ON SOME INVARIANTS OF MAPPINGS

KIYOSHI AOKI

(Received May 15, 1953)

1. Introduction. In the study of homotopy groups of sphere there are very few methods for determining whether a mapping of one sphere on another is essential or not. One such method is furnished by Brouwer degree of a mapping of S^r on itself. Another is furnished by the Hopf invariant of a mapping of S^{2r-1} on $S^r[3, 4]$. These methods are used only for mappings of S^n on S^r with n = r or n = 2r - 1. Freudenthal's results [2] are applied for the case r < n < 2r - 1 but almost nothing are known about $\pi_n(S^r)$ for n > 2r - 1. L. Pontrjagin [6] succeeded in the enumeration of the homotopy classes of maps of a 3-complex K^3 on S^2 and obtained the result that Hopf's invariant determines completely homotopic classes of the maps of S^3 on S^2 ; Whitney [8] reformulated another Hopf's theorem [5] and introduced two deformation theorems. In this paper we shall at first attempt to generalize both Hopf's invariant and Brouwer degree. Such quantity will be used for mappings of S^n on S^r with n = (k + 1)r - k (k = 0, 1, 2, 3, ...). Secondly for this quantity we shall attempt to generalize Pontrjagin's and some other theorems.

2. Hopf [3] studied many interesting properties of maps of S^3 on S^2 and he stated [4] the generalization of these results for the maps of S^{2r-1} on S^r but he omitted these proofs.

We now consider maps f of S^n on S^n (m > n) and denote by T^n any ndimensional simplex on S^n , by τ^n a fined n-dimensional simplex on S^n . Let ξ be an interior point of τ^n . When ξ has only one interior point x in T^n as inverse image of f, we denote $\varphi_T^{n}(\xi) = \pm x$. The signs of x will be + or according to whether T^n is mapped on τ^n positively or negatively. If ξ does not have inverse image of f in T^n , we define $\varphi_T^n(\xi) = 0$. We consider any integral complex $C^n = \sum a_i T_i^n$ and define by $\varphi_C^n(\xi) = \sum a_i \varphi_T_i^n(\xi)$ the inverse image for C^n . This integral complex is clearly 0-dimensional. From the definition the following relations are introduced:

(1)
$$\mathscr{P}c_1^n + c_2^n(\boldsymbol{\xi}) = \mathscr{P}c_1^n(\boldsymbol{\xi}) + \mathscr{P}c_2^n(\boldsymbol{\xi})$$

(2)
$$\varphi_{-C^n}(\xi) = -\varphi_{C^n}(\xi)$$

$$(3) \qquad \qquad \varphi_0(\xi) = 0$$

Secondly we consider any r-dimensional simplex $(m \ge r \ge n+1)$ T^r and denote by $\varphi_{T^r}(\xi)$ the intersection of the inverse image of ξ and T^r. From the definition the following relations are introduced:

(1')
$$\varphi_{c_1^r+c_2^r}(\xi) = \varphi_{c_1^r}(\xi) + \varphi_{c_2^r}(\xi)$$

(2') $\varphi_{-c^r}(\xi) = -\varphi_{c^r}(\xi)$

$$\begin{array}{ll} (3') & \varphi_0(\xi) = 0 \\ (4') & \dot{\varphi}_{\mathcal{O}^T}(\xi) = \varphi_{\dot{\mathcal{O}}^T}(\xi) \end{array}$$

From the property $\dot{S}^{m} = 0$ and (3'), (4'), we know $\dot{\varphi}_{S^{m}}(\xi) = 0$. On the other hand S^{m} is a manifold and $\varphi_{S^{m}}(\xi)$ consists of finite numbers of closed manifolds M_{1}^{m-n} , M_{2}^{m-n} , $\dots M_{k}^{-nm}$ which are disjoint each other. If we apply the Freudenthal's Lemma [2] for our mappings, we may assume k = 1 without any loss of generality. We consider r + 1 points $\xi_{0}, \xi_{1}, \dots, \xi_{r}$ on S^{n} and denote by M_{i}^{m-n} the inverse image of ξ_{i} . Let K^{m} , \tilde{K}^{n} be simplicial subdivision of S^{m} S^{n} respectively. We introduce the standard map which has at first been introduced by Whitney and which the author has defined for more general case[1]. The following Lemma is the immediate result from the definition. Its proof is similar to the one of the preceding paper [1].

LEMMA 2.1 Let f be a map of S^m into S^n , then there exists a standard map which is homotopic to f.

As $M_i^{m-n} \sim 0$ in S^m , there exists a complex K_i^{m-n+1} bounded by M_i^{m-n} . We shall take useful one as K_i^{m-n+1} and following Lemma is used in studing the special one of K^{im-n+1} .

LEMMA 2.2. Let Z^p , Z^q be any manifold of Euclidean space \mathbb{R}^m which are fremed each other. The regular connected complexes which are bounded by Z^p , Z^q respectively can be deformed so as to hold at most p + q - m + 2 dimensionalsimplexes in common.

PROOF. We can assume p > q without any loss of generality. Let K^{p+1} , K^{q+1} be regularly connected complexes bounded by Z^p , Z^q respectively and holding in common (q + 1)-dimensional simplex $(a_0, a_1, \ldots, a_{q+1})$. If $q + 1 \leq p + q - m + 2$, then this Lemma is evident. Thus we assume q + 1 > p + q - m + 2 and consider $(q + 2) - \text{simplex} (a_0, a_1, \ldots, a_{q+2})$ and its interior point b. We replace the simplex $(a_0, a_1, \ldots, a_{q+1})$ of K^{q+1} by

 $[(ba_1 \dots a_{q+1}) - (ba_0 a_2 \dots a_{q+1}) + \dots + (-1)^{q+1} (b \ a_0 a_1 \dots a_q)].$

If this process is done for every common (q + 1) - simplex of K^{p+1} and K^{q+1} , then they have common simplexes which are at most q-dimensional. If q = p + q - m + 2, this Lemma was completely proved. Thus we assume q > p + q - m - 2. Let $(a_0a_1...a_q)$ be any common simplex of K^{p+1} and $(a_0a_1...a_qa_{q+1})$, $(a_0a_1...a_qa'_{q+1})$ be a pair of (q + 1) - simplexes of K^{q+1} which have the common q-simplex $(a_0a_1...a_q)$. We consider their interior points b, b' respectively. At first we replace $(a_0a_1...a_qa_{q+1})$, $(a_0a_1...a_qa'_{q+1})$ by

 $C_1^{q+1} = [(ba_1 \dots a_q a_{q+1}) - (ba_0 a_2 \dots a_q a_{q+1}) + \dots + (-1)^q (ba_0 a_1 \dots a_q a_q a_q \dots a_q a_q \dots a_q a_q)$

 $C_2^{q+1} = [(b'a_1 \dots a_q a'_{q+1}) - (b'a_0 a_2 \dots a_q a'_{q+1}) + \dots + (-1)^q (ba_0 a_1 \dots a_{q-1} a'_{q+1})],$

respectively. As q > p + q + 2 - m, we can construct regularly connected complex C^{q+1} bounded by

 $[(b a_1 \dots a_q) - (b a_0 a_2 \dots a_q) + \dots + (-1)^q (b a_0 a_1 \dots c_{q-1})]$

and $[(b'a_1 \dots a^q) - (b'a_0a_2 \dots a_q) + \dots + (-1)^q(b'a_0a_1 \dots a_{q-1})]$ which have common simplexes at most of (q-1)-dimensions with K^{p+1} . We replace $(a_0a_1 \dots a_qa_{q+1}) + (a_0a_1 \dots a_la'_{l+1})$ by $C_1^{q+1} + C_2^{q+1} + C_2^{l+1}$. If such a process is done for every common q-simplexes of K^{p+1} and K^{q+1} , then they have common simplexes at most of (q-1)-dimensions. If we take care of only fact that every simplex at most of (q-1)-dimensions is a common one face of some (q+1)-simplexes (its number need not to be two for the common (q-1)-simplex)), we can perform similar process. By a repetition of similar processes, we can lower the dimension of common simplexes of K^{p+1} and K^{q+1} untill at most p+q+2-m, where the dimension of the last common simplex is calculated from the dimensions of S^m , K^{p+1} and K^{q+1} .

LEMMA 2.3. Let Z^p be any manifold of Euclidean space R^m . If we construct a complex projecting Z^p from a fix point, the resulted (p + 1)-dimensional complex may be deformed so as to have singular simplexes [1] at most of (2p + 2 - m)-dimension.

PROOF. By the similar deformations of Lemma 2.2, we can prove immediately.

THEOREM 2.1. K_i^{m-n+1} may be chosen as a manifold which has some singular simplexes at most of (m-2n+2)-dimension.

PROOF. Let us consider that a fixed point of S^n is a point at infinity, then S^m may be regarded as the sum of the point at infinity and a *m*-dimensional Euclidean space R^m . Of course, we don't take the point at infinity on M_i^{m-n} . We project M_i^{m-n} from a suitable point O and denote by $[O, M_i^{m-n}]$ the resulted sets. $[O, M_i^{m-n}]$ are special complexes bounded by M_i^{m-n} and are one of K_i^{m-n+1} . By Lemma 2.3, the dimension of singular simplex of $[O, M_i^{m-n}]$ is at most

$$2(m - n + 1) - m = m - 2n + 2.$$

LEMMA 2.4. $\bigcap_{i=1}^{r} [O, M_i^{m-n}]$ is a sum of finite manifolds which are at most of (m - rn + r)-dimension having some singular simplexes at most of [m - (r+1)n + r + 1]-dimension.

PROOF. By $\xi_i \neq \xi_j (i, j = 0, 1, 2, ..., r, i \neq j)$, we know that $M_i^{m-n} \bigcap M_i^{m-n} = 0 \ (i, j = 0, 1, 2, ..., r, i \neq i)$

If we consider
$$[O, M_2^{m-n}]$$
 and $[O, M_2^{m-n}]$ except for singular simplexes, $[O, M_2^{m-n}]$

 M_1^{m-n}] () [O, M_2^{m-n}] are of at most of dimensions

$$2(m - n + 1) - m = m - 2n + 2.$$

By Theorem 2.1, the singular simplexes of $[O, M_i^{n-n}]$ are at most of (m - 2n + 2)-dimensions. Therefore the dimensions of singular simplexes of $[O, M_1^{m-n}] \cap [O, M_2^{m-n}]$ are at most of dimensions

$$(m-2n+2) + (m-n+1) - m = m - 3n + 3.$$

On account of singularity of $[O, M_1^{m-n}]$, $[O, M_1^{m-n}] \cap [O, M_2^{m-n}]$ are a sum of some manifolds having singular simplexes.

By Lemma 2.2 and Theorem 2.1, the intersection of $[O, M_1^{m-n}] \cap [O, M_2^{m-n}]$ and $[O, M_3^{m-n}]$ is studied. As the general case $\bigcap_{i=1}^r [O, M_i^{m-n}]$ are a sum of some manifolds whose dimension are at most

r(m-n+1) - (r-1)m = m - rn + r,

where the dimensions of those singular simplexes are at most

(m-2n+2) + (r-1)(m-n+1) - (r-1)m = m - (r+1)n + r + 1.

LEMMA 2.5 $M_k^{m-n} \cap \{ \bigcap_{i=1}^{k-1} [O, M_i^{m-n}] \} \cap \{ \bigcap_{j=k+1}^r [O, M_j^{m-n}] \}$ are a sum of finite manifolds which are at most of (m - rn + r - 1) – dimensions having some singular simplexes at most of (m - (r + 1)n + r)-dimension.

PROOF. If we replace r by r-1 in Lemma 2.4, $\left\{ \bigcap_{i=1}^{k-1} [O, M_i^{m-n}] \right\} \cap$

 $\left\{ \bigcap_{j=k+1}^{r} [O, M_{j}^{n-n}] \right\} \text{ are at most of } [m-(r-1)n+(r-1)] \text{-dimensions having some singular simplexes at most of } [m-rn+r] \text{-dimensions. Therefore the dimension of } M_{k}^{m-n} \cap \left\{ \bigcap_{i=1}^{k-1} [O, M_{i}^{m-n}] \right\} \cap \left\{ \bigcap_{j=k+1}^{n} [O, M_{j}^{n-n}] \right\} \text{ is at most } [m-(r-1)n+(r-1)] + (m-n) - m = m-rn+r-1.$

The dimensions of the singular simplexes of those complexes are at most [m-rn+r] + (m-n) - m = n - (r+1)n + r.

LEMMA 2.6. If m = (r + 1)n - r, the intersection number $\phi(M_0^{m-n}, \bigcap_{i=1}^{r} [O, M_0^{m-n}])$ can be defined uniquely.

PROOF. For $\bigcap_{l=1}^{r} [O, M_{l}^{m-n}]$ of Lemma 2.4, we give an orientation as follows: We know an orientation for the faces of simplexes of $[O, M_{1}^{m-n}]$ and by this orientation we introduce an orientation on $\bigcap_{i=1}^{r} [O, M_{i}^{m-n}]$. This orientation does not depend upon the singular simplexes of $\bigcap_{i=1}^{r} [O, M_{l}^{m-n}]$. Similarly we introduce an orientation for $M_{k}^{m-n} \cap \left\{ \bigcap_{i=0,1,2,..,\hat{k},..,r} [O, M_{l}^{m-n}] \right\}$ by the faces of simplexes of M_{k}^{m-n} . This orientation does not depend upon the singular simplexes of $M_k^{m-n} \cap \left\{ \bigcap_{i=0,1,2...,\hat{k},...r} [O, M_1^{m-n}].$ Then, by lemma 2.4, $\dim \left\{ \bigcap_{i=1}^r [O, M_i^{m-n}] \right\} = m - rn + r = n.$

The intersection of M_0^{m-n} and $\bigcap_{i=1}^r [O, M_0^{m-n}]$ are at most of dimensions n + (m-n) - m = 0.

From the orientations of \mathbb{R}^m , M_0^{m-n} and $\bigcap_{i=1}^r [O, M_i^{m-n}]$ we know the intersection number $\phi(M_0^{m-n}, \bigcap_{i=1}^r [O, M_i^{m-n}])$.

LEMMA 2.7. $\phi\left(M_0^{m-n},\bigcap_{i=1}^r [O, M_i^{m-n}]\right)$ does not depend on a choice of **a** fixed point O.

PROOF. We consider *m*-dimensional Euclidean space \mathbb{R}^m as in the proof of Theorem 2.1 and fixed point O' which is in $\mathbb{R}^m - \bigcup M_i^{m-n} - O$.

By the projection from O', we get a similar complex $[O', M_i^{m-n}]$. If the bounded set containing O and O' are covered by sufficiently fine open set, we can choose a finite covering, which refine the given covering. If we consider point-pairs in the same element of covering at first and remove from one element to the adjacent secondly, we can remove from O to O'by finite processes. Therefore we can assume without any loss of generality that O' exist in sufficiently small neighborhood of O. We shall prove

$$\phi\left(M^{m-n}, \bigcap_{i=1}^{r} [O, M_i^{m-n}]\right) = \phi\left(M_0^{m-n}, \bigcap_{i=1}^{r} [O', M_i^{m-n}]\right).$$

As O and O lie in sufficiently near, for $k = 0, 1, M_k^{m-n} \cap \left(\bigcap_{i=2} [O, M_i^{m-n}] \right)$

and $M_k^{m-n} \cap \left(\bigcap_{i=2}^r [O', M_i^{m-n}] \right)$ are situated sufficiently near in \mathbb{R}^m and are fremed each other. We consider a complex X which is bounded by M_0^{m-n} $\cap \left(\bigcap_{i=2}^r [O, M_i^{m-n}] \right) - M_0^{m-n} \cap \left(\bigcap_{i=2}^r [O, M_i^{m-n}] \right)$ and is fremed from $M_1^{m-n} \cap \left(\bigcap_{i=2}^r [O, M_i^{m-n}] \right)$ and $M_1^{m-n} \cap \left(\bigcap_{i=2}^r [O', M_i^{m-n}] \right)$. Similarly we consider a complex Y which is bounded by $M_1^{m-n} \cap \left(\bigcap_{i=2}^r [O, M_i^{m-n}] \right) - M_1^{m-n} \cap \left(\bigcap_{i=2}^r [O, M_i^{m-n}] \right)$.

$$[O', M_{i}^{m-n}] \text{ and is fremed from } M_{0}^{m-n} \cap \left(\bigcap_{i=2}^{r} [O, M_{i}^{m-n}]\right) \text{ and } M_{0}^{m-n} \cap \left(\bigcap_{i=2}^{r} [O, M_{i}^{m-n}]\right).$$

$$[O, M_{i}^{m-n}] \text{).}$$

$$R \partial \left\{ [O, M_{1}^{m-n}] \cap \left(\bigcap_{i=2}^{r} [O, M_{i}^{m-n}]\right) \right\} = M_{1}^{m-n} \cap \left(\bigcap_{i=2}^{r} [O, M_{i}^{m-n}]\right).$$

$$R \partial \left\{ [O', M_{1}^{m-n}] \cap \left(\bigcap_{i=2}^{r} [O', M_{i}^{m-n}]\right) \right\} = M_{1}^{m-n} \cap \left(\bigcap_{i=2}^{r} [O', M_{i}^{m-n}]\right).$$
Then
$$* R \partial \left\{ [O, M_{1}^{m-n}] \cap \left(\bigcap_{i=2}^{r} [O, M_{i}^{m-n}]\right) - Y - [O', M_{1}^{m-n}] \cap \left(\bigcap_{i=2}^{r} [O', M_{i}^{m-n}]\right) = 0,$$

$$\phi \left\{ M_0^{m-n} \cap \left(\bigcap_{i=2}^r [O, M_i^{m-n}] \right), \ [O, M_1^{m-n}] \cap \left(\bigcap_{i=2}^r [O, M_i^{m-n}] \right) - Y - [O', M_1^{m-n}] \cap \left(\bigcap_{i=2}^r [O', M_i^{m-n}] \right) \right\} = 0.$$

On the other hand,

$$\phi\left(M_{0}^{m-n},\bigcap_{i=1}^{r}[O,M_{i}^{m-n}]\right)$$

$$= \varepsilon\phi\left(M_{0}^{m-n}\cap\left(\bigcap_{i=2}^{r}[O,M_{i}^{m-n}]\right), [O,M_{1}^{m-n}]\cap\left(\bigcap_{i=2}^{r}[O,M_{i}^{m-n}]\right)$$

$$\phi\left\{M_{0}^{m-n}\cap\left(\bigcap_{i=2}^{r}[O,M_{i}^{m-n}],Y\right\} = 0. \quad (\varepsilon = \pm 1)$$
refore.

Therefore,

$$\phi \left\{ M_0^{m-n} \cap \left(\bigcap_{i=2}^r [O, M_i^{m-n}] \right), \ [O, M_1^{m-n}] \cap \left(\bigcap_{i=2}^r [O, M_i^{m-n}] \right) \right\}$$

= $\phi \left\{ M_0^{m-n} \cap \left(\bigcap_{i=2}^r [O, M_i^{m-n}] \right), \ [O', M_1^{m-n}] \cap \left(\bigcap_{i=2}^r [O', M_i^{m-n}] \right) \right\}.$

Similarly,

$$\phi \left\{ [O, M_0^{m-n}] \cap \left(\bigcap_{i=2}^r [O, M_i^{m-n}] \right), M_1 \cap \left(\bigcap_{i=2}^r [O', M_i^{m-n}] \right) \right\}$$
$$= \phi \left\{ [O', M_0^{m-n}] \cap \left(\bigcap_{i=2}^r [O', M_i^{m-n}] \right), M_1 \cap \left(\bigcap_{i=2}^r [O', M_i^{m-n}] \right) \right\}.$$

Then

$$\phi \left\{ M_0^{m-n} \cap \left(\bigcap_{i=2}^r [O, M_i^{m-n}] \right), [O, M_1^{m-n}] \cap \left(\bigcap_{i=2}^r [O, M_i^{m-n}] \right) \right\}$$

= $\phi \left\{ M_0^{m-n} \cap \left(\bigcap_{i=2}^r [O, M_i^{m-n}] \right), [O', M_1^{m-n}] \cap \left(\bigcap_{i=2}^r [O', M_i^{m-n}] \right) \right\}$

$$= (-1)^{n-1} \phi \left\{ [O, M_0^{m-n}] \cap \left(\bigcap_{i=2}^r [O, M_i^{m-n}] \right), M_1^{m-n} \cap \left(\bigcap_{i=2}^r [O', M_i^{m-n}] \right) \right\}$$

= $(-1)^{n-1} \phi \left\{ [O', M_0^{m-n}] \cap \left(\bigcap_{i=2}^r [O', M_i^{m-n}] \right), M_1^{m-n} \cap \left(\bigcap_{i=2}^r [O', M_i^{m-n}] \right) \right\}$
= $\phi \left\{ M_0^{m-n} \cap \left(\bigcap_{r=2}^i [O', M_i^{m-n}] \right), [O', M_1^{m-n}] \cap \left(\bigcap_{i=2}^r [O', M_i^{m-n}] \right) \right\}$
= $\frac{1}{\varepsilon} \phi \left\{ M_0^{m-n}, \bigcap_{i=1}^r [O', M_i^{m-n}] \right\}, \phi \left(M_0^{m-n}, \bigcap_{i=1}^r [O, M_i^{m-n}] \right) = \phi \left(M_0^{n-n}, \bigcap_{i=1}^r [O', M_i^{m-n}] \right), \phi \left(M_0^{m-n}, \bigcap_{i=1}^r [O, M_i^{m-n}] \right) = \phi \left(M_0^{n-n}, \bigcap_{i=1}^r [O', M_i^{m-n}] \right), \phi \left(M_0^{m-n}, \bigcap_{i=1}^r [O, M_i^{m-n}] \right) = \phi \left(M_0^{n-n}, \bigcap_{i=1}^r [O', M_i^{m-n}] \right), \phi \left(M_0^{m-n}, \bigcap_{i=1}^r [O, M_i^{m-n}] \right) = \phi \left(M_0^{n-n}, \bigcap_{i=1}^r [O', M_i^{m-n}] \right), \phi \left(M_0^{n-n}, \bigcap_{i=1}^r [O', M_i^{m-n}] \right)$

DEFINITION 2.1. When m = n, we define $\phi[M_0^0, \theta]$ (θ means the empty set) as follows;

Let t^0_+ , or t^0_- be the numbers of simplexes of K^m which are mapped on τ^n_0 positively or negatively respectively. Then

$$\phi[M^0_0,\theta]=t^0_+-t^0_-.$$

By Lemma 2.7 we know that $\phi \left\{ M_0^{m-n}, \bigcap_{i=1}^r [O, M_i^{m-n}] \right\}$ does not depend on a choice of a fixed point O. By these reason and definition 2.1 we define as follows:

DEFINITION 2.2. In cases m = (r + 1)n - r or mn:

$$W_{r}(f, \xi_{0}, \xi_{1}, \ldots, \xi_{r}) = \left[\phi \left\{M_{0}^{m-n}, \bigcap_{i=1}^{r} [O, M_{i}^{m-n}]\right\}\right]^{r}, W_{0}(f, \xi_{0}) = \phi | M_{0}^{0}, \theta]$$

LEMMA 2.8. $W_r(f, \xi_0, \xi_1, \dots, \xi_r)$ does not depend on a choice of $\xi_0, \xi_1, \dots, \xi_r$. ξ_r . in the following cases:

- (i) m = n, or
- (ii) m = (r+1)n r and n is even.

PROOF. In case (i) $W_r(\ell,\xi_0)$ means the Brouwer degree, and Lemma 2.8 is well known.

We shall prove this Lemma in case (ii).

$$\begin{split} \phi\Big(M_0^{m-n}, \bigcap_{i=1}^r [O, M_i]\Big) &= \varepsilon\phi\left\{M_0^{m-n} \cap \Big(\bigcap_{i=2}^r [O, M_i]\Big), [O, M_1]\Big(\bigcap_{i=2}^r [O, M_i]\Big)\right\} \\ &= (-1)^n \varepsilon\phi\left\{[O, M_0] \cap \Big(\bigcap_{i=2}^r [O, M_i]\Big), \ M_1 \cap \Big(\bigcap_{i=2}^r [O, M_i]\Big)\right\} \\ &= (-1)^n (-1)^{n(n-1)} \varepsilon\phi\left\{M_1 \cap \Big(\bigcap_{i=2}^r [O, M_i]\Big), [O, M_0] \cap \Big(\bigcap_{i=2}^r [O, M_i]\Big)\right\} \\ &= (-1)^n (-1)^{n(n-1)} \phi\left\{M_1^{m-n}, [O, M_0] \cap \Big(\bigcap_{i=2}^r [O, M_i]\Big)\right\}. \end{split}$$

As n is even, $W_r(f,\xi_0,\xi_1,\ldots,\xi_r)=W_r(f,\xi_1,\xi_0,\ldots,\xi_r). \quad (1)$ $\phi\left(M_0^{m-n}, \bigcap_{i=1}^r [O, M_i^{m-n}]\right)$ means a degree of $f\left|\bigcap_{i=1}^r [O, M_i^{m-n}]\right|$, then $W_r(f, \xi_0, \ldots, \xi_r)$ does not depend on a choice of ξ_0 . Then $W_r(f,\xi_0,\ldots,\xi_1,\xi_r) = W_r(f,\,\xi_0',\xi_1,\ldots,\xi_r).$ (2) By using of (1) and (2), we can introduce the following calculations: $W_r(f,\xi_0,\xi_1,\ldots,\xi_i,\ldots,\xi_r)=\varepsilon W_r(f,\xi_0,\xi_i,\xi_2,\ldots,\xi_1,\ldots,\xi_r)$ $= \mathcal{E}W_r(f, \xi_i, \xi_0, \xi_2, \ldots, \xi_1, \ldots, \xi_r)$ $= \varepsilon W_r(f, \xi_i', \xi_0, \xi_2, \ldots, \xi_1, \ldots, \xi_r)$ $(\varepsilon = \pm 1)$ $= W_r(f, \xi_1, \xi_0, \xi_2, \ldots, \xi'_i, \ldots, \xi_r)$ $= W_r(f, \xi_0, \xi_1, \xi_2, \ldots, \xi_i', \ldots, \xi_r),$ that is, $W_r(f, \xi_0, \xi_1, \ldots, \xi_i, \ldots, \xi_r) = W_r(f, \xi_0, \xi_1, \ldots, \xi_i, \ldots, \xi_r).$ (3)

Furthermore,

$$W_r(f, \xi_0, \xi_1, \ldots, \xi_i, \ldots, \xi_r) = W_r(f, \xi_i, \xi_1, \ldots, \xi_i, \ldots, \xi_r)$$
$$= W_r(f, \xi_i, \xi_1, \ldots, \xi_0, \ldots, \xi_b)$$

From this relation, we can introduce the following relation by using of (3): $W_r(f,\xi_0,\xi_1,\ldots,\xi_i,\ldots,\xi_r)=W_r(f,\xi_i,\xi_1,\ldots,\xi_0,\ldots,\xi_r).$

When we use (1), (2) and (4), successively,

 $W_r(f, \xi_0, \xi_1, \ldots, \xi_r) = W_r(f, \xi'_0, \xi'_1, \ldots, \xi'_r).$

By Lemma 2.8 we know that $W_r(f, \xi_0, \xi_1, \dots, \xi_r)$ does not depend on a choise of $\xi_0, \xi_1, \ldots, \xi_r$. Then we define as follows.

DEFINITION 2.3. $W_r(f) = W_r(f, \xi_0, \xi_1, \dots, \xi_r).$

THEOREM 2.2. Let m = n or m = (r + 1)n - r and n be even. If f, gare maps of S^n into S^n and f is homotopic to g, then $W_r(f)$ equals to $W_r(g)$.

PROOF. When K^m , \tilde{K}^n are simplicial subdivision of S^m , S^n respectively, we may assume that f and g are simplicial maps without any loss of 2), of K^n into \hat{K}^n , where $f_1 = f$ and $f_2 = g$. Then we can consider f_r to be a map of $S^m \times I$ into S^n and use it as F(x, r). We define $S^m \times (1) = S^m \times S^m \times$ $(2) = S_{2}^{m}$.

 $f_r(x)$ also may be assumed as simplicial map. Let ξ_1 a interior point of fixed *n*-simplex τ_0^n of K^n and $\varphi_{S^m \times I}(\xi_1), \varphi_{S_1^m}(\xi_1), \varphi_{S_2^m}(\xi_1)$ inverse images of ξ_1 for f_r, f, g respectively.

As we have $(S^m \times \dot{I}) = S_2^m - S_1^m$, by (1)', (2)' in § 2,

We denote $\varphi_{S_2^m}(\xi_1), \varphi_{S_1^m}(\xi_1)$ by M_1, M_1' respectively. When we fix r, we denote the inverse image of ξ_1 for f_r by $\mathcal{P}_{S^m \times (r)}(\xi_1)$, then

$$\varphi_{S^n \times I}(\xi_1) = \bigcup_{1 \leq r \leq 2} \varphi_{S^m \times (r)}(\xi_1)$$

Let O, O' be fixed points of $S^m \times (1)$, $S^m \times (2)$ respectively. We connect O with O' by an arc in $S^m \times I$ which intersect with $S^m \times (r)$ at only one point. These intersections will be denoted by O_r .

In $S^m \times (r)$ we project $\varphi_{S^m \times (r)}(\xi_1)$ from O_r and denote the resulted complex by $[O_r, \varphi_{S^m \times (r)}(\xi_1)]$. Then,

$$\left\{\bigcup_{1\leq r\leq 2} [O_r, \varphi_{S^m\times(r)}(\boldsymbol{\xi}_1)]\right\} = [O, M_1] - [O', M_1'] - \varphi_{S^m\times\mathbf{i}}(\boldsymbol{\xi}_1)$$

We denote this relation by $\dot{C}_2 = [O, M_1] - [O', M'_1] - A_2$ and a second interior point of τ_0^n by ξ_2 , then

$$\varphi_{c_2}(\xi_2) = \varphi_{[0,M_1]}(\xi_2) - \varphi_{[0',M_1]}(\xi_2) - \varphi_{A_2}(\xi_2).$$

As f_r has an uniquely determined image, $\varphi_{A_2}(\xi_2) = 0$ (for $\xi_1 \neq \xi_2$).

We denote $\varphi_{[0, M_1]}(\xi_2), \varphi_{[0', M_1]}(\xi_2)$ by M_2, M_1 respectively. Then

$$\dot{\varphi}_{c_2}(\xi_2) = M_2 - M_2'$$

 $\begin{array}{l} [O, M_1] \cap [O, M_2] \text{ and } [O', M_1'] \cap [O', M_2'] \text{ are complexes bounded by} \\ \varphi_{[0, M_1]}(\xi_2), \ \varphi_{0, M_1'}(\xi_2) \text{ on } [O, M_1], \ [O, M_1'] \text{ respectively. Then } R \partial \{\varphi_{c_2}(\xi_2) - [O, M_1] \cap [O, M_2] + [O', M_1'] \cap [O', M_2']\} = 0, \text{ therefore } \varphi_{c_2}(\xi_2) - [O, M_1] \cap [O, M_2] \\ + [O', M_1'] \cap [O', M_2'] = Z_2 \text{ is a cycle.} \end{array}$

 $\varphi_{c_2}(\xi_2) = \varphi_{[0,M_1]}(\xi_2) - \varphi_{[0,M']}(\xi_2)$ is analogous to (1), then we consider **a** third interior point ξ_3 of τ_0^n and similar relation as above and so on. Therefore we obtain the following relation:

$$\varphi_{c_r}(\xi_r) = \varphi_{\bigcap_{i=1}^{r-1} [0, M_i]}^{r-1}(\xi_r) - \varphi_{\bigcap_{i=1}^{r-1} [0, M_i]}^{r-1}(\xi_r)$$

where C_r is defined to be similar to C_2 .

$$\begin{split} &\bigcap_{i=1}^{r} [O, M_i] \text{ and } \bigcap_{i=1}^{r} [O', M'_i] \text{ are complexes bounded by } \mathscr{P}_{\bigcap_{i=1}^{r-1}[O, M_i]}^{r-1}(\xi_r), \\ &\mathscr{P}_{\bigcap_{i=1}^{r-1}[O', M'_i]}^{r-1}(\xi_r) \text{ on } \bigcap_{i=1}^{r-1}[O, M_i], \ \bigcap_{i=1}^{r-1}[O', M'_i] \text{ respectively.} \\ &\text{Then } R \partial \left\{ \mathscr{P}_{c_r}(\xi_r) - \bigcap_{i=1}^{r}[O, M_i] + \bigcap_{i=1}^{r}[O', M'_i] \right\} = 0, \text{ and } \mathscr{P}_{c_r}(\xi_r) - \bigcap_{i=1}^{r}[O, M_i] \\ &+ \bigcap_{i=1}^{r}[O', M'_i] = Z_r^n \text{ is a cycle.} \\ &\text{When we denote the projection of } Z_r^n \text{ on } S_1^m \text{ by } Z_r^n, \ Z_r^n \sim Z_r^n \text{ in } S^m \times I. \text{ Then} \end{split}$$

 $F(Z_r^n) \sim f(\tilde{Z}_r^n) \text{ in } S^n, \text{ therefore} \\ F(Z_r^n) = f(\tilde{Z}_r^n) \text{ in } S^n. \\ \text{On the other hand,} \\ \tilde{Z}_r^n \sim 0 \text{ in } S_1^n \end{cases}$

228

$$F(\overset{\star}{Z_r^n}) = f(\overset{\star}{Z_r^n}) \sim 0 \text{ in } S^n,$$

$$f(\overset{\star}{Z_r^n}) = 0 \text{ in } S^n.$$

Therefore

$$F(\mathcal{Z}_{r}^{r}) = 0,$$

$$F(\mathcal{P}_{c_{r}}(\xi_{r})) - f\left(\bigcap_{i=1}^{r} [O, M_{i}]\right) + g\left(\bigcap_{i=1}^{r} [O', M'_{i}]\right) = 0,$$

$$F(\mathcal{P}_{c_{r}}(\xi_{r})) = 0,$$

$$f\left(\bigcap_{i=1}^{r} [O, M_{i}]\right) = g\left(\bigcap_{i=1}^{r} [O', M'_{i}]\right)$$

$$W_{r}(f) = W_{r}(g).$$

3. In this chapter we shall investigate that $W_r(f)$ is used for determining whether a mapping of one sphere on another is essential or not. In case $m = n, W_{i}(f)$ means Brouwer degree and it is well known that $W_{i}(f)$ is only used for determining whether the mapping is essential or not. In case m =(r+1)n-r and n is even, if r=1, $W_r(f)$ is the Hopf invariant and we showed in my preceding paper that the Hopf invariant is used for such purpose. In this chapter we consider the case $W_i(f)$ is determined, that is (i) m = n, or (ii) m = (r + 1)n - r and n is even. In the case (ii), by Lemma 2.4, $\bigcap_{i=1}^{n} [O, M_i^{m-n}]$ is a sum of finite manifolds which are at most of ndimension having some singular simplexes at most of one-dimension. By a similar method as in Frendenthal's Lemma [2], we can consider that $\bigcap_{i=1}^{n} [O_i]$ M_i^{n-n} is a manifold M^n which is at most of *n*-dimensions having some singular simplexes at most of one-dimension. Let τ_0^n be a fixed *n*-simplex and ξ_0 an interior point of τ_0^n, ξ_0 be the antipodal point of S^n . We assume that $\sigma = (a_0 a_1 \dots a_n), \sigma' = (a'_0 a_1 \dots a_n)$ are oriented *n*-simplexes of M^n with the common (n-1)-face $\tau = (a_1 \dots a_n)$. Then we obtain the following Lemma in my preceding paper.

LEMMA 3.1. Let f be a standard map of M^n into S^n and $f(\sigma) = +S^n$, $f(\sigma') = \bar{\xi}_0$, then there is a standard map g which is homotopic to f and $g(\sigma) = \bar{\xi}_0$, $g(\sigma') = +S^n$ leaving the degree of $M^n - (\sigma + \sigma')$ fixed.

LEMMA 3.2. Let f be a standard map of M^n into S^n and $f(\sigma) = +S^n f(\sigma')$ = $-S^n$, then there is a standard map g which is homotopic to f and $g(\sigma) = \sum_{i=1}^{n} \overline{f_{0i}} g(\sigma') = \overline{f_0}$ leaving the degree of $M^n - (\sigma + \sigma')$ fixed.

A map f of S^m on S^n may be considered a simplicial map of K^m on $\overset{*}{K}{}^n$. Let P_0 be an interior point of a fixed simplex τ_0^n of $\overset{*}{K}{}^n$. We may assume that inverse image $\varphi_{S^m}(P_v)$ of P_0 for f is a manifold M^{m-n} . The m-

dimensional simplexes T^m_{α} of K^m which are mapped on τ^n_0 necessarily intersect M^{m-n} and $M^{m-n} \cap T^m_{\alpha}$ are (m-n) simplexes. $\xi_i (i=0,1,2,\ldots,r)$ in § 2 may be considered in au_0^n without any loss of generality. *M*-dimensional simplexes T^m_{α} of K^m which are mapped on τ^n_0 necessarily intersect $M_1 \cap \left(\bigcap_{i=1}^r [O, M_i] \right)$ and $M_1 \cap \left(\bigcap_{i=1}^r [O, M_i] \right) \cap T_{\alpha}$ are (r-1)-simplexes. We denote it by $(a_0^{\alpha_k}, a_1^{\alpha_k}, \dots, a_{n-1}^{\alpha_k})$. Let $(e_0^{\alpha_k}, e_1^{\alpha_k}, \dots, e_{n-1}^{\alpha_k})$ be an (n-1)-face of T_{α}^{m-n} such that any two of its vertices are not mapped by f on the same vertex of τ_0^n , then $\{a_0^{\alpha_k}, a_1^{\alpha_k}, \ldots, a_{n-1}^{\alpha_k}, \ldots, e_0^{\alpha_k}, \ldots, e_{n-1}^{\alpha_k}\}$ is a (2n-1)-simplex which we denote by $\overset{*}{T}_{\alpha_k}^{n-1}$. $\overset{*}{T}_{\alpha_k}^{2n-1}$ is a face of T_{α}^m . Such a (2n-1)-dimensional simplex $T_{\alpha_k}^{*_{2n-1}}$ is considered for all (n-1)-dimensional-simplex $T_{\alpha_k}^{*_{2n-1}}$ of $M_1 \cap \left(\bigcap_{i=1}^r [O, M_i] \right) \cap T^m_a$. We consider all (2n-1)-simplexes $\mathcal{T}^{2n-1}_{a_k}$ which involve some *n*-simplex of $M_1 \cap \left(\bigcap_{i=1}^{n} [O, M_i]\right)$. Then $\sum_{\alpha} \sum_{\alpha} (e_0^{\alpha_k}, e_1^{\alpha_k}, \dots, e_{n-1}^{\alpha_{k-1}})$ is (n-1)-manifold with singularity. We denote is by M^{n-1} and consider a following complex: $(a_{0}^{\alpha_{k}}a_{1}^{\alpha_{k}}\cdots a_{n-1}^{\alpha_{k}}, e_{0}^{\alpha_{k}}(+(-1)^{n}(a_{1}^{\alpha_{k}},\cdots,a_{n-1}^{\alpha_{k}}, e_{0}^{\alpha_{k}}, e_{1}^{\alpha_{k}})+\cdots$ + $(-1)^{n(n-1)}(a_{n-1}^{\alpha_k}, e_0^{\alpha_k}, e_1^{\alpha_k}, \dots, e_{n-1}^{\alpha_{k-1}}).$ $\sum_{\alpha} \sum_{\alpha_k} [(a_0^{\alpha_k}a_1^{\alpha_k}, \dots, a_{n-1}^{\alpha_k}, e_0^{\alpha_k}) + (-1)^n (a_1^{\alpha_k}, \dots, a_{n-1}^{\alpha_{k-1}}, e_0^{\alpha_k}, e_1^{\alpha_k}) + \dots]$ $\dots + (-1)^{n(n-1)} (a_{n-1}^{\alpha_k}, e_0^{\alpha_k}, e_1^{\alpha_k}, \dots, e_{n-1}^{\alpha_k})]$ is *n*-dimensional manifold with some singular simplexes bounded by M_1 (1

 $\left(\bigcap_{i=2}^{r} [O, M_{i}]\right) \text{and } M^{n-1}. \text{ We denote it by } \overline{K}_{0}^{n}.$ We replace $(e_{0}^{\alpha_{k}}, e_{1}^{\alpha_{k}}, \dots, e_{n-1}^{\alpha_{k}})$ by $(e_{p}^{\alpha_{k}}, e_{p+1}^{\alpha_{k}}, \dots, e_{n-1}^{\alpha_{k}}, e_{0}^{\alpha_{k}}, \dots, e_{p-1}^{\alpha_{k}})$, then $\sum_{\alpha} \sum_{\alpha_{k}} [(a_{0}^{\alpha_{k}}, a_{1}^{\alpha_{k}}, \dots, a_{n-1}^{\alpha_{k}}, e_{p}^{\alpha_{k}}) + (-1)^{n}(a_{1}^{\alpha_{k}}, a_{2}^{\alpha_{k}}, \dots, a_{n-1}^{\alpha_{k}}, e_{p}^{\alpha_{k}}, e_{p+1}^{\alpha_{k}}) + (-1)^{n(n-1)}(a_{n-1}^{\alpha_{k}}, e_{p}^{\alpha_{k}}, e_{p+1}^{\alpha_{k}}, \dots, e_{n-1}^{\alpha_{k}}, e_{p-1}^{\alpha_{k}})]$

is *n*-dimensional manifold with some singular simplexes bounded by $M_1 \cap \left(\bigcap_{i=2}^r [O, M_i]\right)$ and M^{n-1} . We denote it by \overline{K}_p^i . Since M^{n-1} is homologous zero in S^m , there exists an *n*-complex \overline{K}^n bounded by M^{n-1} . $K_p^n = \overline{K}_p^n + \overline{K}^n$ is an *n*-complex bounded by $M_1 \cap \left(\bigcap_{i=2}^r [O, M_i]\right)$. As p_0 is an interior point of τ_0^n , p_0 and vertices of each (n-1)-face of τ_0^n form *n*-simplexes τ_{00}^n , $\tau_{1,1}^n, \ldots, \tau_{0n}^n$. If we replace τ_0^n by $\tau_{00}^n, \ldots, \tau_{0n}^n$ in \overline{K}^n . We may denote the obtained is a finer simplicial subdivision than \overline{K}^n .

resulted complex by the same notation \tilde{K}^i for brevity, without any confusion. Similarly we can consider a fine simplicial triangulation of K^n by inverse image of \tilde{K}^n by f and a suitable additional subdivision. We shall also denote it by K^m . $[O, M_i] \cap \left(\bigcap_{i=2}^r [O, M_i]\right)$ which is bounded by $M_1 \cap \left(\bigcap_{i=2}^r [O, M_i]\right)$ which is bounded by $M_1 \cap \left(\bigcap_{i=2}^r [O, M_i]\right)$ we denote the considered as one of K_p^n . When M_i is mapped on ξ by fwe denote the complex which is mapped on τ_0^n by $R(\xi_i)$. Evidently $R(\xi_i) = R(\xi_j)$ $(i \neq j, i, j = 0, 1, 2, \dots, r)$. We denote this common complex by R and its *n*-skeleton by R^n .

THEOREM 3.1. If $W_r(f) = 0$, then $f | R^n$ is homotopic to zero.

PROOF. The map f can be considered as a standard map without any loss of generality by Lemma 2.1, when we use Lemma 3.1 and Lemma 3.2.

As
$$W_r(f) = 0$$
, $\phi\left(M_0^{n-n}, \bigcap_{i=1}^{n} [O, M_i]\right) = 0$ and there is a set of *n*-simple-

xes $\sigma_1, \sigma_2, \ldots, \sigma_s; \sigma'_1, \sigma'_2, \ldots, \sigma'_s, \text{ on } \bigcap_{i=1}^{r} [O, M_i]$, where σ_i and σ' are mapped

on S^n positively and negatively, respectively. $\bigcap_{i=1}^{n} [O, M_i]$ may be considered as one of K_p^n . For σ_i and σ'_i (i = 1, 2, ..., s), there are regularly connected chain $\sigma_i + \sigma_{i_1} + \sigma_{i_2} + \cdots + \sigma_{i_k} + \sigma'_i$ on K_p^n . It may be supposed that $d_f(\sigma_{i_1}) =$ $+1, d_f(\sigma_{i_1}) = \cdots = d_f(\sigma_{i_k}) = 0, d_f(\sigma'_i) = -1$. Using Lemma 3.1, we deform f in $\sigma_i + \sigma_{i_1}$, next in $\sigma_{i_1} + \sigma_{i_2}$, etc.; then using Lemma 3.2, we deform the map in $\sigma_{i_k} + \sigma'_i$. The new map f' has as its degree $d_{f'}(\sigma_i) = d_f(\sigma_{i_1}) = \cdots$

 $= d_f(\sigma'_i) = 0$. We continue in this manner untill no simplexes are mapped positively and none are mapped negatively over S^n . Then $f | K_p^n$ is homotopic to zero, fixing the image of M_1 on ξ_1 .

By Definition, $K_p^n = K_p^n + \overline{K}^n$ and \overline{K}_p^n have no common *n*-simplex for any *p*. When *f* is simplicial mapping, we consider the state where K_p^n are mapped on τ_{00}^n . \overline{K}_p^n consist of the following complex:

 $(a_0^{\alpha_k}, a_1^{\alpha_k}, \dots, a_{n-1}^{\alpha_k}, e_p^{\alpha_k}) + (-1)^n (a_1^{\alpha_k}, a_2^{\alpha_k}, \dots, a_{n-1}^{\alpha_{k-1}}, e_p^{\alpha_k}, e_{p+1}^{\alpha_k}) + \dots + (-1)^{n(n-1)} (a_{n-1}^{\alpha_k}, e_p^{\alpha_k}, e_{p+1}^{\alpha_k}, \dots, e_{nn-1}^{\alpha_k}, e_0^{\alpha_k}, e_1^{\alpha_k}, \dots, e_{p-1}^{\alpha_k}).$

If $(a_{n-1}^{\alpha_k}, e_{p+1}^{\alpha_k}, e_{n+1}^{\alpha_k}, \dots, e_{n-1}^{\alpha_k}, e_0^{\alpha_k}, e_1^{\alpha_k}, \dots, e_{p-1}^{\alpha_{k-1}})$ is mapped on τ_{00}^n , other simplexes are mapped on faces of τ_{00}^n and their dimensions depend on numbers of e_i . $(a_{n+1}^{\alpha_k}, e_{p+1}^{\alpha_k}, \dots, e_{n-1}^{\alpha_k}, e_0^{\alpha_k}, e_{1}^{\alpha_k}, \dots, e_{p-1}^{\alpha_{k-1}})$ is mapped on τ_{00}^n in the same manner for each p except for orientation.

We may neglect this orientation when we take care of this similar property for all α_{k} . If $(a_{n-1}^{\alpha_k}, e_{p+1}^{\alpha_k}, \cdots, e_{n-1}^{\alpha_k}, e_0^{\alpha_k}, e_1^{\alpha_k}, \cdots, e_{p-1}^{\alpha_k})$ is not mapped

on τ_{00}^n , we may neglect T_{σ}^m . In other words, we may consider that $(a_0^{\sigma_k}, a_1^{\sigma_k}, \ldots, a_{n-1}^{\sigma_{k-1}})$ contract tos a point and T_{σ}^m is empty. As $\overline{K^n}$ is not mapped on τ_{00}^n , we may consider only $\overline{K_p}$ for the degree based on τ_{00}^n . On the other hand, deformations of Lemma 3.1 and Lemma 3.2 can be introduced leaving the degree of $\overline{K^n}$ fixed. If we deform f to the standard map f' by Lemma 2.1, f' maps $\sum_p K_p^n$ on $\overline{\xi_0}$ and f maps $R^n - \sum_p K_p^n$ on $\overline{\xi_0}$ by the above remark. Hence $f|R^n \simeq 0$.

When M_i is mapped on ξ_i by f_1 and f_2 we denote the complex which is mapped on τ_0^n by R_1 and R_2 respectively. We denote their *n*-dimensional skeleton by R_i^n (i = 1, 2).

THEOREM 3.2. Let f_1 and f_2 be continuous mappings and $W_r(f_1)$ be equal to $W_r(f_2)$, then $f_1|R_1^n + R_2^n \simeq f_2|R_1^n + R_2^n$.

PROOF. We consider Cartesian (m + 1)-space \mathbb{C}^{m+1} and its subsets:

$$S^{m} = \left\{ x \in (\mathbb{S}^{m+1}; \sum_{i=1}^{m+1} x_{i}^{2} = 1 \right\},\$$

$$E^{n}_{+} = \left\{ x \in S^{n}; x_{m+1} \ge 0 \right\},\$$

$$E^{m}_{-} = \left\{ x \in S^{m}; x_{m+1} \le 0 \right\},\$$

$$S^{m-1}_{0} = \left\{ x \in S^{m}; x_{m+1} = 0 \right\}.$$

We and define φ_1 as follows:

 \mathscr{P}_1 maps E^m_+ onto S^m , \mathscr{P}_1 is a homeomorphism on $E^m_+ - S^{m-1}_0$,

 $\mathcal{P}(S_0^{m-1}) = P$, where P is a fixed point on S^n , $d(\mathcal{P}_1) = 1$.

We also define \mathcal{P}_2 as follows:

 \mathcal{P}_2 maps E_-^m onto S^m ,

 φ_2 is a homeomorphism on $E_{-}^m - S_0^{m-1}$,

$$\mathscr{P}_2(S_0^{m-1})=P,$$

$$d(\mathcal{P}_2) = -1.$$

We may assume $f_1(P) = f_2(P) = Q$ without any loss of generality. We construct a map F of S^m into S^n as follows:

$$F = \begin{cases} f_1 \ \varphi_1 & \text{on } E_+^m, \\ f_2 \ \varphi_2 & \text{on } E_-^m. \end{cases}$$

From $W_r(f_1) = W_i(f_2)$ we know $W_r(F) = 0$. If we denote by [F], [f_1], [f_2] the homotopy classes of F, f_1 and f_2 respectively, $[F] = [f_1] - [f_2]$.

By Theorem 3.1, $F|R_1^n + R_2^n \simeq 0$, then $f_1|R_1^n + R_2^n \simeq f_2|R_1^n + R_2^n$.

Pontrjagin theorem⁽⁶⁾ may be obtained from Theorem 3.2 as its special case when we put r = 1, and n = 2. For the proof, see my paper.

THEOREM 3.3. (Pontrjagin's theorem). If f_1 and f_2 are maps of S^3 on S^2 and $W_1(f_1)$ is equal to $W_1(f_2)$, then f_1 is homotopic to f_2 . 4. Freudenthal introduced the idea of suspension in the well known paper [2]. We shall investigate in this section some relations of the suspension and $W_r(f)$.

Let f be a map of S^m into S^n . We denote the equators of S^{m+1} and S^{n+1} by S^m and S^n respectively and extend f to a map Ef of S^{m+1} into S^{n+1} as follows:

A point of S^{n+1} is represented by (P,β) , where P is a point of S^n and $-1 \leq \beta \leq 1$. Similarly, a point of S^{n+1} is represented by (P,β) , where P' is a point of S^n and $-1 \leq \beta \leq 1$. We define

$$Ef(P,\beta) = (f(P),\beta).$$

If m+1 = (r+1)(n+1) - r, and n+1 is even, it is trivial that $W_r(Ef) = 0$. Secondly we investigate its inverse. We denote a subset of $\pi_{m+1}(S^{n+1})$ whose elements have 0 as $W_r(f)$ invariant by $[\pi_{m+1}(S^{n+1})]_0$.

THEOREM 4.1. $E(\pi_m(S^n)) = [\pi_{m+1}(S^{n+1})]_0.$

PROOF. We consider a map f of S^{m+1} into S^{n+1} where $W_r(f) = 0$. If we can prove that the inverse image of a point P' of S^{n+1} consists of only one point P, we can prove this theorem as follows: Let V_1^{m+1} be a closed neighborhood of P on S^{m+1} and V_2^{m+1} be the closure of the complement of V_1^{m+1} . Then $f(V_1^{m+1})$ or $f(V_2^{m+1})$ does not completely cover S^{n+1} and we can deform f to a form of Eg. In order to prove that the inverse image of P' consists of only one point it is sufficient to prove two following properties: $1^{\circ} \bigcap_{i=1}^{n} [O, M_i]$ is mapped on P' by f_1 which is homotopic to f. $2^{\circ} \bigcap_{i=1}^{r} [O, M_i]$ is contractible to one point on itself. We shall prove them. By $W_r(f) = 0$, we have $\phi(M_0, \bigcap_{i=1}^r [O, M_i]) = 0$. As we know in the proof of Theorem 3.1, the image of $\bigcap_{i=1}^{\prime} [O, M_i]$ can be contractible to a point fixing the image of $M_i \cap \left(\bigcap_{i=1}^r [O, M_i]\right)$. Then the image of $\bigcap_{i=1}^r [O, M_i]$ by f'_1 can be considered to be P'. At first we consider any point R in distance $\rho \leq \varepsilon$ of $\bigcap [O, M_i]$, where ε is sufficiently small and denote by Q the fixed point of the segment PO for which $RQ/QO = (\mathcal{E} - \rho)/\rho$. Let $\mathcal{P}(R,\tau)$ move linearly along the segment RQ as τ move from 0 to 1. For the point R in distance $\rho \ge \varepsilon$, we set $\mathcal{P}(R,\tau) = R$. We denote the inverse of $\mathcal{P}(R,\tau)$ by $\psi(R,\tau)$, and define $f_{1+\tau} = f_1(\psi(R,\tau))$, then f_2 maps O and only O on P'. The proof of (2) is complete.

We define some special sets which are used for the proof of Theorem 4.2.

Let \mathbb{S}^{m+2} be the Cartesian (m+2) – space. We define its subsets as follows:

$$S^{m+1} = \left\{ x \in (\mathbb{S}^{m+2}: \sum_{i=1}^{m+2} x_i^2 = 1) \right\},$$

$$S^m = \left\{ x \in S^{m+1}: x_{m+1} = 0 \right\},$$

$$S^m_{\beta_0} = \left\{ x \in S^{m+1}: x_{m+2} = \beta_0 \right\}, \quad (-1 \leq \beta_0 \leq 1)$$

$$V^{m+2} = \left\{ x \in (\mathbb{S}^{m+2}: \sum_{i=1}^{m+2} x_i^2 \leq 1) \right\},$$

$$E^{m+1}_{\beta_0} = \left\{ x \in V^{m+2}: x_{m+2} = \beta_0 \right\},$$

$$V^{m+1}_{\beta_0} = \left\{ x \in S^{m+1}: x_{m+2} \leq \beta_0 \right\},$$

$$V^{m+1}_{\beta_1,\beta_2} = \left\{ x \in S^{m+1}: \beta_1 \leq x_{m+2} \leq \beta_2 \right\},$$

Similarly we define for \mathcal{C}^{n+2} .

THEOREM 4.2. If m = (r + 1)n - r and n is even, E is an isomorphism of $[\pi_m(S^n)]_{1}$.

PROOF. Let g be a map of S^m into S^n and be f = Eg = 0. Then f can be extended to a map of $V^{m+2}(S^{m+1} = R \partial V^{m+2})$ into S^{n+1} . Let τ_0^{n+1} be a fixed simplex of S^{n+1} and $\xi_i(i = 1, 2, 3, \dots, r)$ be the fixed interior points of τ_0^{n+1} and let ξ_i exist on S^n_β ($-1 < \beta < 1$). We denote the inverse image of ξ_i in S^{m+1} by M_i^{m-n} and the inverse image of ξ_i in V^{m+2} by Y_i^{m-n+1} . Then, we have

$$f\left\{\bigcap_{i=1}^{r} [O, M_i]\right\} = W_r(f)S_{\beta_0}^n,$$

$$P \supset V^{m-n+1} = M^{m-n}$$

and

$$R \partial Y_i^{m-n+1} = M_i^{m-n}.$$

On the other hand M_i^{m-n} belongs to $S_{\beta_0}^m$ essentially and there exists a complex K_i^{m-n+1} bounded by M_i^{m-n} in $S_{\beta_0}^m$. When we denote the fixed point of $S_{\beta_n}^m$ by O, we can consider $[O, M_i^{m-n}]$ as K_i^{m-n+1} . We define

$$Z^n = Y_1^{m-n+1} \cap \bigcap_{i=2}^r [O, M_i] - \bigcap_{i=1}^r [O, M_i].$$

There exist a complex K^{n+1} which is bounded by Z^n in V^{m+2} .

$$R \partial f(K^{n+1}) = f(R \partial K^{n+1}) = f\left\{Y_i^{m-n+1} \cap \left(\bigcap_{i=2}^r [O, M_i]\right)\right\} - f\left\{\bigcap_{i=2}^r [O, M_i]\right\}$$
$$= -W_r(f)S^n,$$

 $f(K^{n+1})$ covers c'-times over $V_{\geq \ell_0}^{n+1}$ and c''-times over $V_{\leq \beta_0}^{n+1}$.

$$-W_r(f)=c'-c''.$$

c' and c'' have the following properties:

(i) c' and c'' are the same value when we use Y_i^{n+1} ($i = 2, 3, \dots, r$).

In the relation of Z^n we replace Y_1^{m-n+1} by Y_i^{m-n+1} , then it is similar to the proof of Lemma 2.8 that c' and c'' are invariant.

(ii) c' and c'' are not depend on a choice of K^{n+1} .

In $f(K^{n+1})$ the difference of K^{n+1} give us the difference only of the image of bounding cycle.

(iii) c' and c'' do not depend on a choice of O. The proof is similar as in Lemma 2.7.

(iv) c' and c'' do not depend on a choice of ξ_i . We shall prove it.

Let ξ_i and $\tilde{\xi}_i$ be the fixed interior points of τ_0^{n+1} , where ξ_i , $\tilde{\xi}_i$ exist on $S_{\beta_0}^n$ and $S_{\beta_2}^n$ respectively. We introduce the following complexes:

We consider a segment x_i in $V_{\beta_1,\beta_2}^{n+1}$ whose end points are ξ_i and ξ_i and denote the inverse image of x_1 in S^{m+1} by Z_{12}^{m-n+1} , the inverse image of x_1 in V^{m+2} by Y_{12}^{m-n+2} . Besides we denote $V_{\beta_1,\beta_2}^{m+1}$ by $S^m \times I$ where I is an interval $\beta_1 \leq t \leq \beta_2$. We connect O with O by an arc in $S^m \times I$ which intersect with $S^m \times (t)$ on only one point. These points of intersection will be denoted by O_t . We also denote $x_i \cap S^n \times (t)$ by ξ_{it} in $S^m \times (t)$ by M_{it} and the inverse image of ξ_{it} in E_t^{m+1} by C_{it}^{m-n+1} . Then we have

$$\begin{split} & R \partial \bigg[\cdot Y_{12}^{m-n+2} \cap \bigg\{ \bigcap_{\beta_1 \leq \leq \beta_2} \bigg(\bigcap_{i=2}^r [O_t, M_{tl}] \bigg) \bigg\} \bigg] \\ &= Y_1^{m-n+1} \cap \bigg(\bigcap_{i=2}^r [O_t, M_i] \bigg) - Y_1^{m-n+1} \cap \bigg(\bigcap_{i=2}^r [O, M_i] - Z_{12}^{m-n+1} \cap \bigg\{ \bigcup_{\beta_1 \leq t \leq \beta_2} \bigg(\bigcap_{i=2}^r [O_t, M_{tl}] \bigg) \bigg\}, \\ & R \partial \bigg[Z_{12}^{m-n+1} \cap \bigg\{ \bigcup_{\beta_1 \leq t \leq \beta_2} \bigg(\bigcap_{i=2}^r [O_t, M_{tl}] \bigg) \bigg\} \bigg] \\ &= M^{m-n} \cap \bigg(\bigcap_{i=2}^r [O_t, M_i] \bigg\} - M^{m-n} \cap \bigg(\bigcap_{i=2}^r [O, M_i] \bigg\} - \bigg\{ \bigcup_{\beta_1 \leq t \leq \beta_2} (M_t \cap \bigg(\bigcap_{i=2}^r [O_t, M_{tl}] \bigg) \bigg\}. \end{split}$$

and

$$\boldsymbol{L}^{n+1} = \overset{*}{K'}_{t+1} - K^{n+1} - Y^{m-n+2}_{12} \cap \left\{ \bigcup_{\beta_1 \leq t \leq \mathfrak{S}_2} \left(\bigcap_{i=2}^r [O_i, M_{it}] \right) \right\}.$$

Then

We define

$$R \partial L^{n+1} = \overset{*}{Z}^{n} - Z^{n} + Y_{1} \cap \left(\bigcap_{i=2}^{r} [O, M_{i}] \right) - \overset{*}{Y}_{1} \cup \left(\bigcap_{i=2}^{r} [\overset{"}{O}, \overset{*}{M}_{i}] \right) + Z_{12}^{m-n+1}$$

$$\Big\{\bigcup_{\beta_1 \le t \le \beta_2} \Big(\bigcap_{l=2}^r [O_t, M_{tl}] \Big) \Big\}$$
$$= \bigcap_{i=1}^r [O, M_i] - \bigcap_{i=1}^r [\stackrel{*}{O}, \stackrel{*}{M_i}] + Z_{12}^{m-r+1} \cap \Big\{ \bigcup_{\beta_1 \le l \le \beta_2} \Big(\bigcap_{l=2}^r [O_t, M_{tl}] \Big) \Big\}.$$

This complex is bounded by a cycle M^{n+1} included in V^{m+1} . Therefore $R \ni L^{n+1} = R \ni M^{n+1}$. By the fact of $M^{n+1} \subset V^{m+1}_{\beta_1,\beta_2}$, we know $f(M^{n+1}) \subset V^{n+1}_{\beta_1,\beta_2}$ and $f(M^{n+1})$ cover the north pole and south pole with the degree 0. As *n* is even, c' + c'' = 0, therefore $-W_r(f) = c' - c'' = 2c' > 0$.

To prove Theorem 4.2, using $W_r(f) = c' = 0$ and Eg = 0, it is sufficient to prove g = 0. Now, by $W_r(f) = 0$ we can deform f in S^m_β so as to map $\bigcap_{i=1}^r [O, M_i]$ to one point and also $f(R \partial K^{n+1})$ to one point. By c' = 0, the image of K^{n+1} is contractible to one point fixing $R \partial K^{n+1}$ and also K^{n+1} can be contractible to one point. Then, if $f(V^{m+2}) \subset S^{n+1}$, one point (for example north pole) has one point (for example north pole) and only one point as inverse image, therefore g is not essential.

5. Product theorem.

THEOREM 5.1. Let g be a map of one m-sphere S_1^m into another n-sphere S^m of degree c. If f is a map of S^m into S^n , then $W_r(fg) = c^r W_r(f)$.

PROOF. As c and $W_r(f)$ are constant for the homotopy class of maps respectively, we can assume that f and g are simplicial mappings. Let ξ_i be a fixed point of S^n and $\varphi(\xi_i)$ and $\psi(\xi_i)$ the inverse image of ξ_i for f and fg respectively. We also assume that m-simplex T^m of S^m intersects with $\varphi(\xi_i)$ and the number of m-simplexes of S_1^m mapped on T^m positively or negatively by g is p or q respectively. Then p - q = c and the number of (m - n)-simplex of $\psi(\xi_i)$ are mapped on (m - n)-simplex of $\psi(\xi_i)$ which are included in T^m positively or negatively is p or q. Conversely the image of each (m - n)-simplex of $\psi(\xi_i)$ are (m - n)-simplex of $\varphi(\xi_i)$. Therefore we have $g(\psi(\xi_i)) = c \cdot \varphi(\xi_i)$.

ave $g(\psi(\xi_i)) = c \cdot \varphi(\xi_i).$ We define L_i^{m-n+1} , K_i^{m-n+1} as follows: $R \partial L^{m-n+1} = dc(\xi_i)$

$$R \partial L_i^{m-n+1} = \Psi(\xi_i),$$

$$R \partial K_i^{m-n+1} = \varphi(\xi_i).$$

Then,

$$\begin{split} R \partial (g(L_i^{m-n+1})) &= g(R \partial (L_i^{m-n+1}) = g(\psi(\xi)) = c \cdot \mathcal{R} \partial K^{m+n-1}, \\ \text{and, } g(L_i^{m-n+1}) - c \cdot K_i^{m-n+1} \text{ is a cycle of } S^m. \text{ On the other hand, } g(L_i^{m-n+1}) - c \cdot K_i^{m-n+1} \sim 0 \text{ in } S^m \text{ and } fg(L_i^{m-n+1}) - cf(K_i^{m-n+1}) \sim 0 \text{ in } S^n. \\ \text{Then, } fg(L_i^{m-n+1}) = c \cdot f(K_i^{m-n+1}). \end{split}$$

As in the proof of Theorem 2.1, we may use $[O, \varphi(\xi_i)]$, $[O, \psi(\xi_i)]$ for K_i^{m-n+1} , L_i^{m-n+1} respectively. Then $fg\left(\bigcap_{i=1}^r [O, \psi(\xi_i)]\right) = c^r \cdot f\left(\bigcap_{i=1}^r [O, \psi(\xi_i)]\right)$

236

$$[O, \varphi(\xi_t)]$$
, therefore $W_r(fg) = c^r \cdot W_r(f)$.

THEOREM 5.2. Let h be a map of one n-sphere S^n into another n-sphere S_1^n of degree c. If f is a map of S^m into S^n , then $W_r(hf) = c^{r+1}W_r(f).$

PROOF. As c and $W_r(f)$ are constant for the homotopy class of maps respectively, we can assume that h and f are simplicial mappings. Let ξ be a fixed point of S^n and φ and ψ the inverse image for f and hf respectively. The inverse image of ξ for h are denoted by, $\eta_1, \ldots, \eta_p; \zeta_1, \zeta_2, \ldots, \zeta_q$; where n-simplexes including η_i and ζ_i are mapped on n-simplex including ξ positively and negatively respectively. It is clear that

 $c = p - q \text{ and } \qquad \psi(\xi) = \Sigma \varphi(\eta_i) - \Sigma \varphi(\zeta_j).$ We define K_i^{m-n+1} , L_j^{m-n+1} as follows: $R \partial K_i^{m-n+1} = \varphi(\eta_i)$ $R \partial L_i^{m-n+1} = \varphi(\zeta_j).$

Therefore we have

$$R\partial\left(\sum K_i^{m-n+1}-\sum_j L_j^{m-n+1}\right)=\psi(\xi)$$

 $\sum K_i^{-n+1} = \sum L_j^{m-n+1}$ is used for $W_r(hf)$, analogously

 $\sum K_i^{m-n+1} - \sum L_j^{m-n+1}$ is used for $(p-q) W_r(f)$. The degree c above considered is the degree of for h. Therefore we have.

 $W_r(hf) = c^r \cdot c \cdot W_r(f) = c^{r+1} W_r(f).$

BIBLIOGRAPHY

- [1] K. AOKI, On maps of a (2n-1)-dimensional sphere into an *n*-dimensional sphere. Tôhoku Math. Journ., 4(1952)
- [2] H. FREUDENTHAL, Über die Klassen der Sphären abbildungen, Compositio Math., 5(1937), 299-314.
- [3] H. HOPF, Über die Abbildungen der dreidimensionalen Sphären auf die Kugelfläche, Math. Ann., 104(1931), 637-665.
- [4] H. HOPF, Über die Abbildungen von Sphären auf Sphären niedrigere Dimension. Fund. Math., 25(1935), 427-440.
- [5] H. HOPF, Die Klassen der Abbildiungen der n-dimensionalen Polyeder auf der ndimensionale Sphären Comment. Math. Helv., 5(1933), 39-54.
- [6] L. PONTRJAGIN, A classification of mappings of the three dimensional complex into the two-dimensional sphere. Rec. Math., N.S., 9(1941), 331-363.
- [7] H. WHITNEY, On the maps of an *n*-sphere into another *n*-sphere. Duke Math. Journ., 8(1937), 46-50.
- [8] H. WHITNEY, The maps of an n-complex into au n-sphere. Duke Math. Journ., 3(1937), 51-55.

MATHEMATICAL INSTITUTE, TÔHOKU UNIVERSITY SENDAI.