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1. DEFINITION A. Let λ(ω) be continuous, differentiate and monotone
increasing in (A, oo), where A is some positive number, and let χ(o>)->oo as
ω -> oo. Suppose 'Σun is a given infinite series and let

The series 1un is said to be summable |/?,λ(«), 1| if

S'4 \(ω)
< oo,

J L Λ.\,O3) J

i.e. if

ί OO.

DEFINITION B, Suppose {/„} is a given sequence and let τn = \tΛ + ^~tz +

+ —tnj/log n. lfτn->t as n -> oo, then the sequence {tn} is said to be

summable (R, log n, 1) to t. If the sequence {τn} is of bounded variation,

i. e., if 2 I τ» — Tn+i I < oo, the sequence is said to be summable | R, log n, 11.

2. Let φ(t) be an even function integrable in the sense of Lebesgue in
(0, π) and defined outside (— TT, π) by periodicity. We assume that the con-
stant term in the Fourier series of φ{t) is zero and that the special point
to be considered is the origin. In these circumstances

(2.1) φ(t)^^an cos nt,

where Ί

(2.2) an= ~ / φif) cos nt dt,
7t

0

and we are to consider the series 2 a^- ^ * s well-known that'these formal
1

simplifications do not jimpair the generality of the problem. We write su

for 2 Λ* a n (^ u s e t n e following notations.
1
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(2. 3) φJίf) = JL_ j (t- ur-tφMάu (t > 0) and (0 < a < 1),
0

(2. 4) Φ0(ί) = <p(t),

(2.5) φJt) = Γ(α + l)t-»Φa(t) (0 < a < 1),

(2.6) p(ω) = 2 <?(IogtI)Δ(log w)"1 «„ (Δ > 0),

(2. 7) f (ω, 0 = 2 *?(logn)Δ(log w)-1 cos wί,

(2.8) 9;(ω, ί) = 2 ^( logί l )Δ(log w)-1^-1 sin nί,

(2.9) pί»,«)= γ ( ^ a ) \ (t-u)-«ξ(ω,t)dt (0S«Sff),

(2.10) G(«,«)=> Γ{a + 1 j if~
0

3 The following result is well-known:
(a) If φ{t) = o(l), then sn = o(log«).

The statement (a) is equivalent to
(b) If φ(t) = o(l), then the sequence {nan} is summable (R, logn, 1) to 0.

It is reasonable to expect that the analoge of (b) for absolute summability
would be

(c) If φ(t) is of bounded variation, the sequence {nan} is summable
\Rf log n, 1|.
We shall however show that the statement (c) is false. We first prove the
following

LEMMA. If the series Xun is summable \R, logn, 1|, the necessary and
sufficient condition that it is absolutely[convergent is that the sequence {{n logri)un}
is summable \R, logn, 1|.

PROOF

•

Hence we

(3.2)

and

OF LEMMA. We have on writing σn = .>, u*:l
1

log n login -f-1) "n log w log(w + 1)

have the following inequalities

±
2

&<n (Tn+i

log n log(n + 1) -^* w (log w)2

Dg£, the

»n+i, for

4- 2 \Unλ

identity
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CΓn+Ί(O O\

logw log(w + 1)|

Since the series Σw» is summable \R, log n, 1|, we have, by Definition A,

(3.4)
2

from which it follows that

f 1
I "71 2̂ 2 l o ^ w«

J ω(lθgω)2 ^+

dω < oo,

(3.5)

The proof of the Lemma then follows from Definition B and (3.2), (3. 3) and
(3.5).

In order to prove that the statement (c) is false we observe that the

series ^an/logn is summable J/?, logw, 1| if
2

oo

(3.6) [ ,}S[ωl\2 dω< oo
J ω(logω)2

2

The above condition is obviously satisfied when φ(t) is of bounded vari-

ation in (0, TΓ) and indeed when a continuity condition of the type <p(t) =

θ|(log-τ-J i (0 < η< 1) is satisfied; since with the latter condition we can

assert that sn = O-ulogw)1-77j . But bounded variation of φ{t) in (0, π) is not
oo

sufficient to ensure absolute convergence of the series 2 <*n/logn. [3] Hence
2

writing an/log n for un in the Lemma proved above, we can easily see that
bounded variation of φ(f) alone is not sufficient ensure summability
\R, logH, 1| of the sequence {nan}.

4. We now proceed to establish some tests for the absolute convergence
oo

of the series 2 βn/logn. In the first instance we prove the
2

THEOREM. / / φjjt) is of bounded variation in (0, π), then the series

2 is summable \ R, eilosri)A 11, where

0 < α < l 0 m / A l +

We first establish the following inequalities:

1) This can be proved with a slight modification of the proof of the theorem
"Sn=o(\ogn), when 9>(ί)=o(l)" as given in Titchmarsh [4].
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(4.1) ξ(ω, /) = O{β(logω)Δω(log ω)"Δ}

(4. 2) f (ω, t) =

(4. 3) η(ω, t) = O{><logω>Δ(lθg &>ΓΔ}

(4. 4) *?K *) = 0{eQ°***t-\ω log ω)-*

(4. 5) g(ω, u) = 0{έ?(l0gω) Δ<»"(log ω)-Δ}

(4.6) ^(ω,«)
(4. 7) G(ω, «) = O{βc l O δ ω ) ΔωΛ^(log ω)"Δ}

(4.8) G(co, u) = 0{β ( l 0 g ω ) Δω- 1 + α W"1+α(
The inequalities (4.1) and (4.3) can be proved exactly in the same manner
as in [3]. The inequalities (4.2) and (4.4) can be proved by using Abel's
Lemma.

PROOF OF (4.5) AND (4.6). For u + ω~ι < π^, we write

/

•tt+ω

(/ - w)'α min [ω(log ω)-Δ

7 /"Klog ω)"1] dt
•u

< A« loβ ω ' Δ min Γ<» (log ω)"Δ, w K l o g ω)"1] / (ί - «)-*£#

»>Δω-1 + α} min [ω(log ω)-<\ «-

= ( - | " ) " α J •£(».
α+ω""

g ω ) Δω^1 +«} min K l o g ω)'Δ, «-ι (log ω)-

PROOF OF (4.7). We have

«) = f ^ ~ g(ω, v) dυ
J dvdv

= u*g(ω, u) — a I va~ι g{ω, v) dv

o
= O{β ( l o g ω ;V«Λ(logω)-Δ}, by (4.6).

PROOF OF (4.8). It te easy to see^hat
(4.9) g(ω, π) = O{e ( l o g ω ) Δ ω-^(log to)'1}-
Further

Γ(α + l)G(ω, TΓ) = Γ ϋα flr(ω, v) V ~ & ] v*~ι 9(ω, v)dv.
o

But

2) For tt+&r]^7Γ, the integral need not be split up and the arguments for i\ will
hold for the integral.
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Γ(l - a) J v«-ιg(ω, v)dυ^ ί if1 ( ί (t - v)~« ξ(ω, t)dt\ dυ
o Ό v

= J ξ(<», t)(ί v«~ι{t - v)-« dv\
0 0

Hence
(4.10)

To

0

0

= 0.

G(ωi7r)
prove (4.8), we

0
1

0

= 0{i
have

dt

- X)-" dX^j dt

"1}, by (4. 9).

ί G(ω, π) - G(ω, u)\ = \v«g(ω, v)T -a j v«~ιg (ω, v)dv

— Λ Γ ^ - ^ j ^ s ^ ^ ω - ^ ^

Since a < 1, using (4.10)

G(ω,u) = O

PROOF OF THEOREM. TO prove the theorem, we have to show that when

ω ) Δ P(ω) oo.

We have 2 f
, = — I <p(tf)cos nt dt

7t J

Hence

2 1 /
= — ^ ^ r I dΦΛ(u) I (t — #)~*cos?i£ Jί, [1]

ΛΓ 1 (1 — ct) J J
υ ijb

Y π Kω) = r ( i - α) J d φ*{u) J {t" w)"α 2 ^ ( 1 O δ w ) Δ ( l o g Λ>"x c o s
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I g(ω, u)dφa(u)

«)Φ«(«) — / Φa(u)——g(ω,u)du.
Jo J du

Further since φa{ + 0; is finite

£-<*">v)dv

= φa(π)G(ω, n) — / G(ω,u)dφ<,(u).

So we have finally

1 ^ v
«)J -φm(π)G(ω,π)+ j G(ω, u)]dφa{u)

= θί^ l o g ω ) Δ ω- 1 + Λ (logω)-Λ + Γ G{ω,u)dφΛ{u),by (4.9) and (4.10).

o
Hence

I < A

o

J
it

J G(ω,u)dφa(u) dω

The integral

and the integral

J -
2

G(ω, u) d ψa(u) dω

^ J l ^ ^ (»)| [ &<0-Klogco)*-le-«o^A \G(ω,u)\ dω
0 2

Since £>*(£) is of bounded variation in (0, π), to prove the theorem it will
be sufficient to show that

Writing

C

= J + J = /.

oo.

where τ = | - ( l o g ^ - ) " (* > «*λ
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we have

/i = ί Δω-Klogω)*-1*-001* *>^θ(e«os<ύ)*a)«u«(logωyAdω,by (4.7)

= 0(1),
logω

2

and
oo

2 = ί Aω'^logωy^e-^^oL^^ω-^u'^ilogωy^ldω, by (4.8)

= 0(1), if Δ - 1 + 4-.

Hence the theorem is proved.

5. The following theorems have been proved elsewhere [2], [3J.

THEOREM A. If (i) the sequence L v ϋ.\/% _ ^ 1 * s 0/ bounded variation,

(ii) */*£ sequence ί , ? i J *5 0/ bounded variation and (iii) */?£ sm>s 2^« &

summable \ R, \(n), 11, ί/̂ w //iβ sm'^s is absolutely convergent.

THEOREM B. If φ(t) is of bounded variation in (0, TΓ) then the series Σan/logn
is summable \R,en*, 1|, where 0 < a < 1.

Combining theorems A and B on the one hand and Theorem A and the
Theorem proved above on the other, we have the following criteria for the
absolute convergence of the series Σ#w/log n.

(I) If <p(t) is of bounded variation in (0, π) and the seqnence-tVQogfl)-1^}
is of bounded variation for δ > 0 then the series Σan/logn is absolutely-
convergent.

(II) If φa{t) is of bounded variation in (0, π) for 0 < a < 1 and the

ί n 1
sequence \ 7a» ) is of bounded variation, then the series Σ«n/log n

l(logw)1+^ J
is absolutely convergent.

We have already remarked that if φ(t) = θ\[logγ) Λ(0 < η < 1), then
the series ^an/logn is summable \R,logfi,l\. Combining-this with Theorem
A, we have

(III) If φ(t) = 0J(logy^ *} (0 < v < 1) and the sequence {nan} is of bo-

unded variation, then the series Σtf»/log# is absolutely convergent.
Reverting to the original problem ot summability \R, logw, 1| of

the sequence {w#n}, we have the following results, which by virtue of the
Lemma of this paper, which by victure of the lemma of this paper are
practically restatements of (I)-(III) above.
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(d) If φ{t) is of bounded variation in (0, π) and the sequence {n*Q θgnyιanJ

is of bounded variation for δ > 0, then the sequence {nan} is summable

|Λ,logΛ,l | :

(e) If φΛ{t) is of bounded variation in (0, π) for 0 < a < 1 and the sequence

l 7j n , 1 + ί' > is of bounded variation, then the sequence {naΛ} is summable

\R, log n, 1 | ; and

(f) If φ{t) = Ojίlogy j J (0 < ?; < 1) and the sequence {w#«} is of bounded

variation, then the sequence is summable | R, log n, 11.
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