n}\right]\right) \\
= & \varepsilon \phi\left(M_{0}^{m-n} \cap\left(\bigcap_{i=2}^{r}\left[O, M_{i}^{m-n}\right]\right),\left[O, M_{1}^{m-n}\right] \cap\left(\bigcap_{i=2}^{r}\left[O, M_{i}^{m-n}\right]\right)\right. \\
\phi & \left\{M_{0}^{m-n} \cap\left(\bigcap_{i=2}^{r}\left[O, M_{i}^{m-n}\right], Y\right\}=0 . \quad(\varepsilon= \pm 1)\right.
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \phi\left\{M_{0}^{m-n} \cap\left(\bigcap_{i=2}^{r}\left[O, M_{i}^{m-n}\right]\right),\left[O, M_{1}^{m-n}\right] \cap\left(\bigcap_{i=2}^{r}\left[O, M_{i}^{m-n}\right]\right)\right\} \\
= & \phi\left\{M_{0}^{m-n} \cap\left(\bigcap_{i=2}^{r}\left[O, M_{i}^{m-n}\right],\left[O^{\prime}, M_{1}^{m-n}\right] \cap\left(\bigcap_{i=2}^{r}\left[O^{\prime}, M_{i}^{m-n}\right]\right)\right\}\right.
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& \phi\left\{\left[O, M_{0}^{m-n}\right] \cap\left(\bigcap_{i=2}^{r}\left[O, M_{i}^{m-n}\right]\right), M_{1} \cap\left(\bigcap_{i=2}^{r}\left[O^{\prime}, M_{i}^{m-n}\right]\right)\right\} \\
= & \phi\left\{\left[O^{\prime}, M_{0}^{m-n}\right] \cap\left(\bigcap_{i=2}^{r}\left[O^{\prime}, M_{i}^{m-n}\right]\right), M_{1} \cap\left(\bigcap_{i=2}^{r}\left[O^{\prime}, M_{i}^{m-n}\right]\right)\right\} .
\end{aligned}
$$

Then

$$
\begin{aligned}
& \phi\left\{\boldsymbol{M}_{0}^{m-n} \cap\left(\bigcap_{i=2}^{r}\left[O, \boldsymbol{M}_{i}^{m-n}\right]\right),\left[O, \boldsymbol{M}_{1}^{m-n}\right] \cap\left(\bigcap_{i=2}^{r}\left[O, \boldsymbol{M}_{i}^{m-n}\right]\right)\right\} \\
& \quad=\phi\left\{\boldsymbol{M}_{0}^{m-n} \cap\left(\bigcap_{i=2}^{r}\left[O, \boldsymbol{M}_{i}^{m-n}\right]\right),\left[O^{\prime}, \boldsymbol{M}_{1}^{m-n}\right] \cap\left(\bigcap_{i=2}^{r}\left[O^{\prime}, \boldsymbol{M}_{i}^{m-n}\right]\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
= & (-1)^{n-1} \phi\left\{\left[O, M_{0}^{m-n}\right] \cap\left(\bigcap_{i=2}^{r}\left[O, M_{i}^{m-n}\right]\right), M_{1}^{m-n} \cap\left(\bigcap_{i=2}^{r}\left[O^{\prime}, M_{i}^{m-n}\right]\right)\right\} \\
= & (-1)^{n-1} \phi\left\{\left[O^{\prime}, M_{0}^{m-n}\right] \cap\left(\bigcap_{i=2}^{r}\left[O^{\prime}, M_{i}^{m-n}\right]\right), M_{1}^{m-n} \cap\left(\bigcap_{i=2}^{r}\left[O^{\prime}, M_{i}^{n-n}\right]\right)\right\} \\
= & \phi\left\{M_{0}^{m-n} \cap\left(\bigcap_{r=2}^{i}\left[O^{\prime}, M_{i}^{m-n}\right]\right),\left[O^{\prime}, M_{1}^{m-n}\right] \cap\left(\bigcap_{i=2}^{r}\left[O^{\prime}, M_{i}^{m-n}\right]\right)\right. \\
= & \frac{1}{\varepsilon} \phi\left\{M_{0}^{m-n}, \bigcap_{i=1}^{n}\left[O^{\prime}, M_{i}^{m-n}\right]\right\}, \\
& \phi\left(M_{0}^{m-n}, \bigcap_{i=1}^{r}\left[O, M_{i}^{m-n}\right]\right)=\phi\left(M_{0}^{n-n}, \bigcap_{i=1}^{r}\left[O^{\prime}, M_{i}^{m-n}\right]\right),
\end{aligned}
$$

Definition 2.1. When $m=n$, we define $\phi\left[M_{0}^{0}, \theta\right]$ (θ means the empty set) as follows;

Let t_{+}^{0}, or t^{0} - be the numbers of simplexes of $K^{n n}$ which are mapped on τ_{0}^{n} positively or negatively respectively. Them

$$
\phi\left[M_{0}^{0}, \theta\right]=t_{+}^{0}-t_{-}^{0} .
$$

By Lemma 2.7 we know that $\phi\left\{M_{0}^{n-n}, \bigcap_{i=1}^{r}\left[O, M_{i}^{m-n}\right]\right\}$ does not depend on a choice of a fixed point O. By these reason and definition 2.1 we define as follows:

Definition 2.2. In cases $m=(r+1) n-r$ or $m n$:

$$
\left.W_{r}\left(f, \xi_{0}, \xi_{1}, \ldots, \xi_{r}\right)=\left[\phi\left\{M_{0}^{n-n}, \bigcap_{i=1}^{r}\left[O, M_{i}^{m-n}\right]\right\}\right]^{r}, W_{0}\left(f, \xi_{0}\right)=\phi \mid M_{0}^{0}, \theta\right] .
$$

Lemma 2. 8. $W_{r}\left(f, \xi_{0}, \xi_{1}, \ldots, \xi_{r}\right)$ does not depend on a choice of ξ_{0}, ξ_{1}, \ldots, $\xi_{r .}$ in the following cases:
(i) $m=n$, or
(ii) $m=(r+1) n-r$ and n is even.

Proof. In case (i) $W_{r}\left(f, \xi_{0}\right)$ means the Brouwer degree, and Lemma 2.8 is well known.

We shall prove this Lemma in case (ii).

$$
\begin{aligned}
\phi & \left(M_{0}^{n-n}, \bigcap_{i=1}^{r}\left[O, M_{i}\right]\right)=\varepsilon \phi\left\{M_{0}^{m-n} \cap\left(\bigcap_{i=2}^{r}\left[O, M_{i}\right]\right),\left[O, M_{1}\right]\left(\bigcap_{i=2}^{r}\left[O, M_{i}\right]\right)\right\} \\
& =(-1)^{n} \varepsilon \phi\left\{\left[O, M_{i}\right] \cap\left(\bigcap_{i=2}^{r}\left[O, M_{i}\right]\right), M_{1} \cap\left(\bigcap_{i=2}^{r}\left[O, M_{i}\right]\right)\right\} \\
& =(-1)^{n}(-1)^{n(n-1)} \varepsilon \phi\left\{M_{1} \cap\left(\bigcap_{i=2}^{r}\left[O, M_{i}\right]\right),\left[O, M_{0}\right] \cap\left(\bigcap_{i=2}^{r}\left[O, M_{i}\right]\right)\right\} \\
& =(-1)^{n}(-1)^{n(n-1)} \phi\left\{M_{1}^{m-n},\left[O, M_{0}\right] \cap\left(\bigcap_{i=2}^{r}\left[O, M_{i}\right]\right)\right\} .
\end{aligned}
$$

As n is even,

$$
\begin{equation*}
W_{r}\left(f, \xi_{0}, \xi_{1}, \ldots, \xi_{r}\right)=W_{r}\left(f, \xi_{1}, \xi_{0}, \ldots, \xi_{r}\right) . \tag{1}
\end{equation*}
$$

$\phi\left(M_{0}^{m-n}, \bigcap_{i=1}^{r}\left[O, M_{i}^{m-n}\right]\right)$ means a degree of $f \mid \bigcap_{i=1}^{r}\left[O, M_{i}^{n-n}\right]$, then
$W_{r}\left(f, \xi_{0}, \ldots, \xi_{r}\right)$ does not depend on a choice of ξ_{0}. Then
$W_{r}\left(f, \xi_{0}, \ldots, \xi_{1}, \xi_{r}\right)=W_{r}\left(f, \xi_{1}^{\prime}, \xi_{1}, \ldots, \xi_{r}\right)$.
By using of (1) and (2), we can introduce the following calculations:

$$
\begin{equation*}
W_{r}\left(f, \xi_{0}, \xi_{1}, \ldots ., \xi_{i}, \ldots ., \xi_{r}\right)=\varepsilon W_{r}\left(f, \xi_{0}, \xi_{i}, \xi_{2}, \ldots, \xi_{1}, \ldots ., \xi_{r}\right) \tag{2}
\end{equation*}
$$

$$
=\varepsilon W_{r}\left(f, \xi_{r}, \xi_{0}, \xi_{2}, \ldots, \xi_{1}, \ldots, \xi_{r}\right)
$$

$$
=\varepsilon W_{r}\left(f, \xi_{l}^{\prime}, \xi_{c}, \xi_{z}, \ldots, \xi_{1} \ldots, \ldots, \xi_{r}\right) \quad(\varepsilon= \pm 1)
$$

$$
=W_{r}\left(f, \xi_{1}, \xi_{0}, \xi_{2}, \ldots, \xi_{i}^{\prime}, \ldots, \xi_{r}\right)
$$

$$
=W_{r}\left(f, \xi_{0}, \xi_{1}, \xi_{2}, \ldots, \xi_{i}^{\prime}, \ldots \xi_{r}\right)
$$

that is,

$$
\begin{equation*}
W_{r}\left(f, \xi_{0}, \xi_{1}, \ldots, \xi_{i}, \ldots, \xi_{r}\right)=W_{r}\left(f, \xi_{v}, \xi_{1}, \ldots, \xi_{i}^{\prime}, \ldots, \xi_{r}\right) \tag{3}
\end{equation*}
$$

Furthermore,

$$
\begin{aligned}
& \quad W_{r}\left(f, \xi_{0}, \xi_{1}, \ldots, \xi_{i}^{\prime}, \ldots, \xi_{r}\right)=W_{r}\left(f, \xi_{i}, \xi_{:}, \ldots, \xi_{i}, \ldots, \xi_{r}\right) \\
& =W_{r}\left(f, \xi_{i}, \xi_{1}, \ldots \xi_{0}, \ldots \xi_{b}\right)
\end{aligned}
$$

From this relation, we can introduce the following relation by using of (3):
$W_{r}\left(f, \xi_{0}, \xi_{1}, \ldots ., \xi_{i}, \ldots ., \xi_{r}\right)=W \cdot\left(f, \xi_{i}, \xi_{1}, \ldots, \xi_{0}, \ldots, \xi_{r}\right)$.
When we use (1), (2) and (4), successively,

$$
\begin{equation*}
W_{r}\left(f, \xi_{n}, \xi_{1}, \ldots, \xi_{r}\right)=W_{r}\left(f, \boldsymbol{\xi}_{0}^{\prime}, \xi_{1}^{\prime}, \cdots, \xi_{r}^{\prime}\right) . \tag{4}
\end{equation*}
$$

By Lemma 2.8 we know that $W_{r}\left(f, \xi_{0}, \xi_{1}, \ldots, \xi_{r}\right)$ does not depend on a choise of $\xi_{1}, \xi_{1}, \ldots, \xi_{\text {. }}$. Then we define as follows.

Definition 2.3. $W_{r}\left(f_{1}=W_{r}\left(f, \xi_{0}, \xi_{1}, \ldots ., \xi_{r}\right)\right.$.
Theorem 2.2. Let $m=n$ or $m=(r+1) n-r$ and n be even. If f, g are maps of S^{n} into S^{n} and f is homotopic to g, then $W_{r}(f)$ equals to $W_{r}(g)$.

Proof. When $K^{n}, \stackrel{*}{K}^{i}$ are simplicial subdivision of S^{m}, S^{n} respectively, we may assume that f and g are simplicial maps without any loss of generality. As f is homotopic to g, there exist a shar of maps $f_{r}(1 \leqq r \leqq$ 2), of K^{n} into $\stackrel{*}{K}^{n}$, where $f_{1}=f$ and $f_{2}=g$. Then we can consider f_{r} to be a map of $S^{m} \times I$ into S^{n} and use it as $F(x, r)$. We define $S^{m} \times(1)=S_{1}^{m}, S^{m} \times$ (2) $=S_{i}^{\prime \prime \prime}$.
$f_{r}(x)$ also may be assumed as simplicial map. Let ξ_{1} a interior point of fixed n-simplex τ_{0}^{n} of K^{n} and $\boldsymbol{\varphi}_{S^{m} \times I}\left(\xi_{1}\right), \varphi_{S_{1}^{m}}\left(\xi_{1}\right), \varphi_{S_{2}^{m}}\left(\xi_{1}\right)$ inverse images of ξ_{1} for f_{r}, f, g respectively.

As we have $\left(S^{m} \times \dot{\mathrm{I}}\right)=S_{2}^{m}-S_{1}^{m}$, by $(1)^{\prime},(2)^{\prime}$ in $\S 2$, $\varphi_{S^{m} \times \dot{\mathrm{I}}}\left(\xi_{1}\right)=\varphi_{S_{2}^{m}}\left(\xi_{1}\right)-\phi_{S_{1}^{m}}\left(\xi_{1}\right)$.
We denote $\varphi_{s_{2}^{m}}^{\prime \prime}\left(\xi_{1}\right), \varphi_{s_{1}^{m}}\left(\xi_{1}\right)$ by $M_{i}, \boldsymbol{M}_{1}^{\prime}$ respectively. When we fix r, we denote the inverse image of ξ_{1} for f_{r} by $\varphi_{S^{m} \times(r)}\left(\xi_{1}\right)$, then

$$
\phi_{S^{n} \times 1}\left(\xi_{1}\right)=\bigcup_{1 \leq r \leq 1} \varphi_{S^{m} \times(r)}\left(\xi_{1}\right)
$$

Let O, O^{\prime} be fixed points of $S^{m} \times(1), S^{m} \times(2)$ respectively. We connect O with O^{\prime} by an arc in $S^{m} \times I$ which intersect with $S^{m} \times(r)$ at only one point. These intersections will be denoted by O_{r}.

In $S^{m} \times(r)$ we project $\varphi_{S^{\prime n} \times(r)}\left(\xi_{1}\right)$ from O_{r} and denote the resulted complex by $\left[O_{r}, \boldsymbol{\varphi}_{S^{u} \times(r)}\left(\xi_{1}\right)\right]$. Then,

$$
\left\{\bigcup_{1 \leqq r \leqq 2}\left[O_{r}, \varphi_{S^{m} \times(r)}\left(\xi_{1}\right)\right]\right\}=\left[O, M_{1}\right]-\left[O^{\prime}, M_{1}^{\prime}\right]-\varphi_{S m \times i}\left(\xi_{i}\right)
$$

We denote this relation by $\dot{C}_{2}=\left[O, M_{1}\right]-\left[O^{\prime}, M_{1}^{\prime}\right]-A_{2}$ and a second interior point of τ_{0}^{n} by ξ_{z}, then

$$
\dot{\varphi}_{c_{2}}\left(\xi_{2}\right)=\phi_{\left[0, u_{1}\right]}\left(\xi_{2}\right)-\varphi_{\left[0, x_{1}, x_{1}\right.}^{\prime}\left(\xi_{2}\right)-\phi_{A_{2}}\left(\xi_{2}\right)
$$

As f_{r} has an uniquely determined image, $\phi_{A_{2}}\left(\xi_{2}\right)=0$ (for $\xi_{1} \neq \xi_{2}$).
We denote $\left.\varphi_{\left[0, M_{1}\right.}\left(\xi_{2}\right), \varphi_{\left[0^{\prime}, M_{1}^{\prime}\left(\xi_{2}\right)\right.}\right)$ by M_{2}, M_{1}^{\prime} respectively. Then

$$
\dot{\varphi}_{c_{2}}\left(\xi_{2}\right)=M_{2}-M_{2}^{\prime}
$$

$\left[O, M_{1}\right] \cap\left[O, M_{2}\right]$ and $\left[O^{\prime}, M_{1}^{\prime}\right] \cap\left[O^{\prime}, M_{2}^{\prime}\right]$ are complexes bounded by $\boldsymbol{\varphi}_{\left[0, M_{1}\right]}\left(\xi_{2}\right), \varphi_{0, M_{1}}^{\prime}\left(\xi_{2}\right)$ on $\left[O, M_{1}\right],\left[O, M_{1}^{\prime}\right]$ respectively. Then $R \partial\left\{\boldsymbol{\varphi}_{c_{8}}\left(\xi_{2}\right)-\right.$ $\left.\left[O, M_{1}\right] \cap\left[O, M_{2}\right]+\left[O^{\prime}, M_{1}^{\prime}\right] \cap\left[O^{\prime}, M_{2}^{\prime}\right]\right\}=0$, therefore $\varphi_{c_{2}}\left(\xi_{z}\right)-\left[O, M_{1}\right] \cap\left[O, M_{2}\right]$ $+\left[O^{\prime}, M_{1}^{\prime}\right] \cap\left[O^{\prime}, M_{2}^{\prime}\right]=Z_{12}$ is a cycle.
$\dot{\boldsymbol{\varphi}}_{c_{2}}\left(\xi_{2}\right)=\boldsymbol{\varphi}_{\left[0, H_{1}\right]}\left(\xi_{2}\right)-\varphi_{\left.i 0, M H^{1}\right]}\left(\xi_{2}\right)$ is analogous to (1), then we consider a third interior point ξ_{3} of τ_{0}^{n} and similar relation as above and so on. Therefore we obtain the following relation:

$$
\dot{\boldsymbol{\varphi}}_{c_{r}}\left(\xi_{r}\right)=\boldsymbol{\varphi}_{\bigcap_{i=1}^{r-1}\left[0, M_{i}\right]}^{r-1}\left(\xi_{r}\right)-\boldsymbol{\varphi}_{\bigcap_{i=1}^{r-1}\left[0, M_{i}\right]}\left(\xi_{r}\right)
$$

where C_{r} is defined to be similar to C_{2}.

$$
\bigcap_{i=1}^{r}\left[O, M_{i}\right] \text { and } \bigcap_{i=1}^{r}\left[O^{\prime}, M_{i}^{\prime}\right] \text { are complexes bounded by } \varphi_{i=1}^{r-1}\left[O, M_{i j}\right]\left(\xi_{r}\right),
$$

$$
\boldsymbol{\varphi}^{r-1} \bigcap_{i=1}^{r}\left[O^{\prime}, M^{\nu_{i}}\right]\left(\xi_{r}\right) \text { on } \bigcap_{i=1}^{r-1}\left[O, M_{i}\right], \bigcap_{i=1}^{r-1}\left[O^{\prime}, M_{i}^{\prime}\right] \text { respectively }
$$

Then $R \partial\left\{\boldsymbol{\varphi}_{c_{r}}\left(\xi_{r}\right)-\bigcap_{i=1}^{r}\left[O, M_{i}\right]+\bigcap_{i=1}^{r}\left[O^{\prime}, M_{i}^{\prime}\right]\right\}=0$, and $\boldsymbol{\phi}_{c_{r}}\left(\xi_{r}\right)-\bigcap_{i=1}^{r}\left[O, M_{i}\right]$ $+\bigcap_{i=1}^{r}\left[O^{\prime}, M_{i}^{\prime}\right]=Z_{r}^{n}$ is a cycle.
When we denote the projection of \boldsymbol{Z}_{r}^{n} on S_{1}^{m} by $\stackrel{Z}{Z}_{r}^{*}, Z_{r}^{n} \sim \stackrel{Z}{Z}_{r}^{n}$ in $S^{n} \times I$. Then $F\left(Z_{r}^{n}\right) \sim f\left(Z_{r}^{n}\right)$ in S^{n}, therefore

$$
F\left(Z_{r}^{n}\right)=f\left(\ddot{Z}_{r}^{n}\right) \text { in } S^{n}
$$

On the other hand,

$$
\stackrel{*}{Z}_{r}^{n} \sim 0 \text { in } S_{1}^{m}
$$

$$
\begin{aligned}
& F\left(\stackrel{(}{Z}_{r}^{*}\right)=f\left(\stackrel{Z}{Z}_{r}^{n}\right) \sim 0 \text { in } S^{n}, \\
& f\left(\stackrel{Z}{Z}_{r}^{u}\right)=0 \text { in } S^{n} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& F\left(Z_{r}^{n}\right)=0, \\
& F\left(\phi_{C_{r}}\left(\xi_{r}\right)\right)-f\left(\bigcap_{i=1}^{r}\left[O, M_{i}\right]\right)+g\left(\bigcap_{i=1}^{r}\left[O^{\prime}, M_{i}^{\prime}\right]\right)=0, \\
& F\left(\phi_{c_{r}(}\left(\xi_{r}\right)\right)=0, \\
& f\left(\bigcap_{i=1}^{r}\left[O, M_{i}\right]\right)=g\left(\bigcap_{i=1}^{r}\left[O^{\prime}, M_{i}^{\prime}\right]\right) \\
& W_{r}(f)=W_{r}(g) .
\end{aligned}
$$

3. In this chapter we shall investigate that $W_{r}(f)$ is used for determining whether a mapping of one sphere on another is essential or not. In case $m=n, W_{l}(f)$ means Brouwer degree and it is well known that $W_{r}(f)$ is only used for determining whether the mapping is essential or not. In case $m=$ $(r+1) n-r$ and n is even, if $r=1, W_{r}(f)$ is the Hopf invariant and we showed in my preceding paper that the Hopf invariant is used for such purpose. In this chapter we consider the case $W,(f)$ is determined, that is (i) $m=n$, o- (ii) $m=(r+1) n-r$ and n is even. In the case (ii), by Lemma 2.4, $\bigcap_{i=1}^{r}\left[O, M_{i}^{m-n}\right]$ is a sum of finite manifolds which are at most of n dimension having some singular simplexes at most of one-dimension. By a similar method as in Frendenthal's Lemma [2], we can consider that $\bigcap_{i=1}^{r}[O$, $\left.\boldsymbol{M}_{i}^{m-n}\right]$ is a manifold \boldsymbol{M}^{n} which is at most of n-dimensions having some singular simplexes at most of one-dimention. Let τ_{0}^{n} be a fixed n-simplex and ξ_{0} an interior point of τ_{0}^{n}, ξ_{0} be the antipodal point of S^{n}. We assume that $\sigma=\left(a_{0} a_{1} \ldots a_{n}\right), \sigma^{\prime}=\left(a_{0}^{\prime} a_{1} \ldots a_{n}\right)$ are oriented n-simplexes of M^{n} with the common $(n-1)$-face $\tau=\left(a_{1} \ldots a_{n}\right)$. Then we obtain the following Lemma in my preceding paper.

Lemma 3.1. Let f be a standard map of M^{n} into $S^{r b}$ and $f(\sigma)=+S^{n}, f\left(\sigma^{\prime}\right)$
$=\bar{\xi}_{0}$, then there is a standard map g which is homotopic to f and $g(\sigma)=\bar{\xi}_{0}$, $g\left(\sigma^{\prime}\right)=+S^{n}$ leaving the degree of $M^{i v}-\left(\sigma+\sigma^{\prime}\right)$ fixed.

Lemma 3.2. Lot f be a standard map of $M^{n i}$ into S^{n} and $f(\sigma)=+S^{n} f\left(\sigma^{\prime}\right)$ $=-S^{n}$, then there is a standard map g which is homotopic to f and $g(\sigma)=$ $\bar{\xi}_{0}, g\left(\sigma^{\prime}\right)=\bar{\xi}_{0}$ leaving the degree of $M^{n}-\left(\sigma+\sigma^{\prime}\right)$ fixed.

A map f of S^{n} on S^{n} may be considered a simplicial map of $K^{m b}$ on \dot{K}^{*}. Let P_{0} be an interior point of a fixed simplex τ_{0}^{n} of K^{*}. We may assume that inverse image $\varphi_{S m}\left(P_{v}\right)$ of P_{0} for f is a manifold M^{m-n}. The m -
dimensional simplexes T_{α}^{m} of K^{m} which are mapped on τ_{0}^{n} necessarily intersect M^{n-n} and $M^{m-n} \cap T_{\alpha}^{m}$ are $(m-n)$-simplexes. $\xi_{i}(i=0,1,2, \ldots, r)$ in $\S 2$ may be considered in τ_{0}^{n} without any loss of generality. M-dimensional simplexes T_{a}^{m} of K^{m} which are mapped on τ_{0}^{n} necessarily intersect $M_{1} \cap\left(\bigcap_{i=2}^{n}\left[O, M_{i}\right]\right)$ and $M_{1} \cap\left(\bigcap_{i=2}^{n}\left[O, M_{i}\right]\right) \cap T_{\alpha}$ are $(r-1)$-simplexes. We denote it by $\left(a_{0}^{\alpha_{k}}, a_{1}^{\alpha_{k}}, \ldots ., a_{n-1}^{\alpha_{k}}\right)$. Let ($e_{0}^{\alpha_{k}}, e_{1}^{\alpha_{k}}, \ldots, e_{n-1}^{\alpha_{k}}$) be an ($n-1$)-face of T_{α}^{m-n} such that any two of its vertices are not mapped by f on the same vertex of τ_{0}^{n}, then $\left\{a_{0}^{\alpha_{k}}, a_{1}^{\alpha_{k}}, \ldots, a_{n-1}^{\alpha_{k}} \ldots, e_{0}^{\alpha_{k}}, \ldots, e_{n-1}^{\alpha_{k}}\right\}$ is a ($2 n-1$)-simplex which we denote by $\stackrel{*}{T}_{\alpha_{k}}^{2 n-1}$. $\stackrel{*}{T}_{\alpha_{k}}^{2 n-1}$ is a face of T_{α}^{m}. Such a $(2 n-1)$-dimensional simplex $T_{\alpha_{k}}^{*}+\frac{1 n-1}{}$ is considered for all ($n-1$)-dimensional-simplex ${\underset{T}{\alpha_{k}}}_{*}^{2 n-1}$ of $M_{1} \cap\left(\bigcap_{i=2}^{r}\left[O, M_{i}\right]\right) \cap T_{a}^{m}$. We consider all $(2 n-1)$-simplexes ${\stackrel{T}{\alpha_{k}}}_{*}^{2 n-1}$ which involve some n-simplex of $M_{1} \cap\left(\bigcap_{i=2}^{n}\left[O, M_{i}\right]\right)$. Then $\sum_{a} \sum_{\alpha_{k}}\left(e_{0}^{\alpha_{k},}, \vdash_{1}^{\alpha_{k}}, \ldots, e_{n-1}^{\alpha_{k}}\right)$) is ($n-1$)-manifold with singularity. We denote is by M^{n-1} and consider a following complex:

$$
\begin{aligned}
& \left(a_{0}^{\alpha_{k}} a_{1}^{\alpha_{k}} \ldots . a_{n-1}^{\alpha_{k}}, e_{0}^{\alpha_{k}}\left(+(-1)^{n}\left(a_{1}^{\alpha_{k}}, \ldots ., a_{n-1}^{\alpha_{k}}, e_{0}^{\alpha_{k}}, e_{1}^{\alpha_{k}}\right)+\ldots .\right.\right. \\
& +(-1)^{n(n-1)}\left(a_{n-1}^{\alpha_{k}}, e_{0}^{\alpha_{k}}, e_{1}^{\alpha_{k}}, \ldots, e_{n-1}^{\alpha_{k}}\right) . \\
& \sum_{\alpha} \sum_{\alpha_{k}}\left[\left(a_{0}^{\alpha_{k}} a_{1}^{\alpha_{k}} \ldots . a_{n-1}^{\alpha_{k}}, e_{0}^{\alpha_{k}}\right)+(-1)^{n}\left(\boldsymbol{a}_{1}^{\alpha_{k}} \ldots, a_{n-1}^{\alpha_{k}}, e_{0}^{\alpha_{k}}, e_{1}^{\alpha_{k}}\right)+\cdots .\right. \\
& \left.\ldots .+(-1)^{n(n-1)}\left(a_{n-1}^{\alpha_{k}}, e_{0}^{\alpha_{k}}, e_{1}^{\alpha_{k}}, \ldots ., e_{n-1}^{\alpha_{k}}\right)\right]
\end{aligned}
$$

is n-dimensional manifold with some singular simplexes bounded by $M_{1} \cap$ $\left(\bigcap_{i=2}^{r}\left[O, M_{i}\right]\right)$ and M^{n-1}. We denote it by \bar{K}_{0}^{n}.
We replace $\left(e_{0}^{\alpha_{k}}, e_{1}^{\alpha_{k}}, \ldots, e_{n-1}^{\alpha_{k}}\right)$ by $\left(e_{p}^{\alpha_{k}}, e_{p+1}^{\alpha_{k}}, \cdots, e_{n-1}^{\alpha_{k}}, e_{0}^{\alpha_{k}}, \ldots, e_{p-1}^{\alpha_{k}}\right)$, then

$$
\begin{aligned}
\sum_{\alpha} \sum_{\alpha_{k}} & {\left[\left(a_{0}^{\alpha_{k}}, a_{1}^{\alpha_{k}}, \ldots, a_{n-1}^{\alpha_{k}}, e_{p}^{\alpha_{k}}\right)+(-1)^{n}\left(a_{1}^{\alpha_{k}}, a_{2}^{\alpha_{k}}, \ldots, a_{n-1}^{\alpha_{k}}, e_{p}^{\alpha_{k}}, \boldsymbol{e}_{p+1}^{\alpha_{k}}\right)+\right.} \\
& \left.\ldots+(-1)^{n(n-1)}\left(a_{n-1}^{\alpha_{k}}, e_{n}^{\alpha_{k}}, e_{p+1}^{\alpha_{k}}, \ldots, \quad e_{n-1}^{\alpha_{k}}, e_{0}^{\alpha_{k}}, e_{1}^{\alpha_{k}}, \ldots ., e_{p-1}^{\alpha_{k}}\right)\right]
\end{aligned}
$$

is n-dimensional manifold with some singular simplexes bounded by $M_{1} \cap$ $\left(\bigcap_{i=2}^{n}\left[O, M_{i}\right]\right)$ and M^{n-1}. We denote it by \bar{K}_{p}^{2}. Since M^{n-1} is homologous. zero in S^{n}, there exists an n-complex $\overline{\bar{K}^{n}}$ bounded by $M^{n-1} . \quad K_{p}^{n}=\overline{K_{p}^{n}}+$ \bar{K}^{n} is an n-complex bounded by $M_{1} \cap\left(\bigcap_{i=2}^{r}\left[O, M_{i}\right]\right)$. As p_{0}. is an interior point of τ_{0}^{n}, p_{0} and vertices of each $(n-1)$-face of τ_{0}^{n} form n-simplexes τ_{00}^{n}, $\tau_{1}^{n}, \ldots, \tau_{0 n}^{n}$. If we replace τ_{0}^{n} by $\tau_{c 0}^{n}, \ldots, \tau_{0 n}^{n}$ in $\tilde{\bar{K}}^{n}$, then the complex thus obtained is a finer simplicial subdivision than $\stackrel{*}{K}^{n}$. We may denote the
resulted complex by the same notation $\ddot{K}^{\prime 6}$ for brevity, without any confusion. Similarly we can consider a fine simplicial triangulation of K^{m} by inverse image of $\stackrel{*}{K}^{n}$ by f and a suitable additional subdivision. We shall also denote it by $K^{m} . \quad\left[O, M_{1}\right] \cap\left(\bigcap_{i=2}^{r}\left[O, M_{i}\right]\right)$ which is bounded by $M_{1} \cap\left(\bigcap_{i=2}^{r}\right.$ [O, M_{i}]) may be considered as one of K_{p}^{n}. When M_{i} is mapped on ξ by f we denote the complex which is mapped on τ_{0}^{n} by $R\left(\xi_{i}\right)$. Evidently $R\left(\xi_{i}\right)=$ $R\left(\xi_{j}\right) \quad(i \neq j, i . j=0,1,2, \ldots, r)$. We denote this common complex by R and its n-skeleton by R^{n}.

Theorem 3.1. If $W_{r}(f)=0$, then $f \mid R^{n}$ is homotopic to zero.
Proof. The map f can be considered as a standard map without any loss of generality bv Lemma 2.1, when we use Lemma 3.1 and Lemma 3.2.

As $W_{v}(f)=0, \phi\left(M_{0}^{n-n}, \bigcap_{i=1}^{n}\left[O, M_{i}\right]\right)=0$ and there is a set of n-simple$\operatorname{xes} \sigma_{1}, \sigma_{2}, \cdots, \sigma_{s} ; \sigma_{1}^{\prime}, \sigma_{2}^{\prime}, \cdots, \sigma_{s}^{\prime}$, on $\bigcap_{i=1}^{n}\left[O, M_{i}\right]$, where σ_{i} and σ^{\prime} are mapped on S^{n} positively and negatively, respectively. $\bigcap_{i=1}^{r}\left[O, M_{i}\right]$ may be considered as one of K_{p}^{n}. For σ_{i} and $\sigma_{i}^{\prime}(i=1,2, \ldots, s)$, there are regularly connected chain $\sigma_{i}+\sigma_{i_{1}}+\sigma_{i_{2}}+\ldots .+\sigma_{i_{k}}+\sigma_{i}^{\prime}$ on K_{p}^{n}. It may be supposed that $d_{f}\left(\sigma_{i_{1}}\right)=$ $+1, d_{f}\left(\sigma_{i_{1}}\right)=\ldots .=d_{f}\left(\sigma_{i_{k}}\right)=0, d_{f}\left(\sigma_{i}^{\prime}\right)=-1$. Using Lemma 3.1, we deform f in $\sigma_{i}+\sigma_{i_{1}}$, next in $\sigma_{i_{1}}+\sigma_{i_{2}}$, etc.; then using Lemma 3.2, we deform the map in $\sigma_{i_{k}}+\sigma_{i}^{\prime}$. The new map f^{\prime} has as its degree $d_{f^{\prime}}\left(\sigma_{i}\right)=d_{f}\left(\sigma_{i_{1}}\right)=\ldots$
$=d_{f}\left(\sigma_{i}^{\prime}\right)=0$. We continue in this manner untill no simplexes are mapped positively and none are mapped negatively over S^{n}. Then $f \mid K_{p}^{n}$ is homotopic to zero, fixing the image of M_{1} on ξ_{1}.

By Definition, $K_{p}^{n}=K_{n}^{n}+\overline{\bar{K}}^{n}$ and \bar{K}_{p}^{n} have no common n-simplex for any p. When f is simplicial mapping, we consider the state where K_{p}^{n} are mapped on $\tau_{00}^{n} . \overline{\overline{K_{p}^{n}}}$ consist of the following complex:

$$
\begin{aligned}
& \left(a_{0}^{\alpha_{k}}, a_{1}^{\alpha_{k}}, \ldots, a_{n-1}^{\alpha_{k}}, \boldsymbol{e}_{p}^{\gamma_{k}}\right)+(-1)^{n}\left(\boldsymbol{a}_{1}^{\alpha_{k}}, a_{2}^{\alpha_{k}}, \ldots, a_{n-1}^{\alpha_{k}}, e_{p}^{\alpha_{k}}, e_{p+1}^{\alpha_{k}}\right)+\ldots \\
& \quad+(-1)^{n(n-1)}\left(\boldsymbol{a}_{n-1}^{\alpha_{k}}, \boldsymbol{e}_{p}^{\alpha_{k}}, e_{p+1}^{\alpha_{k} k}, \cdots, \boldsymbol{e}_{n n-1}^{\alpha_{k}}, e_{0}^{\alpha_{k}}, e_{1}^{\alpha_{k}}, \ldots, \boldsymbol{e}_{p-1}^{\alpha_{k}}\right)
\end{aligned}
$$

If $\left(a_{n-1}^{\alpha_{k}}, e_{p}^{\alpha_{k}}, e_{p+1}^{\alpha_{k}}, \ldots, e_{n-1}^{\alpha_{k}}, e_{0}^{\alpha_{k}}, e_{1}^{\alpha_{k}}, \ldots, e_{p-1}^{\alpha_{k}}\right.$) is mapped on τ_{00}^{n}, other simplexes are mapped on faces of τ_{00}^{n} and their dimensions depend on numbers of \boldsymbol{e}_{i}. $\left(a_{n-1}^{\alpha_{k}}, e_{p}^{\alpha_{k}}, \boldsymbol{e}_{n+1}^{\alpha_{k}}, \cdots, \boldsymbol{e}_{n-1}^{\alpha_{k}}, \boldsymbol{e}_{0}^{\alpha_{k}}, e_{1}^{\alpha_{k}}, \ldots, e_{p-1}^{\alpha_{k}}\right)$ is mapped on τ_{00}^{n} in the same manner for each p except for orientation.

We may neglect this orientation when we take care of this similar property for all α_{k}. If $\left(a_{n-1}^{\alpha_{k}}, e_{p}^{\alpha_{k}}, e_{p+1}^{\alpha_{k}}, \cdots, e_{n-1}^{\alpha_{k}}, e_{0}^{\alpha_{k}}, e_{1}^{\alpha_{k}}, \ldots, e_{p-1}^{\alpha_{k}}\right.$) is not mapped
on τ_{00}^{n}, we may neglect T_{a}^{m}. In other words, we may consider that ($a_{0}^{\alpha_{k}}, a_{1}^{\alpha_{k}}$, $\ldots ., a_{n-1}^{\alpha_{k}}$) contract tos a point and T_{α}^{m} is empty. As $\overline{K^{n}}$ is not mapped on τ_{00}^{n}, we may consider only \bar{K}_{p} for the degree based on τ_{00}^{n}. On the other hand, deformations of Lemma 3.1 and Lemma 3.2 can bel introduced leaving the degree of $\overline{K^{n}}$ fixed. If we deform f to the standard map f^{\prime} by Lemma 2.1, f^{\prime} maps $\sum_{p} K_{p}^{n}$ on $\bar{\xi}_{0}$ and f maps $R^{n}-\sum_{p} K_{p}^{n}$ on $\bar{\xi}_{0}$ by the above remark. Hence $f \mid R^{n} \simeq 0$.

When M_{i} is mapped on ξ_{i} by f_{1} and f_{z} we denote the complex which is mapped on τ_{0}^{n} by R_{1} and R_{2} respectively. We denote their n-dimentional skeleton by $R_{i}^{n}(i=1,2)$.

Theorem 3.2. Let f_{1} and f_{2} be continuous mappings and $W_{r}\left(f_{1}\right)$ be equal to $W_{r}\left(f_{2}\right)$, then $f_{1}\left|R_{1}^{n}+R_{2}^{n} \simeq f_{2}\right| R_{1}^{n}+R_{2}^{n}$.

Proof. We consider Cartesian ($m+1$) space $\mathbb{(}^{m+1}$ and its subsets:

$$
\begin{aligned}
& S^{m}=\left\{x \in \mathfrak{(}^{m+1} ; \sum_{i=1}^{m+1} x_{i}^{2}=1\right\}, \\
& E_{+}^{n}=\left\{x \in S^{n} ; x_{m+1} \geqq 0\right\}, \\
& E^{m}=\left\{x \in S^{m} ; x_{m+1} \leqq 0\right\} \\
& S_{0}^{n-1}=\left\{x \in S^{m} ; x_{m+1}=0\right\} .
\end{aligned}
$$

We and define φ_{1} as follows:
φ_{1} maps $E_{+}^{m} \quad$ onto S^{m},
$\boldsymbol{\varphi}_{1}$ is a homeomorphism on $E_{+}^{m}-S_{0}^{m-1}$,
$\varphi\left(S_{0}^{m-1}\right)=P$, where P is a fixed point on $S^{n}, d\left(\varphi_{2}\right)=1$.
We also define φ_{2} as follows:
φ_{2} maps E_{-}^{m} onto S^{m},
φ_{2} is a homeomorphism on $E_{-}^{m}-S_{0}^{n-1}$,
$\varphi_{2}\left(S_{0}^{m-1}\right)=P$,
$d\left(\varphi_{2}\right)=-1$.
We may assume $f_{1}(P)=f_{2}(P)=Q$ without any loss of generality. We construct a map F of S^{m} into S^{n} as follows:

$$
F=\left\{\begin{array}{lll}
f_{1} & \varphi_{1} & \text { on } E_{+}^{m} \\
f_{2} & \boldsymbol{\varphi}_{2} & \text { on } E_{-}^{m}
\end{array}\right.
$$

From $W_{r}\left(f_{1}\right)=W_{i}\left(f_{2}\right)$ we know $W_{r}(F)=0$. If we denote by $[F],\left[f_{1}\right],\left[f_{2}\right]$ the homotopy classes of F, f_{1} and f_{2} respectively, $[F]=\left[f_{1}\right]-\left[f_{2}\right]$.

By Theorem 3.1, $F \mid R_{1}^{n}+R_{2}^{n} \simeq 0$, then $f_{1}\left|R_{1}^{n}+R_{2}^{n} \simeq f_{2}\right| R_{1}^{n}+R_{2}^{n}$.
Pontrjagin theorem ${ }^{(\dot{\theta})}$ may be obtained from Theorem 3.2 as its special case when we put $r=1$, and $n=2$. For the proof, see my paper.

Theorem 3.3. (Pontrjagin's theorem). If f_{1} and f_{2} are maps of S^{3} on S^{2} and $W_{1}\left(f_{1}\right)$ is equal to $W_{1}\left(f_{2}\right)$, then f_{1} is homotopic to f_{2}.
4. Freudenthal introduced the idea of suspension in the well known paper [2]. We shall investigate in this section some relations of the suspension and $W_{r}(f)$.

Let f be a map of S^{m} into S^{n}. We denote the equators of S^{m+1} and S^{n+1} by S^{m} and S^{n} respectively and extend f to a map $E f$ of S^{n+1} into S^{n+1} as follows:

A point of S^{n+1} is represented by (P, β), where P is a point of S^{n} and $-1 \leqq \beta \leqq 1$. Similarly, a point of S^{n+1} is represented by $\left(P^{\prime}, \beta\right)$, where P^{\prime} is a point of S^{n} and $-1 \leqq \beta \leqq 1$. We define

$$
E f(\bar{P}, \beta)=(f(P), \beta) .
$$

If $m+1=(r+1)(n+1)-r$, and $n+1$ is even, it is trivial that $W_{r}(E f)=0$. Secondly we investigate its inverse. We denote a subset of $\pi_{m+1}\left(S^{n+1}\right)$ whose elements have 0 as $W_{r}(f)$ invariant by $\left[\pi_{m+1}\left(S^{n+1}\right)\right]_{0}$.

Theorem 4.1. $\quad E\left(\pi_{m}\left(S^{n}\right)\right)=\left[\pi_{n+?}\left(S^{n+1}\right)\right]_{0}$.
Proof. We consider a map f of S^{m+1} into S^{n+1} where $W_{r}(f)=0$. If we can prove that the inverse image of a point P^{\prime} of S^{n+1} consists of only one point P, we can prove this theorem as follows: Let V_{1}^{m+1} be a closed neighborhood of P on S^{m+1} and V_{2}^{m+1} be the closure of the complement of V_{1}^{m+1}. Then $f\left(V_{1}^{m+1}\right)$ or $f\left(V_{2}^{m+1}\right)$ does not completely cover S^{n+1} and we can deform f to a form of Eg. In order to prove that the inverse image of P^{\prime} consists of only one point it is sufficient to prove two following properties : $1^{\circ} \bigcap_{i=1}^{r}\left[O, M_{i}\right]$ is mapped on P^{\prime} by f_{1} which is homotopic to $f .2^{\circ} \bigcap_{i=1}^{r}\left[O, M_{i}\right]$ is contractible to one point on itself. We shall prove them. By $W_{r}(f)=0$, we have $\phi\left(M_{0}, \bigcap_{i=1}^{r}\left[O, M_{i}\right]\right)=0$. As we know in the proof of Theorem 3.1, the image of $\bigcap_{i=1}^{r}\left[O, M_{i}\right]$ can be contractible to a point fixing the image of $M_{i} \cap\left(\bigcap_{i=2}^{r}\left[O, M_{i}\right]\right)$. Then the image of $\bigcap_{i=1}^{r}\left[O, M_{i}\right]$ by f_{1}^{\prime} can be considered to be P^{\prime}. At first we consider any point R in distance $\rho \leqq \varepsilon$ of $\bigcap_{i=1}^{n}\left[O, M_{i}\right]$, where ε is sufficiently small and denote by Q the fixed point of the segment $P O$ for which $R Q / Q O=(\varepsilon-\rho) / \rho$. Let $\varphi(R, \tau)$ move linearly along the segment $R Q$ as τ move from 0 to 1. For the point R in distance $\rho \geqq \varepsilon$, we set $\varphi(R, \tau)=R$. We denote the inverse of $\varphi(R, \tau)$ by $\psi(R, \tau)$, and define $f_{1+\tau}=f_{1}\left(\psi(R, \tau)\right.$, then f_{2} maps O and only O on P^{\prime}. The proof of (2) is complete.

We define some special sets which are used for the proof of Theorem 4.2.

Let $\mathbb{(0)}^{m+2}$ be the Cartesian $(m+2)$ - space. We define its subsets as follows:

$$
\begin{aligned}
& S^{m+1}=\left\{x \in\left(5^{m+2}: \sum_{i=1}^{m+2} x_{i}^{2}=1\right\},\right. \\
& S^{n}=\left\{x \in S^{m+1}: x_{m+1}=0\right\}, \\
& S_{\beta_{0}}^{m}=\left\{x \in S^{m+1}: x_{m+2}=\beta_{0}\right\},\left(-1 \leqq \beta_{0} \leqq 1\right) \\
& V^{m+2}=\left\{x \in\left(^{m+2}: \sum_{i=1}^{m+2} x_{i}^{\prime} \leqq 1\right\},\right. \\
& E_{R_{0}}^{m+1}=\left\{x \in V^{m+2}: x_{m+2}=\beta_{0}\right\}, \\
& V_{\geq \beta_{0}}^{m+1}=\left\{x \in S^{m+1}: x_{m+2} \geqq \beta_{0}\right\}, \\
& V_{\leq \beta_{0}}^{m+1}=\left\{x \in S^{m+1}: x_{m+2} \leqq \beta_{0}\right\} . \\
& V_{\beta_{1}, \mathcal{P}_{2}}^{m+1}=\left\{x \in S^{m+1}: \beta_{1} \leqq x_{m+2} \leqq \beta_{2}\right\},
\end{aligned}
$$

Similarly we define for ${ }^{\left(0^{n+2}\right.}$.
Theorem 4.2. If $m=(r+1) n-r$ and n is even, E is an isomorphism of $\left[\pi_{m}\left(S^{n}\right)_{3}\right]_{3}$.

Proof. Let g be a map of S^{m} into S^{n} and be $f=E g=0$. 'Then f can be extended to a map of $V^{m+2}\left(S^{m+1}=R \partial V^{m+2}\right)$ into S^{n+1}. Let τ_{0}^{n+1} be a fixed simplex of S^{n+1} and $\xi_{i}(i=1,2,3, \ldots, r)$ be the fixed interior points of τ_{0}^{n+1} and let ξ_{i} exist on $S_{\beta}^{n}(-1<\beta<1)$. We denote the inverse image of ξ_{i} in S^{m+1} by M_{i}^{m-n} and the inverse image of ξ_{i} in V^{m+2} by Y_{i}^{m-n+1}.
Then, we have

$$
f\left\{\bigcap_{i=1}^{r}\left[O, M_{i}\right]\right\}=W_{r}(f) S_{B_{0}}^{n}
$$

and

$$
R \partial Y_{i}^{m-n+1}=M_{i}^{m-n} .
$$

On the other hand M_{i}^{m-n} belongs to $S_{\beta_{0}}^{m}$ essentially and there exists a complex K_{i}^{n-n+1} bounded by M_{i}^{m-n} in $S_{\beta_{0}}^{m}$. When we denote the fixed point of $S_{P_{0}}^{m}$ by O, we can consider [O, M_{i}^{m-n}]as K_{i}^{m-n+1}. We define

$$
Z^{n}=Y_{1}^{m-n+1} \cap \bigcap_{i=2}^{r}\left[O, M_{i}\right]-\bigcap_{i=1}^{r}\left[O, M_{i}\right] .
$$

There exist a complex K^{n+1} which is bounded by Z^{n} in V^{n+1}.

$$
\begin{aligned}
R \partial f\left(K^{n+1}\right)=f\left(R \partial K^{n+1}\right) & =f\left\{Y_{i}^{m-n+1} \cap\left(\bigcap_{i=2}^{r}\left[O, M_{i}\right]\right)\right\}-f\left\{\bigcap_{i=2}^{r}\left[O, M_{i}\right]\right\} \\
& =-W_{r}(f) S^{n},
\end{aligned}
$$

$$
-W_{r}(f)=c^{\prime}-c^{\prime \prime}
$$

c^{\prime} and $c^{\prime \prime}$ have the following properties:
(i) c^{\prime} and $c^{\prime \prime}$ are the same value when we use $Y_{i}^{n+1}(i=2,3, \ldots . r)$.

In the relation of Z^{n} we replace Y_{1}^{m-n+1} by Y_{i}^{m-n+1}, then it is similar to the proof of Lemma 2.8 that c^{\prime} and $c^{\prime \prime}$ are invariant.
(ii) c^{\prime} and $c^{\prime \prime}$ are not depend on a choice of K^{n+1}.

In $f\left(K^{n+1}\right)$ the difference of K^{n+1} give us the difference only of the image of bounding cycle.
(iii) c^{\prime} and $c^{\prime \prime}$ do not depend on a choice of O. The proof is similar as in Lemma 2.7.
(iv) c^{\prime} and $c^{\prime \prime}$ do not depend on a choice of ξ_{i}. We shall prove it.

Let ξ_{i} and $\stackrel{\xi}{\xi}_{i}$ be the fixed interior points of τ_{0}^{n+1}, where $\xi_{i}, \mathcal{\xi}_{i}$ exist on $S_{\beta_{0}}^{n}$ and $S_{\beta 2}^{n}$ respectively. We introduce the following complexes:

$$
\begin{aligned}
& M^{n-n}, Y_{1}^{m-n+1},\left[O, M_{1}\right], Z^{n}, K^{n+1} ; 1
\end{aligned}
$$

We consider a segment x_{i} in $V_{\beta_{1}, \varepsilon_{2}}^{n+1}$ whose end points are $\stackrel{\rightharpoonup}{\xi}_{i}$ and ξ_{i} and denote the inverse image of x_{1} in S^{m+1} by Z_{12}^{m-n+1}, the inverse image of x_{1} in V^{m+2} by Y_{12}^{m-n+2}. Besides we denote $V_{\beta_{1}, \beta_{2}}^{m+1}$ by $S^{m} \times I$ where I is an interval $\beta_{1} \leqq t \leqq \beta_{2}$. We connect O with $\stackrel{*}{O}$ by an arc in $S^{m} \times I$ which intersect with $S^{n} \times(t)$ on only one point. These points of intersection will be denoted by O_{t}. We also denote $x_{i} \cap S^{n} \times(t)$ by $\xi_{t t}$ in $S^{n} \times(t)$ by $M_{i t}$ and the inverse image of $\xi_{i t}$ in E_{t}^{n+1} by $C_{i t}^{m-n+1}$. Then we have

$$
\begin{aligned}
& R o\left[Y_{12}^{m-n+2} \cap\left\{\bigcap_{\beta_{1} \leq \leq \beta_{2}}\left(\bigcap_{i=2}^{r}\left[O_{t}, M_{i t}\right]\right)\right\}\right] \\
= & \stackrel{Y}{1}_{1}^{m-n+1} \cap\left(\bigcap_{i=2}^{r}\left[O ̈, \stackrel{*}{M}_{i}\right]\right)-Y_{1}^{m-n+1} \cap\left(\bigcap_{i=2}^{r}\left[O, M_{i}\right]-\right. \\
& \left.Z_{12}^{m-n+1} \cap \bigcup_{\beta_{1} \leq t \leq S_{2}}\left(\bigcap_{i=2}^{r}\left[O_{t}, M_{i t}\right]\right)\right\},
\end{aligned}
$$

and

$$
\begin{aligned}
& R \partial\left[Z_{12}^{m-n+1} \cap\left\{\bigcup_{\beta_{1} \leqq \leq \leq F_{2}}\left(\bigcap_{i=2}^{*}\left[O_{t}, M_{i t}\right]\right)\right\}\right] \\
= & \left.\ddot{M}^{* n-n} \cap\left(\bigcap_{i=2}^{*} r \stackrel{*}{*}, \stackrel{H}{M}_{i}\right]\right\}-M^{n-n} \cap\left(\bigcap_{i=2}^{r}\left[O, M_{i}\right]\right\}- \\
& \left\{\bigcup_{\beta_{1} \leqq \leq \leq F_{2}}\left(M_{i} \cap\left(\bigcap_{i=2}^{r}\left[O_{t}, M_{i t}\right]\right)\right\} .\right.
\end{aligned}
$$

We define

$$
\boldsymbol{L}^{n+1}=\stackrel{*}{K^{\prime+1}}-K^{n+1}-Y_{12}^{m-n+2} \cap\left\{\bigcup_{\beta_{1} \leq \leq \leq g_{2}}\left(\bigcap_{i=2}^{\dot{n}}\left[O_{t}, M_{i t}\right]\right)\right\} .
$$

Then

$$
R \partial L^{n+1}=\stackrel{*}{Z}^{n}-Z^{n}+Y_{1} \cap\left(\bigcap_{i=2}^{r}\left[O, M_{i}\right]\right)-\stackrel{*}{Y}_{1} \cup\left(\bigcap_{i=2}^{\cdot}\left[\stackrel{*}{O}, \stackrel{*}{M}_{i}\right]\right)+Z_{12}^{m-n+1}
$$

$$
\begin{gathered}
\left\{\bigcup_{\beta_{1} \leq 1 \leq \beta_{2}}\left(\bigcap_{i=2}^{r}\left[O_{t}, M_{i t}\right]\right)\right\} \\
=\bigcap_{i=1}^{r}\left[O, M_{i}\right]-\bigcap_{i=1}^{r}\left[\begin{array}{r}
* \\
M_{i}
\end{array}\right]+Z_{12}^{m-r+1} \cap\left\{\bigcup_{\beta_{1} \leq i \leq \beta_{2}}\left(\bigcap_{i=2}^{r}\left[O_{i}, M_{i t}\right]\right)\right\} .
\end{gathered}
$$

This complex is bounded by a cycle M^{n+1} included in V^{m+1}. Therefore $R \partial$ $L^{n+1}=R \partial M^{n+1}$. By the fact of $M^{n+1} \subset V_{\beta_{1}, \beta_{2}}^{m+1}$, we know $f\left(M^{n+1}\right) \subset V_{\beta_{1}, \beta_{2}}^{n+1}$ and $f\left(M^{n+1}\right)$ cover the north pole and south pole with the degree 0 . As n is even, $c^{\prime}+c^{\prime \prime}=0$, therefore $-W_{r}(f)=c^{\prime}-c^{\prime \prime}=2 c^{\prime}>0$.

To prove Theorem 4.2, using $W_{r}(f)=c^{\prime}=0$ and $E g=0$, it is sufficient to prove $g=0$. Now, by $W_{r}(f)=0$ we can deform f in S_{β}^{m} so as to map $\bigcap_{i=1}^{r}\left[O, M_{i}\right]$ to one point and also $f\left(R \partial K^{n+1}\right)$ to one point. By $c^{\prime}=0$, the image of K^{n+1} is contractible to one point fixing $R \partial K^{n+1}$ and also K^{n+1} can be contractible to one point. Then, if $f\left(V^{m+2}\right) \subset S^{n+1}$, one point (for example north pole) has one point (for example north pole) and only one point as inverse image, therefore g is not essential.
5. Product theorem.

Theorem 5.1. Let g be a map of one m-sphere S_{1}^{m} into another n-sphere S^{m} of degree c. If f is a mat of S^{m} into S^{n}, then $W_{r}(f g)=c^{r} W_{r}(f)$.

Proof. As c and $W r(f)$ are constant for the homotopy class of maps respectively, we can assume that f and g are simplicial mappings. Let ξ_{i} be a fixed point of S^{n} and $\varphi\left(\xi_{i}\right)$ and $\psi\left(\xi_{i}\right)$ the inverse image of ξ_{i} for f and $f g$ respectively. We also assume that m-simplex T^{m} of S^{m} intersects with $\varphi\left(\xi_{i}\right)$ and the number of m-simplexes of S_{1}^{m} mapped on T^{m} positively or negatively by g is p or q respectively. Then $p-q=c$ and the number of ($m-n$)-simplex of $\psi\left(\xi_{i}\right)$ are mapped on ($m-n$)-simplex of $\psi\left(\xi_{i}\right)$ which are included in T^{m} positively or negatively is p or q. Conversely the image of each ($m-n$)-simplex of $\psi\left(\xi_{i}\right)$ are $(m-n)$-simplex of $\varphi\left(\xi_{i}\right)$. Therefore we have $g\left(\psi\left(\xi_{i}\right)\right)=c \cdot \varphi\left(\xi_{i}\right)$.

We define $L_{i}^{m-n+1}, K_{i}^{m-n+1}$ as follows:
$R \partial L_{i}^{m-n+1}=\psi\left(\xi_{i}\right)$,
$R \partial K_{i}^{m-n+1}=\varnothing\left(\xi_{i}\right)$.
Then,

$$
R \partial\left(g\left(\boldsymbol{L}_{i}^{m-n+1}\right)\right)=g\left(R \partial\left(\boldsymbol{L}_{i}^{m-n+1}\right)=g(\psi(\xi))=c \cdot \varphi(\xi)=c \cdot R \partial K^{m+n-1},\right.
$$

and, $g\left(L_{i}^{m-n+1}\right)-c \cdot K_{i}^{m-n+1}$ is a cycle of S^{m}. On the other hand, $g\left(L_{i}^{m-n+1}\right)-$ $c \cdot K_{i}^{m-n+1} \sim 0$ in S^{m} and $f g\left(L_{i}^{m-n+1}\right)-c f\left(K_{i}^{m-n+1}\right) \sim 0$ in S^{n}.
Then, $f g\left(L_{i}^{m-n+1}\right)=c \cdot f\left(K_{i}^{m-n+1}\right)$.
As in the proof of Theorem 2.1, we may use $\left[O, \psi\left(\xi_{i}\right)\right],\left[O, \psi\left(\xi_{i}\right)\right]$ for $K_{i}^{m-n+1}, L_{i}^{m-n+1}$ respectively. Then $f g\left(\bigcap_{i=1}^{r}\left[O, \psi\left(\xi_{i}\right)\right]\right)=c^{r} \cdot f\left(\bigcap_{i=1}^{r}\right.$
$\left.\left[O, \varphi_{(}\left(\xi_{i}\right)\right]\right)$, therefore $W_{r}(f g)=c^{r} \cdot W_{r}(f)$.
Theorem 5.2. Let h be a map of one n-sphere S^{n} into another n-sphere S_{1}^{n} of degree c. If f is a map of S^{m} into S^{n}, then

$$
W_{r}(h f)=c^{r+1} W_{r}(f) .
$$

Proof. As c and $W_{r}(f)$ are constant for the homotopy class of maps respectively, we can assume that h and f are simplicial mappings. Let ξ be a fixed point of S^{n} and φ and ψ the inverse image for f and $h f$ respectively. The inverse image of ξ for h are denoted by, $\eta_{1}, \ldots, \eta_{n} ; \zeta_{1}, \zeta_{2}$, $\ldots ., \zeta_{q}$; where n-simplexes including η_{i} and ζ_{i} are mapped on n-simplex including ξ positively and negatively respectively. It is clear that

$$
c=p-q \text { and } \quad \psi(\xi)=\Sigma \varphi\left(\eta_{i}\right)-\Sigma \mathcal{Q}_{(}\left(\zeta_{j}\right) .
$$

We define $K_{i}^{m-n+1}, L_{j}^{m-n+1}$ as follows:

$$
\begin{aligned}
& R \partial K_{i}^{m-n+1}=\varphi\left(\eta_{i}\right) \\
& R \partial L_{j}^{m-n+1}=\varphi\left(\zeta_{j}\right) .
\end{aligned}
$$

Therefore we have

$$
R \partial\left(\Sigma K_{i}^{m-n+1}-\sum_{j} L_{i}^{m-n+1}\right)=\psi(\xi)
$$

$\sum K_{i}{ }^{-n+1}-\sum L_{j}^{m-n+1}$ is used for $W_{r}(h f)$, analogously
$\sum K_{i}^{m-n+1}-\sum L_{j}^{m-n+1}$ is used for $(p-q) W_{r}(f)$. The degree c above considered is the degree of for h. Therefore we have.

$$
W_{r}(h f)=c^{r} \cdot c \cdot W_{r}(f)=c^{r+1} W_{r}(f)
$$

Bibliography

[1] K. Aoki, On maps of a ($2 n-1$)-dimensional sphere into an n-dimensional sphere. Tôhoku Math. Journ., 4(1952)
[2] H. Freudenthal, Uber die Klassen der Sphären abbildungen, Compositio Math., 5(1937), 299-314.
[3] H. Hopf, Über die Abbildungen der dreidimensionalen Sphären auf die Kugelfläche, Math. Ann., 104(1931), 637-665.
[4] H. Hopf, Úber die Abbildungen von Sphären auf Sphären niedrigere Dimension. Fund. Math., 25(1935), 427-440.
[5] H. HCpf, Die Klassen der Abbildiungen der n-dimensionalen Polyeder auf der n dimensionale Sphären Comment. Math. Helv., 5(1933), 39-54.
[6] L. Pontrjagin, A classification of mappings of the three dimensional complex into the two-dimensional sphere. Rec. Math., N. S., 9(1941), 331-363.
[7] H. WHITNEY, On the maps of an in-sphere into another n-sphere. Duke Math. Journ., 8(1937), 46-50.
[8] H. Whitney, The maps of an n-complex into au n-sphere. Duke Math. Journ., 3(1937), 51-55.

Mathematical Institute, Tôhoku University Sendai.

