SOME TRIGONOMETRICAL SERIES, X

Shin-ichi Izumi

(Received April 20, 1954)

1. Let $\varphi(t)$ be an even integrable function with period 2π. Lebesgue's convergence test of the Fourier series of $\varphi(t)$ at $t=0$ reads as follows [1]:

Theorem. If

$$
\begin{equation*}
\int_{0}^{t}|\varphi(u)| d u=o(t) \text { as } t \rightarrow 0 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{h \rightarrow 0} \int_{h}^{\pi} \frac{|\varphi(t+h)-\phi(t)|}{t} d t=0 \tag{2}
\end{equation*}
$$

then the Fourier series of $\varphi(t)$ converges at $t=0$.
The condition (1) was generalized by S. Pollard [2], J. J. Gergen [3], G. Sunouchi [4] (cf. [5]) and many other writers. On the other hand the condition (2) was generalized by S. Pollard in the form

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \lim _{u \rightarrow 0} \int_{k u}^{\pi} \frac{|\varphi(t+u)-\varphi(t)|}{t} d t=0 . \tag{3}
\end{equation*}
$$

The object of this part is to show that the absolute value sign may be omitted with some modification ${ }^{1}$.
2. Theorem 1. Let $\varphi(t)$ be an integrable function. If (1) holds and

$$
\begin{equation*}
n \int_{0}^{\pi / n} d t\left|\sum_{k=1}^{(n-1) / 2} \int_{t+2 k \pi / n}^{t+(2 k+1) \pi / n} \frac{\phi(v)-\phi(v-\pi / n)}{v} d v\right|=o(1) \tag{4}
\end{equation*}
$$

as $n \rightarrow \infty$, then the Fourier series of $\varphi(t)$ converges at $t=0$.
Proof. We may suppose that $\varphi(0)=0$ and $\varphi_{1}(\pi)=0$, where

$$
\varphi_{1}(t)=\int_{0}^{t} \varphi(u) d u
$$

Then ${ }^{2)}$

[^0]\[

$$
\begin{aligned}
S_{n}(o) & =\frac{2}{\pi} \int_{0}^{\pi} \varphi(t) \frac{\sin n t}{t} d t+o(1) \\
& =-\frac{2}{\pi} \int_{0}^{\pi} \varphi_{1}(t)\left[\frac{n \cos n t}{t}-\frac{\sin n t}{t^{2}}\right] d t+o(1) \\
& =-\frac{2}{\pi}\left(\int_{0}^{\pi / n}+\int_{\pi / n}^{\pi}\right)+o(1)=-\frac{2}{\pi}\left(I_{1}+I_{2}\right)+o(1)
\end{aligned}
$$
\]

say. $\mathrm{By}(1), I_{1}=\boldsymbol{o}(1)$. After Salem [6]

$$
\begin{aligned}
I_{2}=\int_{0}^{\pi / n}[& n \cos n t \sum_{k=1}^{n-1}(-1)^{k} \frac{\varphi_{1}(t+k \pi / n)}{t+k \pi / n} \\
& \left.\quad-\sin n t \sum_{k=1}^{n-1}(-1)^{k} \frac{\varphi_{1}(t+k \pi / n)}{(t+k \pi / n)^{2}}\right] d t=I_{21}-I_{22},
\end{aligned}
$$

say. We may suppose n odd, and then

$$
\begin{aligned}
I_{21}= & n^{2} \int_{0}^{\pi / n} \cos n t\left[\frac{2 \pi}{n} \sum_{k=1}^{(n-1) / 2} \frac{\varphi_{1}(t+2 k \pi / n)}{t+2 k \pi / n}\right. \\
& \left.\quad-\frac{2 \pi}{n} \sum_{k=1}^{(n-1) / 2} \frac{\varphi_{1}(t+(2 k-1) \pi / n)}{t+(2 k-1) \pi / n}\right] d t=n^{2} \int_{0}^{\pi / n} \cos n t . J_{21} d t,
\end{aligned}
$$

say. Then

$$
\begin{aligned}
J_{21}= & \int_{t}^{t+\pi} \frac{\varphi_{1}(u)}{u} d u-\sum_{k=1}^{(n-1) / 2} \int_{t+2 k \pi / n}^{t+2(k+1) \pi / n}\left[\frac{\varphi_{1}(u)}{u}-\frac{\varphi_{1}(t+2 k \pi / n)}{t+2 k \pi / n}\right] d u \\
& -\int_{t+\pi / n}^{t+\pi+\pi / n} \frac{\varphi_{1}(u)}{u} d u+\sum_{k=1}^{(n-1) / 2} \int_{t+2 k \pi / n}^{t+2(n+1) \pi / n}\left[\frac{\varphi_{1}(u-\pi / n)}{u-\pi / n}\right. \\
& \left.-\frac{\varphi_{1}(t+(2 k-1) \pi / n)}{t+(2 k-1) \pi / n}\right] d u \\
= & \left(\int_{t}^{t+\pi / n}-\int_{t+\pi}^{t+\pi-\pi / n}\right) \frac{\varphi_{1}(u)}{u} d u-\sum_{k=1}^{(n-1) / 2} \int_{t+2 k \pi / n}^{t+2(k+1) \pi / 2} \\
& {\left[\frac{\varphi_{1}(u)}{u}-\frac{\varphi_{1}(u-\pi / n)}{u-\pi / n}-\frac{\varphi_{1}(t+2 k \pi / n)}{t+2 k \pi / n}+\frac{\varphi(t+2 k-2) \pi}{t+(2 k-1) \pi / n}\right] d u } \\
= & J_{211}-J_{212 .}
\end{aligned}
$$

Now

$$
n^{2} \int_{0}^{\pi / n} \cos n t J_{211} d t=n^{2} \int_{0}^{\pi / n} \cos n t \int_{t}^{t+\pi / n} \frac{\varphi_{1}(u)}{u} d u
$$

$$
-n^{2} \int_{0}^{\pi / n} \cos n t d t-\int_{1+\pi}^{t+\pi+\pi / n} \frac{\varphi_{1}(u)}{u} d u=o(1)
$$

by (1). The integrand of J_{212} is

$$
\begin{gathered}
\frac{\varphi_{1}(u)}{u}-\frac{\varphi_{1}(u-\pi / n)}{u-\pi / n}-\frac{\varphi_{1}(t+2 k \pi / n)}{t+2 k \pi / n}+\frac{\varphi_{1}(t+(2 k-1) \pi / n)}{t+(2 k-1) \pi / n} \\
=-\frac{\pi}{n} \varphi_{1}(u) \frac{(u-(t+2 k \pi / n))(t+(2 k-1) \pi / n+u)}{u(u-\pi / n)(t+2 k \pi / n)(t+(2 k-1) \pi / n)} \\
+\left(\frac{\varphi_{1}(u)-\varphi_{1}(u-\pi / n)}{u}-\pi / n-+\frac{\varphi_{1}(u)-\varphi_{1}(t+2 k \pi / n)}{t+2 k \pi / n}\right. \\
\left.+\frac{\varphi_{1}(t+(2 k-1) \pi / n)-\varphi_{1}(u)}{t+(2 k-1) \pi / n}\right)=K_{k 1}+K_{k 2} .
\end{gathered}
$$

We get

$$
\begin{aligned}
& \left|n^{2} \int_{0}^{\pi / n} \cos n t d t \sum_{k=1}^{(n-1) 2} \int_{t+2 k \pi / n}^{t+2(k+1) \pi / n} K_{k 1} d u\right| \\
& \leqq A n^{2} \int_{0}^{\pi / n} d t \cdot \frac{1}{n^{2}} \sum_{k=1}^{(n-1) / 2} \int_{i+2 k \pi / n}^{t+(2 k+1) \pi / n} \frac{\left|\varphi_{1}(u)\right|}{u^{3}} d u=o\left(\int_{0}^{\pi / n} d t \sum_{k=1}^{(n-1) / 2} \frac{n^{2}}{k^{2}} \cdot \frac{1}{n}\right)=o(1)
\end{aligned}
$$

by (1). Further

$$
\begin{aligned}
& n^{2} \int_{0}^{\pi / n} \cos n t d t \sum_{k=1}^{(n-1) / 2} \int_{t+2 k \pi / n}^{t+2(k+1) \pi / n} K_{k 2} d u \\
= & n^{2} \int_{0}^{\pi / n} \cos n t d t \sum_{k=1}^{(n-1) / 2} \frac{1}{t+2 k \pi / n} \int_{t+2 k \pi / n}^{t+(2 k+1) \pi / n}\left[\varphi_{1}(u)-\varphi_{1}(u-\pi / n)\right. \\
& \left.\quad-\varphi_{1}(t+2 k \pi / n)+\varphi_{1}(t+(2 k-1) \pi / n)\right] d u+o(1),
\end{aligned}
$$

which is less than, in absolute value,

$$
n \int_{0}^{\pi / n} d t\left|\sum_{k=1}^{(n-1) / 2} \int_{t+2 k \pi / n}^{t+(2 k+1) \pi / n} \frac{\varphi(v)-\phi(v-\pi / n)}{v} d v\right|+o(1)
$$

thus we have proved $I_{21}=o(1)$.
Concerning I_{22}, estimation may be similarly carried out and we get I_{22} $=o(1)$, and then

$$
I_{2}=I_{21}+I_{22}=o(1)
$$

Hence the theorem is completely proved.
3. From the proof of theorem 1, we get the following theorem:

Theorem 2. If (1) holds, then a necessary and sufficient condition that the Fourier series of $\varphi(t)$ converges at $t=0$, is
(5) $\quad \lim _{n \rightarrow \infty} n \int_{0}^{\pi / n} \cos n t d t \sum_{k=1}^{(n-1) / 2} \int_{t+2 k \pi / n}^{t+2(k+1) \pi / n} \frac{\varphi(v)-\phi(v-\pi / n)}{v} d v=0$.
(2) implies (4) and (4) implies (5). Hence the necessary and sufficient condition (5) does not seem to be non-interesting. But it is of course disirable that the condition does not contain the terms $\cos n x$ and $\sin n x$.

References

[1] A. ZyGMund, Trigonometrical series, 1936.
[2] S. Pollard, Journ. London Math. Soc., 2(1926)
[3] J. J. Gergen, Quarterly Journ. (2), 1(1930)
[4] G. Sunoucht, Tôhoku Math. Journ: (2) 1 1-3(1950-2)
[5] S. IzUMI, Tôhoku Math. Journ., in the press.
[6] R. Salem, Comptes Rendus, 207(1938).
mathematical Insititute, Tokyo Toritsu University.

[^0]: 1) When this paper is written up, Prof. G. Sunouchi let the author know a paper of H. E. Bray, Rice Inst. Pamphlet, 1953, which is in the same direction as this paper but the result does not overlap. He shows that $\sin 1 / t$ does not satisfy the condition (2), but its Fourier series converges to zero at $t=0$. One can show that $\sin 1 / t$ satisfies the condition (4).
 2) $S_{n}(x)$ is the nth partial sum of Fourier series of $\varphi(t)$ at $t=x$.
