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Introduction

The principal ideal theorem, which asserts that all ideals in a ground
field become principal in the absolute class field, was translated by Artin
into a group-theoretical one, and this was proved by Fϋrtwangler0. An
arithmetical proof of this theorem is desired, and it is given only in the
•case of the cyclic absolute class field by the formula of the self-conjugate
classes.

In the case of the quadratic imaginary ground field, Prof. H.Hasse gave
a concrete respresentation of this theorem employing the complex multipli-
cation50. But he restricted himself to the ideals m with Nm = 1 mod 12, and
as he mentioned recently3), each absolute ideal class contains not always
such an ideal, when the discriminant is not prime to 12.

In this note, we shall give a remark to the Hasse's proof and show that
an analogous method is applicable to the ideals m with Nm = 5 mod. 12.

1. Let ί l = R^'d) be a quadratic imaginary extension of the rational
field i?with discriminant d, and K be the absolute class field of 12. Letalt

a2 be numbers in ί2 which constitute a basis of an ideal α in ίl. Then it
is shown that K = Ωi(j\ccu az)), where j{pίua^ is a singular value of the
modular function j(ωh ω2). Let mbe an ideal in Ω such that 1) (m, 12d) = 1,
2) m is decomposable into the product of prime ideals in 12 with degree
1. Prof. H. Hasse proved the following theorem:

If Nm = 1 mod 12, then the number

is contained in K = £l(j(aΊy αQ), and m = (ΨΊK** i> a2)), where M is a primitive

transformation of degree m = Nm such that 1) M Ξ U J ] mod 12, 2) M

1) There are several simple proofs of this theorem. Moreover, a generalization of
this theorem was proved by T. Tannaka and the author, cf. T. Tannaka, An
alternative proof of the generalizad principal ideal theorem, Proc. of the Japan
Ac ad., vol. 25(1949): F. Terada, On a generalization of the principal ideal theorem,
Tδhoku Math. Journ., 2nd Ser., vol.1 (1949).

2) H. Hasse, Zum Hauptidealsatz der komplexen Multiplication, Mont, f. Math. u. Phys.,
38(1931).

3) H. Hasse, Zur Geschlechterie in quadratischen Zahlkδrpern. Journ. of the Math.
Soc. of Japan, vol. 3(1951), S. 449-456.
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transforms ah a2 to a basis of the ideal m — = m α, and the function

(ωu ω2) is given by the following

(2) Δ12(ωt, ω2) - ^ < ^ ft(l - Λ1, ^ = exp ( % ^ Y s ( ^ ) > 0.

In the proof of this theorem, he asserted that each class of the m-th
primitive transformation can be represented by a transformation Mv such
that

(3) Mv = (o" 5") = (o ?) mod 12, where Gvdv= m~l mod 12.
\v Wj// \v -L/

But, for example if m = 25, the class which contains a transformation of the

Jj = (Q gj mod 12, will not be represented by a transformation of

the form (3). If we treat only prime ideals, the above assertion is correct
by the restriction m = 1 mod. 12. Nevertheless, to avoid the use of the
theorem of the arithmetical progression, it will be desirable to treat also
the case of a non-prime m. Therefore, it needs to add a certain consideration
to the Hasse's proof, and it will be shown in the following 3, especially the
formula (7).

2. In general, let m be an ideal in Ώ which is prime to 12d. Then m is
decomposable into a product of prime ideals with degree 1 and prime ideals
with degree 2. Since each prime ideal with degree 2 is principal, we may
assume that m is a product of prime ideals with degree 1, when we concern
the principal ideal theorem. Let us now select a complete system of repre-
sentations of the ψ(m) classes of the m-th primitive transformation Mv by
the following manner. Since (m, 12d) = 1, we may select so as

M iav bv \ w ί Ί _ r _ (bv = 0 mod 12, arfv = m, av > 0, dv>0
v V0 dv /

 n \bv constitute representations mod dv.
Moreover, let us divide the problem into four cases according to the value
of m =3 Nm, and in each case, we shall select suitable normalized represen-
tations. That is:

Case 1. m == 1 mod 12. If av = dv = 7 or ay ΞΞ dv = 11 mod 12, multiplying

a modular transformation ( 0 _ ? ) ; w e m a v construct a system of represen-

tations so as

l ^ ~ ° m θ d 12> Qλdv = m

\bv const i tute representa t ions mod \dv\,
and

(5) M ^ ( J 5 ) or Ξ (5J) mod 12.

M - (av
lvlv " \0

Case II. m = 5 mod 12. By the same way as it was described in Case
I, we may construct a system of representations of the same form [as (4),
where the additional condition (5) is replaced by the following

(5') M , S ^
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Case III. m = 7 mod 12. Instead of (5)

(5") Jlί,s(JJ) or = (J °) m o d 1 2

Case IV. w = 11 mod 12. Instead of (5)

(5'") " ^ ( J 1 ? ) or Ξ fJ jj) mod 12.
3. Let us now operate a modular transformation S to the arguments of

function ψM^ωhω3). Then, if MPS = SpMμ.,

—-AiS(o>i, ω2)) X\^Sv)^ιl-—MiL{ωliω2))
^ _ = _ _ _ _ _ _ _ _

where X12(S) is given by the following formula4), i.e. if S = la X
\C <CL /

X,(S) = exp

X4(S) = exp (^p- [«a(β^ - β c - n + l ) + ( l - αa)(αc + cd

Now, if Sv = fβ {), then the relation MVS = S,Λfμ. means

e = tf^tf, / = J μ β ^ , ^ = aj/ivC, h = d'^d mod 12,
where a'μ and ^ are such that aμ aμ = l ~ df

μ dμ mod 12. From these relations
we have a relation between %i2(S) and Xi2(Sv), which is the following lemmas.

LEMMA 1. In the case I, we get for an arbitrary modular transformation
S and an arbitrary Mv,

PROOF. Since a2

v = d; = a* ~d'* = l mod 12,

(6) X-£SV) - e x p ^ (β2 + g*Xef + gh

(a'" + c2) (aft +

where m' is such that ww' Ξ 1 mod 12, and therefore mf = 1 mod 12 in our
case. Then it follows that X3(SV) = %3(S). On the other hand, we have from
(5), av = dv ==aμ = d'μ = l mod 4, and it follows that e == a, f=b,g ΞΞ c,h ^ d
mod 4, and this shows that Xά(Sv) = %4(S).

LEMMA 2. /« the case II, we get for arbitrary S and Mv,

PROOF. Since nί = 5 mod 12 in (6), we have K3(S,) = X3(S)2. On the other
hand, as it was mentioned in the proof of Lemma 1,

4) R. Fricke, Die elliptischen Funktionen und ihre Anwendungen, Berlin.
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X^Sy) = Xi(S), and our lemma follows immediately.
From these lemmas, we have the following formulas that is, if m == 1

mod 12
(7) ΫMviSiω^ ω2)) = ψMμiωl} ω2), where Mμ — MVS,

and if m = 5 mod 12,

(8) ψMV(S(ω1} ω2)) = ^(Syψ ifμίωj, ω3), where Afμ - Λf,S.

In the case III and IV, we may conclude analogous formulas. But in
these cases Xι2(Sv)/Xχ2(S) are the quadratic and 6-th root of 1, respectively.
And especially they are dependent not only..-on S but on the suffix v.

4. As it was treated by Hasse, we can find a function lirJ(ωJtω.2) such
that 1) IMAPLUOL2) is contained in the absolute class field Ω.(j(ocha2)) of 12,

2) IMV((XI, aλ) Φ lM{μl3 a,) if M^M, 3) W S f t , ω2)) =/jrμ(ω1,ωa) where M μ ^

M.S. Then the polynomial

is a polynomial of ί and the function j(ωΊf ω2) with integral coefficient.
Now, as it was mentioned by Hasse

(9) m = (ΨM(OC1} a2)),

and, especially in the case I, ψjn(cίlίati) is contained in Ω>(j(al7 ct2)). That
is, from (7), the coefficient of the polynomial

(10) G(t;ωuωt)=>H
v=l

are invariant under each modular transformation, and this polynomial is a
polynomial of t and j (ωlt ω,) with integral coefficient, and finally,

(11) Ψmiμi, a2) =

is contained in the absolute class field Ω(/(tfi,#a)) of ί l .
On the contrary, in the case II, the coefficients of G(t , ωλ, ω2) are not

invariant under modular transformations that is from (8),

G(t; S(ω1}ω2))=X3(S)G(t; ω,,ω2)

The coefficients of t are cubic algebraic functions of j(ωu ω2). Nevertheless,
the coefficients of a polynomial

(12) G3(t I ωlf ω2) = L{t j(ωlt ω2)) 2 Mvω^ωι—

are invariant under each modular transformation. Moreover, ψ^^ωi, ω2) has
the following #-expansion:
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oo

where ζ\, = exp ( γ - ^ ) . This expansion does not depend on the 4-th root of\ I av I /
1, because av — dv = 0, ^ Ξ O mod 4. Then it follows that the coefficients
of the polynomial G3(t; ωι?ω2) are polynomials of the function j(o>i,ω2) with
rational integral coefficient. Therefore,

a2), j(*lt a2))

is contained in ίl(/(Λi,Λ2)), and from (9) m3 = (ψ]fflL1%aώ).
On the other hand, the ideal m2 is an ideal treated in the case I, and

the number

is contained in ίlijioc^a^)) and m2 = (ψs{al9 a2)\ where AT is a m2-th primitive

transformation

have a number

transformation which transforms aλ.az to a basis m2 -—^ = m2α. Then, we

2)? Λ « i . tf 2))

which is contained in the absolute class field Ω,(j(cCi, cc2)) and generate the
ideal m in this field.

From the above consideration, we have a concrete representation of the
principal ideal theorem concerning a ideal m which is prime to 12 c? and N
m = 1 mod 4.

THEOREM. // Nm = 1 mod 12, a number (11) generate the ideal m in
) / ^ — 5 mod 12, ί̂ g number (12) generate the ideal m m

In the case of III or IV, we may also construct a polynomial G2 ( t;ω h ω2)
or GQ(t;ωvω2) as before. But, in these cases, we have only a generator of
the ideal m2 or m5, and an analogous method is not applicable in these
cases.
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