COMPLEX MULTIPLICATION AND PRINCIPAL IDEAL THEOREM

Fumiyuki Terada

(Received February 15, 1954)

Introauction

The principal ideal theorem, which asserts that all ideals in a ground field become principal in the absolute class field, was translated by Artin into a group-theoretical one, and this was proved by Fürtwängler ${ }^{1)}$. An arithmetical proof of this theorem is desired, and it is given only in the case of the cyclic absolute class field by the formula of the self-conjugate classes.

In the case of the quadratic imaginary ground field, Prof. H. Hasse gave a concrete respresentation of this theorem employing the complex multiplication ${ }^{2}$. But he restricted himself to the ideals \mathfrak{m} with $N \mathfrak{m} \equiv 1 \bmod 12$, and as he mentioned recently ${ }^{3}$, each absolute ideal class contains not always such an ideal, when the discriminant is not prime to 12 .

In this note, we shall give a remark to the Hasse's proof and show that an analogous method is applicable to the ideals m with $\mathrm{Nm} \equiv 5$ mod. 12.

1. Let $\Omega=R(\sqrt{d})$ be a quadratic imaginary extension of the rational field R with discriminant d, and K be the absolute class field of Ω. Let $\boldsymbol{\alpha}_{1}$, α_{2} be numbers in Ω which constitute a basis of an ideal \mathfrak{a} in Ω. Then it is shown that $K=\Omega\left(j\left(\alpha_{1}, \alpha_{2}\right)\right)$, where $j\left(\alpha_{1}, \alpha_{2}\right)$ is a singular value of the modular function $j\left(\omega_{1}, \omega_{2}\right)$. Let \mathfrak{m} be an ideal in Ω such that 1) $(\mathfrak{m}, 12 d)=1$, 2) \mathfrak{m} is decomposable into the product of prime ideals in Ω with degree 1. Prof. H. Hasse proved the following theorem :

If $N \mathrm{~m} \equiv 1 \bmod 12$, then the number

$$
\begin{equation*}
\psi_{M}\left(\alpha_{1}, \alpha_{2}\right)=\frac{\Delta_{12}\left(\frac{1}{m} M\left(\alpha_{1}, \alpha_{2}\right)\right)}{\Delta_{12}\left(\alpha_{1}, \alpha_{23}\right)}=\frac{\Delta_{12}\left(\frac{a}{m}\right)}{\Delta_{12}(\mathfrak{a})} \tag{1}
\end{equation*}
$$

is contained in $K=\Omega\left(j\left(\alpha_{1}, \alpha_{2}\right)\right)$, and $\mathfrak{m}=\left(\psi_{m r}\left(\alpha_{1}, \alpha_{2}\right)\right)$, where M is a primitive transformation of degree $m=N \mathfrak{m}$ such that 1) $\left.M \equiv\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \bmod 12,2\right) M$

[^0]transforms α_{1}, α_{2} to a basis of the ideal $m \cdot \frac{\mathfrak{a}}{\mathfrak{m}}=\overline{\mathfrak{m}} \mathfrak{a}$, and the function $\Delta_{1 z}$ (ω_{1}, ω_{2}) is given by the following
\[

$$
\begin{equation*}
\Delta_{12}\left(\omega_{1}, \omega_{2}\right)=\frac{2 \pi}{\omega_{2}} q^{\frac{1}{12}} \prod_{k=1}^{\infty}\left(1-q^{\imath}\right)^{2}, q^{\frac{1}{12}}=\exp \left(\frac{2 \pi i}{12} \cdot \frac{\omega_{1}}{\omega_{2}}\right), \tilde{\vartheta}\left(\frac{\omega_{1}}{\omega_{2}}\right)>0 . \tag{2}
\end{equation*}
$$

\]

In the proof of this theorem, he asserted that each class of the m-th primitive transformation can be represented by a transformation M_{v} such that

$$
M_{\nu}=\left(\begin{array}{ll}
a_{\nu} & b_{\nu} \tag{3}\\
0 & d_{\nu}
\end{array}\right) \equiv\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \bmod 12, \quad \text { where } a_{\nu} d_{\nu}=m \equiv 1 \bmod 12 .
$$

But, for example if $m=25$, the class which contains a transformation of the form $\left(\begin{array}{ll}a_{\nu} & b_{v} \\ 0 & d_{\nu}\end{array}\right) \equiv\left(\begin{array}{ll}5 & 0 \\ 0 & 5\end{array}\right) \bmod 12$, will not be represented by a transformation of the form (3). If we treat only prime ideals, the above assertion is correct by the restriction $m \equiv 1$ mod. 12 . Nevertheless, to avoid the use of the theorem of the arithmetical progression, it will be desirable to treat also the case of a non-prime m. Therefore, it needs to add a certain consideration to the Hasse's proof, and it will be shown in the following 3, especially the formula (7).
2. In general, let \mathfrak{m} be an ideal in Ω which is prime to $12 d$. Then \mathfrak{m} is decomposable into a product of prime ideals with degree 1 and prime ideals with degree 2 . Since each prime ideal with degree 2 is principal, we may assume that \mathfrak{m} is a product of prime ideals with degree 1 , when we concern the principal ideal theorem. Let us now select a complete system of representations of the $\psi(m)$ classes of the m-th primitive transformation M_{v} by the following manner. Since $(m, 12 d)=1$, we may select so as

$$
M_{\nu}=\left(\begin{array}{ll}
a_{\nu} & b_{\nu} \\
0 & d_{\nu}
\end{array}\right), \text { where }\left\{\begin{array}{l}
b_{\nu} \equiv 0 \bmod 12, a_{\nu} d_{\nu}=m, a_{\nu}>0, d_{\nu}>0 \\
b_{\nu} \text { constitute representations } \bmod d_{\nu} .
\end{array}\right.
$$

Moreover, let us divide the problem into four cases according to the value of $m=N \mathfrak{m}$, and in each case, we shall select suitable normalized representations. That is:

Case 1. $m \equiv 1 \bmod 12$. If $a_{\nu} \equiv d_{\nu} \equiv 7$ or $a_{\nu} \equiv d_{\nu} \equiv 11 \bmod 12$, multiplying a modular transformation $\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$, we may construct a system of representations so as

$$
M_{\nu}=\left(\begin{array}{ll}
a_{v} & b_{v} \tag{4}\\
0 & d_{\nu}
\end{array}\right), \text { where }\left\{\begin{array}{l}
b_{\nu} \equiv 0 \bmod 12, a_{\nu} d_{\nu}=m \\
b_{\nu} \text { constitute representations } \bmod \left|d_{\nu}\right|,
\end{array}\right.
$$

and

$$
M_{\nu} \equiv\left(\begin{array}{ll}
1 & 0 \tag{5}\\
0 & 1
\end{array}\right) \quad \text { or } \equiv\left(\begin{array}{ll}
5 & 0 \\
0 & 5
\end{array}\right) \bmod 12 .
$$

Case II. $m \equiv 5 \bmod 12$. By the same way as it was described in Case I, we may construct a system of representations of the same form [as (4), where the additional condition (5) is replaced by the following

$$
M_{\nu} \equiv\left(\begin{array}{ll}
5 & 0 \\
0 & 1
\end{array}\right) \text { or } \equiv\left(\begin{array}{ll}
1 & 0 \\
0 & 5
\end{array}\right) \cdot \bmod 12 .
$$

Case III. $m \equiv 7 \bmod 12$. Instead of (5)

$$
M_{\nu} \equiv\left(\begin{array}{ll}
7 & 0 \\
0 & 1
\end{array}\right) \quad \text { or } \equiv\left(\begin{array}{ll}
1 & 0 \\
0 & 7
\end{array}\right) \bmod 12
$$

Case IV. $m \equiv 11 \bmod 12$. Instead of (5)

$$
M_{\nu} \equiv\left(\begin{array}{ll}
11 & 0 \\
0 & 1
\end{array}\right) \quad \text { or } \equiv\left(\begin{array}{rr}
1 & 0 \\
0 & 11
\end{array}\right) \bmod 12 .
$$

3. Let us now operate a modular transformation S to the arguments of function $\psi_{M_{\nu}}\left(\omega_{1}, \omega_{2}\right)$. Then, if $M_{\nu} S=S_{\nu} M_{\mu}$,

$$
\begin{gathered}
\psi_{M_{\nu}}\left(S\left(\omega_{1}, \omega_{2}\right)\right)=\frac{\Delta_{12}\left(\frac{1}{m} M_{\nu} S\left(\omega_{1}, \omega_{2}\right)\right)}{\Delta_{12}\left(S\left(\omega_{1}, \omega_{i 2}\right)\right)}=\frac{\chi_{12}\left(S_{v}\right) \Delta_{12}\left(\frac{1}{m} M_{\mu}\left(\omega_{1}, \omega_{2}\right)\right)}{\chi_{12}(S) \Delta_{12}\left(\omega_{1}, \omega_{2}\right)} \\
=\frac{\chi_{12}\left(S_{v}\right)}{\chi_{12}(S)} \psi_{1 x_{\mu}}\left(\omega_{1}, \omega_{22}\right),
\end{gathered}
$$

where $\chi_{12}(S)$ is given by the following formula ${ }^{4}$, i.e. if $S=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$,

$$
\begin{aligned}
& \chi_{12}(S)=\chi_{3}(S) \chi_{4}(S)^{-1} \\
& \chi_{5}(S)=\exp \left(\frac{2 \pi i}{3}\left(a^{2}+c^{2}\right)(a b+c d)\right) \\
& \chi_{4}(S)=\exp \left(\frac{2 \pi i}{4}\left[a^{2}(a b-a c-a+1)+\left(1-a^{2}\right)(a c+c d+d)\right]\right)
\end{aligned}
$$

Now, if $S_{\nu}=\left(\begin{array}{ll}e & f \\ g & h\end{array}\right)$, then the relation $M_{\nu} S=S_{\nu} M_{\mu}$ means
$e \equiv a_{\mu}^{\prime} a_{\nu} a, \quad f \equiv d_{\mu}^{\prime} a_{\nu} b, \quad g \equiv a_{\mu}^{\prime} d_{\nu} c, \quad h \equiv d_{\mu}^{\prime} d_{\nu} d \bmod 12$,
where $\mathrm{a}_{\mu}^{\prime}$ and d_{μ}^{\prime} are such that $a_{\mu}^{\prime} a_{\mu} \equiv 1 \equiv d_{\mu}^{\prime} d_{\mu} \bmod 12$. From these relations we have a relation between $\chi_{12}(S)$ and $\chi_{12}\left(S_{\nu}\right)$, which is the following lemmas.

Lemma 1. In the case 1 , we get for an arbitrary modular transformation S and an arbitrary M_{v},

$$
\chi_{12}\left(S_{v}\right)=\chi_{12}(S)
$$

Proof. Since $a_{\nu}^{2} \equiv d_{\nu}^{2} \equiv a_{\mu}^{\prime 2} \equiv d_{\mu}^{\prime 2} \equiv 1 \bmod 12$,

$$
\begin{align*}
\chi_{z}\left(S_{\nu}\right) & =\exp \left(\frac{2 \pi i}{3}\left(e^{2}+g^{2}\right)(e f+g h)\right) \tag{6}\\
& =\exp \left(\frac{2 \pi i}{3}\left(a^{2}+c^{2}\right) \cdot(a b+c d) m\right)
\end{align*}
$$

where m^{\prime} is such that $m m^{\prime} \equiv 1 \bmod 12$, and therefore $m^{\prime} \equiv 1 \bmod 12$ in our case. Then it follows that $\chi_{3}\left(S_{\nu}\right)=\chi_{3}(S)$. On the other hand, we have from (5), $a_{\nu} \equiv d_{\nu} \equiv a_{\mu}^{\prime} \equiv d_{\mu}^{\prime}=1 \bmod 4$, and it follows that $e \equiv a, f \equiv b, g \equiv c, h \equiv d$ $\bmod 4$, and this shows that $\chi_{t}\left(S_{\nu}\right)=\chi_{4}(S)$.

Lemma 2. In the case II, we get for arbitrary S and M_{v},

$$
\chi_{12}\left(S_{v}\right)=\chi_{12}(S) \chi_{3}(S)
$$

Proof. Since $m^{\prime} \equiv 5 \bmod 12$ in (6), we have $\chi_{3}\left(S_{\nu}\right)=\chi_{3}(S)^{2}$. On the other hand, as it was mentioned in the proof of Lemma 1,
4) R. Fricke, Die elliptischen Funktionen und ihre Anwendungen, Berlin.
$\chi_{4}\left(S_{v}\right)=\chi_{4}(S)$, and our lemma follows immediately.
From these lemmas, we have the following formulas; that is, if $m \equiv 1$ $\bmod 12$
(7)

$$
\psi_{M_{\nu}}\left(S\left(\omega_{1}, \omega_{2}\right)\right)=\psi_{H_{\mu}}\left(\omega_{1}, \omega_{2}\right), \text { where } M_{\mu} \sim M_{\nu} S
$$

and if $m \equiv 5 \bmod 12$,

$$
\begin{equation*}
\psi_{M_{\nu}}\left(S\left(\omega_{1}, \omega_{2}\right)\right)=\chi_{3}(S) \psi_{s_{\mu}}\left(\omega_{1}, \omega_{2}\right), \text { where } M_{\mu} \sim M_{\nu} S \tag{8}
\end{equation*}
$$

In the case III and IV, we may conclude analogous formulas. But in these cases $\chi_{12}\left(S_{v}\right) / \chi_{12}(S)$ are the quadratic and $6-t h$ root of 1 , respectively. And especially they are dependent not only on S but on the suffix ν.
4. As it was treated by Hasse, we can find a function $l_{H_{\nu}}\left(\omega_{1}, \omega_{2}\right)$ such that 1) $l_{s_{1}(}\left(\alpha_{1}, \alpha_{2}\right)$ is contained in the absolute class field $\Omega\left(j\left(\alpha_{1}, \alpha_{2}\right)\right)$ of Ω, 2) $l_{M_{\nu}}\left(\alpha_{1}, \alpha_{2}\right) \neq l_{M H}\left(\alpha_{1}, \alpha_{2}\right)$ if $M_{\nu} \sim M$, 3) $l_{J_{\nu}}\left(S\left(\omega_{1}, \omega_{2}\right)\right)=l_{M_{\mu}}\left(\omega_{1}, \omega_{2}\right)$ where $M_{\mu} \sim$ $M_{\nu} S$. Then the polynomial

$$
L\left(t, \omega_{1}, \omega_{2}\right)=\prod_{\nu=1}^{\psi(m)}\left(t-l_{\nu}\left(\omega_{1}, \omega_{2}\right)\right)
$$

is a polynomial of t and the function $j\left(\omega_{1}, \omega_{2}\right)$ with integral coefficient.
Now, as it was mentioned by Hasse

$$
\begin{equation*}
\mathfrak{m}=\left(\psi_{M H}\left(\alpha_{1}, \alpha_{2}\right)\right), \tag{9}
\end{equation*}
$$

and, especially in the case I, $\psi_{M}\left(\alpha_{1}, \alpha_{2}\right)$ is contained in $\Omega\left(j\left(\alpha_{1}, \alpha_{2}\right)\right)$. That is, from (7), the coefficient of the polynomial

$$
\begin{equation*}
G\left(t ; \omega_{1}, \omega_{2}\right)=L\left(t, j\left(\omega_{1}, \omega_{2}\right)\right) \cdot \sum_{\nu=1}^{\psi(m)} \frac{\psi_{M_{v}}\left(\omega_{1}, \omega_{2}\right)}{t-l_{M_{\nu}}\left(\omega_{1}, \omega_{2}\right)} \tag{10}
\end{equation*}
$$

are invariant under each modular transformation, and this polynomial is a polynomial of t and $j\left(\omega_{1}, \omega_{2}\right)$ with integral coefficient, and finally,

$$
\begin{equation*}
\psi_{M}\left(\alpha_{1}, \alpha_{2}\right)=\frac{G\left(l_{M}\left(\alpha_{1}, \alpha_{2}\right), j\left(\alpha_{1}, \alpha_{2}\right)\right.}{L^{\prime}\left(l_{M}\left(\alpha_{1}, \alpha_{2}\right), j\left(\alpha_{1}, \alpha_{2}\right)\right)} \tag{11}
\end{equation*}
$$

is contained in the absolute class field $\Omega\left(j\left(\alpha_{1}, \alpha_{2}\right)\right)$ of Ω.
On the contrary, in the case II, the coefficients of $G\left(t ; \omega_{1}, \omega_{2}\right)$ are not invariant under modular transformations ; that is from (8),

$$
G\left(t ; S\left(\omega_{1}, \omega_{2}\right)\right)=\chi_{3}(S) G\left(t ; \omega_{1}, \omega_{2}\right)
$$

The coefficients of t are cubic algebraic functions of $j\left(\omega_{1}, \omega_{2}\right)$. Nevertheless, the coefficients of a polynomial

$$
\begin{equation*}
G_{3}\left(t ; \omega_{1}, \omega_{2}\right)=L\left(t ; j\left(\omega_{1}, \omega_{2}\right)\right) \sum_{\nu=1}^{\psi(m)} \frac{\psi_{M \nu}^{3}\left(\omega_{1}, \omega_{2}\right)}{t-l_{M_{\nu}}\left(\omega_{1}, \omega_{2}\right)} \tag{12}
\end{equation*}
$$

are invariant under each modular transformation. Moreover, $\psi_{M_{v}}^{3}\left(\omega_{1}, \omega_{2}\right)$ has the following q-expansion:

$$
\psi_{\mu_{\nu}\left(\omega_{1}, \omega_{2}\right)}=\frac{\left(\frac{m}{d_{\nu}}\right)^{3} q^{\frac{n_{\nu}}{q^{2(\nu}}} \zeta_{\nu}^{\left\lvert\, \frac{\left|\nu_{\nu}\right|}{4}\right.} \prod_{k=1}^{\infty}\left(1-\zeta_{\nu}^{k\left|b_{1}\right|} q^{\left.k^{k} \frac{\sigma_{\nu}}{d_{\nu}}\right)^{6}}\right.}{q^{\mathrm{T}} \prod_{k=1}^{\mathrm{T}}\left(1-q^{k}\right)^{6}}
$$

$$
=a_{\nu}^{3} q^{\frac{1}{4}\left(\frac{a \nu}{d \nu}-1\right)} \zeta_{\nu}^{\frac{|b \nu|}{4}} \frac{\prod_{k=1}^{\infty}\left(1-\zeta_{\nu}^{k|b \nu|} q^{k \frac{a \nu}{d \nu}}\right)^{6}}{\prod_{k=1}^{\infty}\left(1-q^{k}\right)^{6}}
$$

where $\zeta_{\nu}=\exp \left(\frac{2 \tau^{\prime}}{\left|d_{\nu}\right|}\right)$. This expansion does not depend on the 4 -th root of 1, because $a_{\nu}-d_{\nu} \equiv 0, b_{\nu} \equiv 0 \bmod 4$. Then it follows that the coefficients of the polynomial $G_{3}\left(t ; \omega_{1}, \omega_{2}\right)$ are polynomials of the function $j\left(\omega_{1}, \omega_{2}\right)$ with rational integral coefficient. Therefore,

$$
\psi_{M}^{3}\left(\alpha_{1}, \alpha_{2}\right)=\frac{G_{3}\left(l_{H M}\left(\alpha_{1}, \alpha_{2}\right), j\left(\alpha_{1}, \alpha_{2}\right)\right)}{L^{\prime}\left(l_{M 1}\left(\alpha_{1}, \alpha_{2}\right), j\left(\alpha_{1}, \alpha_{2}\right)\right)}
$$

is contained in $\Omega\left(j\left(\alpha_{1}, \alpha_{2}\right)\right)$, and from (9) $\mathfrak{m}^{3}=\left(\psi_{M}^{3}\left(\alpha_{1}, \alpha_{2}\right)\right)$.
On the other hand, the ideal \mathfrak{m}^{2} is an ideal treated in the case I , and the number

$$
\left.\psi_{N_{1}^{\prime}}^{\prime} \alpha_{1}, \alpha_{2}\right)=\frac{G\left(l_{M}\left(\alpha_{1}, \alpha_{2}\right), j\left(\alpha_{1}, \alpha_{2}\right)\right)}{L^{\prime}\left(l_{N}\left(\alpha_{1}, \alpha_{2}\right), j\left(\alpha_{1}, \alpha_{2}\right)\right)}
$$

is contained in $\Omega\left(j\left(\alpha_{1}, \alpha_{2}\right)\right)$ and $\mathfrak{m}^{2}=\left(\psi_{N}\left(\alpha_{1}, \alpha_{2}\right)\right)$, where N is a m^{2}-th primitive transformation which transforms α_{1}. α_{2} to a basis $m^{2} \frac{\mathfrak{a}}{\mathfrak{m}^{2}}=\overline{\mathfrak{m}}^{2} \mathfrak{a}$. Then, we have a number

$$
\begin{equation*}
\frac{G_{3}\left(l_{M}\left(\alpha_{1}, \alpha_{2}\right), j\left(\alpha_{1}, \alpha_{2}\right)\right)}{L^{\prime}\left(l_{M}\left(\alpha_{1}, \alpha_{2}\right), j\left(\alpha_{1}, \alpha_{2}\right)\right)} \frac{L^{\prime}\left(l_{N}\left(\alpha_{1}, \alpha_{2}\right), j\left(\alpha_{1}, \alpha_{2}\right)\right)}{G\left(l_{M}\left(\alpha_{1}, \alpha_{2}\right), j\left(\alpha_{1}, \alpha_{2}\right)\right.} \tag{12}
\end{equation*}
$$

which is contained in the absolute class field $\Omega\left(j\left(\alpha_{1}, \alpha_{2}\right)\right)$ and generate the ideal \mathfrak{m} in this field.

From the above consideration, we have a concrete representation of the principal ideal theorem concerning a ideal \mathfrak{m} which is prime to $12 d$ and N $\mathfrak{m} \equiv 1 \bmod 4$.

Theorem. If $N \mathfrak{m} \equiv 1$ mod 12, a number (11) generate the ideal \mathfrak{m} in $\Omega\left(j\left(\alpha_{1}, \alpha_{2}\right)\right)$, and if $N \mathfrak{m} \equiv 5$ mod 12, the number (12) generate the ideal \mathfrak{m} in $\Omega\left(j\left(\alpha_{1}, \alpha_{2}\right)\right)$.

In the case of III or IV, we may also construct a polynomial $G_{2}\left(t ; \omega_{1}, \omega_{2}\right)$ or $G_{6}\left(t ; \omega_{1}, \omega_{2}\right)$ as before. But, in these cases, we have only a generator of the ideal \mathfrak{m}^{2} or \mathfrak{m}^{5}, and an analogous method is not applicable in these cases.
mathematical Institute, Tôhoku University.

[^0]: 1) There are several simple proofs of this theorem. Moreover, a generalization of this theorem was proved by T. Tannaka and the author. cf. T. Tannaka, An alternative proof of the generalized principal ideal theorem, Proc. of the Japan Acad., vol.25(1949): F.Terada, On a generalization of the principal ideal theorem, Tôhoku Math. Journ., 2nd Ser., vol. 1 (1949).
 2) H. Hasse, Zum Hauptidealsatz der komplexen Multiplikation, Mont. f. Math. u. Phys., 38(1931).
 3) H. Hasse, Zur Geschlechterie in quadratischen Zahlkörpern. Journ. of the Math. Soc. of Japan, vol.3(1951), S. 449-456.
