INTEGRABILITY OF TRIGONOMETRICAL SERIES I

Shin-ichi Izumi and Masako Sato

(Received September, 27, 1954)

1. R.P.Boas [1], G. Sunouchi [2] and B.Sz-Nagy [3] have proved the following theorems.

Theorem I. If $a_{n} \downarrow 0$ and $g(x)=\Sigma a_{n} \cos n x$, then a necessary and suffcient condition that $\Sigma a_{n} / n^{\gamma}$ converges, is that $x^{\gamma-1} g(x) \in L$ for $0<\gamma<1$.

The same holds for sine series.
Theorem II. If $g(x)$ is positive and even in $|x|<\pi$ and is decreasing in $(0, \pi)$ and $\left(a_{n}\right)$ is cosine coefficients of $g(x)$, then a necessary and sufficient condition that $\Sigma\left|a_{n}\right| / n^{\gamma}(0<\gamma<1)$ converges, is that $x^{\gamma-1} g(x) \in L$.

The same holds for sine series.
These theorems give the condition that absolute convergence of $\Sigma a_{n} / n^{\gamma}$ is equivalent to absolute integrability of $g(x) / x^{1-\gamma}$.

We prove theorems, replaced absolute convergence and absolute integrability by conditional convergence and Cauchy integrability respectively, wholy or partially. Our theorems are closely related to those due to R.P. Boas [4] and S. Izumi [5].
2. Theorem 1. Let $0<\alpha<1$ and

$$
f(x) \sim \sum_{n=1}^{\infty} a_{n} \cos n x .
$$

If $x^{\alpha-1} f(x)$ is absolutely integrable, then the series $\sum a_{n} / n^{\alpha}$ converges ${ }^{1)}$.
The same holds for sine series.
This theorem contains the counter part of Theorem I.
For the proof we use a lemma, due to R. Salem [6], (cf. Zygmund [7]).
Lemma 1. Let $0<M<N, 0<\alpha<1$ and $0 \leqq t \leqq \pi$. Then there is an absolute constant C such that

$$
\begin{equation*}
\left|\int_{M}^{N} \frac{\cos u t}{u^{\alpha}} d u-\sum_{n=M}^{N} \frac{\cos n t}{n^{\alpha}}\right| \leqq \frac{C}{M^{\alpha}} . \tag{1}
\end{equation*}
$$

Proof. It is sufficient to prove (1) for non-integral M and N. Let the integral and sum of (1) be I and S, respectively. If we put

$$
\xi(u)=[u]+1 / 2 \quad(u \neq 1,2, \ldots),
$$

then

$$
S=\int_{M}^{N} \frac{\cos u t}{u} d \xi(u)
$$

1) R. P. Boas [1] has in fact proved the theorem for the case $a_{n} \geqq 0$.

Further writing $\chi(u)=u-[u]-1 / 2$, we get

$$
\begin{aligned}
S-I= & \int_{M}^{N} \frac{\cos u t}{u^{\alpha}} d \chi(u) \\
= & {\left[\frac{\cos u t}{u^{\alpha}} \chi(u)\right]_{M}^{N}-\int_{M}^{N}\left(\frac{\cos u t}{u^{\alpha}}\right)^{\prime} \chi(u) d u } \\
= & {\left[\frac{\cos u t}{u^{\alpha}} \chi(u)\right]_{M}^{N}-\int_{M}^{N}\left(\frac{1}{u^{\alpha}}\right)^{\prime} \cos u t \chi(u) d u } \\
& -\int_{M}^{N} \frac{(\cos u t)^{\gamma}}{u^{\alpha}} \chi(u) d u
\end{aligned}
$$

$$
\equiv T_{1}-T_{2}-T_{3}
$$

say. Now

$$
\begin{aligned}
& \left|T_{1}\right| \leqq C / \frac{\pi}{M^{\alpha}} \\
& \left|T_{2}\right| \leqq \alpha \int_{M}^{N} \frac{|\cos u t|}{u^{\alpha+1}}|\chi(u)| d u \leqq C / M^{\alpha} .
\end{aligned}
$$

Finally, since $\chi(u) \sim-\frac{1}{\pi} \sum_{n=1}^{\infty} \frac{\sin 2 \pi n u}{n}$, we have

$$
\begin{aligned}
T_{3} & =t \int_{M}^{N} \frac{\sin u t}{u^{\alpha}} \chi(u) d u \\
& =-\frac{t}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \int_{M}^{N} \frac{\sin u t \cdot \sin 2 \pi n u}{u^{\alpha}} d u,
\end{aligned}
$$

where the inner integral is less than $C / M^{\alpha} n$ in absolute value, and then $\left|T_{3}\right|$ $\leqq C / M^{\alpha}$. Thus we get the required inequality (1).

We shall now prove Theorem 1. Since

We have

$$
a_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(t) \cos n t d t,
$$

$$
\begin{aligned}
\sum_{n=M}^{N} \frac{a_{n}}{n^{\alpha}} & =\frac{2}{\pi} \sum_{n=M}^{N} \frac{1}{n^{\alpha}} \int_{0}^{\pi} f(t) \cos n t d t \\
& =\frac{2}{\pi} \int_{0}^{\pi} f(t)\left(\sum_{n=M}^{N} \frac{\cos n t}{n^{\alpha}}\right) d t \\
& =\frac{2}{\pi} \int_{0}^{\pi} f(t) d t \int_{M}^{N} \frac{\cos u t}{u^{\alpha}} d u \\
& -\frac{2}{\pi} \int_{0}^{\pi} f(t) d t\left[\int_{M}^{N} \frac{\cos u t}{u^{\alpha}} d u-\sum_{n=M}^{N} \frac{\cos n t}{n^{\alpha}}\right]
\end{aligned}
$$

$$
=\frac{2}{\pi}\left(I_{1}+I_{2}\right),
$$

say. By Lemma 1, we get

$$
\left|I_{2}\right| \leqq \frac{C}{M^{a}} \int_{0}^{\pi}|f(t)| d t=o(1) \quad(M \rightarrow \infty)
$$

Writing

$$
I_{1}=\int_{0}^{\pi}=\int_{0}^{\pi / L}+\int_{\pi / L}^{\pi}=I_{1,1}+I_{1,2},
$$

we have

$$
\begin{aligned}
\left|I_{1,1}\right| & \leqq \int_{0}^{\pi / L}|f(t)| t^{\alpha-1} d t\left|\int_{M t t}^{N t} \frac{\cos u}{u^{\alpha}} d u\right| \\
& \leqq C \int_{0}^{\pi / L}|f(t)| t^{\alpha-1} d t
\end{aligned}
$$

which is $o(1)$ for sufficiently large L, and

$$
\begin{aligned}
I_{1,2} & =\int_{\pi / L}^{\pi} \frac{|f(t)| t^{\alpha-1}}{M^{\alpha} t^{\alpha}} d t \int_{\Delta \pi t}^{\xi} \cos u d u \\
& =O\left(\frac{1}{M^{\alpha}} \int_{\pi / L}^{\pi} \frac{|f(t)|}{t} d t\right) \quad(M t<\xi<N t),
\end{aligned}
$$

which is $\boldsymbol{o}(1)$ for sufficiently large $M=M(L)$.
Accordingly, $I_{1}+I_{2}=o(1)$ as $M \rightarrow \infty$, and then $\Sigma a_{n} / n^{\alpha}$ converges.
Proof for the sine series is quitely similar.
3. Theorem 2. Let $0<\alpha<1$ and

$$
f(x) \sim \sum_{n=1}^{\infty} a_{n} \cos n x .
$$

If $\Sigma a_{n} / n^{\alpha}$ converges absolutely, then $f(t) t^{\alpha-1}$ is integrable in the Cauchy sense.
The same holds for sine series.
This theorem contains direct part of Theorem 2.
Let us prove Theorem 2. We have

$$
\begin{aligned}
\int_{\pi / N}^{\pi / I I} f(t) t^{\alpha-1} d t & =\int_{\pi / N}^{\pi / I S} \frac{d t}{t^{1-\alpha}} \sum_{n=1}^{\infty} a_{n} \cos n t \\
& =\sum_{n=1}^{\infty} \frac{a_{n}}{n^{\alpha}} \int_{\pi / N}^{\pi / I I T} \frac{\cos n t}{t^{1-\alpha}} d t=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{\alpha}} \int_{n \pi / N}^{n \pi / \mid s t} \frac{\cos u}{u^{1-\alpha}} d u \\
& =\sum_{n=1}^{\infty} \frac{a_{n}}{n^{\alpha}} \int_{n \pi / J I}^{\infty} \frac{\cos u}{u^{1-\alpha}} d u-\sum_{n=1}^{\infty} \frac{a_{n}}{n^{\alpha}} \int_{n_{\pi / N}}^{\infty} \frac{\cos u}{u^{1-\alpha}} d u \\
& =I_{1}-I_{2},
\end{aligned}
$$

say. We write

$$
\begin{gathered}
I_{1}=\sum_{n=1}^{N-1}+\sum_{n=N}^{\infty}=I_{1,1}+I_{1,2} . \\
\left|I_{1,1}\right| \leqq \sum_{n=1}^{N}\left|s_{n}\right|\left|\int_{n \pi / N}^{(n+1) \pi / N} \frac{\cos u}{u^{1-\alpha}} d u\right|+\left|s_{N}\right|\left|\int_{(N-1) \pi \mid N}^{(N-1) \pi| | s t} \frac{\cos u}{u^{1-\alpha}} d u\right|
\end{gathered}
$$

where $s_{n}=\sum_{\nu=1}^{n} \frac{a_{\nu}}{\nu^{\alpha}}$. Since we can suppose that $s_{n} \rightarrow 0 \quad(n \rightarrow \infty)$, the second term of the right side is $o(1)$, and the first term is

$$
\begin{aligned}
\sum_{n=1}^{N-2}\left|s_{n}\right|\left|\int_{n \pi / N}^{(n+1) \pi \mid N} \frac{d u}{u^{1-\alpha}}\right| & \leqq \frac{1}{N} \sum_{n=1}^{N-2}\left|s_{n}\right|\left(\frac{N}{n}\right)^{1-\alpha} \\
& =\frac{1}{N^{\alpha}} \sum_{n=1}^{N-2} \frac{\left|s_{n}\right|}{n^{1-\alpha}}=o(1)
\end{aligned}
$$

Hence $I_{1,2}=o(1)^{11}$. By the absolute convergence of $\Sigma a_{n} / n^{\alpha}$ and boundedness of the integral $\int_{v}^{w} \frac{\cos u}{u^{1-\alpha}} d u$, we get $I_{1}=o(1)$. Since we can similarly prove that $I_{2}=o(1), f(t) t^{\alpha-1}$ is integrable in the Cauchy sense, which is the required.
4. Theorem 3. Let $0<\alpha<1$ and

$$
f(x) \sim \sum_{n=1}^{\infty} a_{n} \cos n x
$$

If $\Sigma a_{n} / n^{\alpha}$ is convergent and

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{1}{k^{1-\alpha}} \max _{k M \leqq m<(k+1) M}\left|s_{m}-s_{k M}\right|=o(1) \quad(M \rightarrow \infty) \tag{2}
\end{equation*}
$$

where $s_{n}=\sum_{k=1}^{n} a_{k} / k^{\alpha}$, then $f(t) t^{\alpha-1}$ is integrable in the Cauchy sense.
The condition (2) is satisfied when $a_{n} / n^{\alpha} \downarrow 0$ or $a_{n}=o\left(1 / n^{1-\alpha}\right)$, more generally when

$$
\max _{k M \leqq m<(k+1) M}\left|\sum_{n=k, M I}^{m} \frac{a_{n}}{n^{\alpha}}\right|=o\left(1 / k^{\alpha}(\log k)^{2}\right) \quad(M \rightarrow \infty) .
$$

For the proof of Theorem 3, it is sufficient to prove $I_{1,1}=o(1)$ and $I_{1, \mathbf{z}}=o(1)$ in (2) in the proof of Theorem 2. $I_{1,1}=o(1)$ is already proved.

Now, in the sum

$$
I_{1,2}=\sum_{n=N}^{\infty} \frac{a_{n}}{n^{\alpha}} \int_{n \pi \mid N}^{\infty} \frac{\cos u}{u^{1-\alpha}} d u
$$

[^0]$\int_{v}^{\infty} \frac{\cos u}{u^{1-\alpha}} d u$ is a simusoidal function of v, and takes extremum value at $(k+1 / 2)(k=1,2, \ldots .$.$) . If we put$
$$
I_{1,2}=\sum_{n=N}^{\infty}=\sum_{n=N}^{3 N / 2-1}+\sum_{k=1}^{\infty} \sum_{n=(k+1 / 2) N}^{(k+3 / 2) N-1}=J_{0}+\sum_{k=1}^{\infty} J_{k}
$$
then
\[

$$
\begin{aligned}
\left|J_{k}\right| & \leqq\left|\sum_{n=(k+1 / 2) N}^{\mu} \frac{a_{n}}{n^{\alpha}}\right| \cdot\left|\int_{(k+1 / 2) N}^{\infty} \frac{\cos u}{u^{1-\alpha}} d u\right| \\
& \leqq \frac{1}{k^{1-\alpha}} \max _{(k+1 / 2) N \leq \mu \leqq(k+3 / 2) N}\left|\sum_{n=(k+1 / 2) N}^{\mu} \frac{a_{n}}{n^{\alpha}}\right|
\end{aligned}
$$
\]

for $k \geqq 1$ and J_{0} may be similarly estimated. By (2) we get $I_{1,2}=o(1)$. Thus we get the theorem.
5. Theorem 4. Let $0<\alpha<1$ and

$$
f(x) \sim \sum_{n=1}^{\infty} a_{n} \cos n x
$$

If $f(t) / t^{\alpha-1}$ is integrable in the Cauchy sense and

$$
\begin{equation*}
\sum_{k=1}^{M} \frac{1}{k^{\alpha}} \max _{k \pi / M \leq \leqq \leq(k+1) \pi|M|}\left|\int_{|k \tau| \mid t}^{\xi} \frac{f(t)}{t^{1-\alpha}} d t\right|=o(1) \quad(M \rightarrow \infty) \tag{3}
\end{equation*}
$$

then the series $\Sigma a_{n} / n^{\alpha}$ converges.
(3) is satisfied when $f(t)=o\left(1 / t^{\alpha}\right)$, or more generally when

$$
\sum_{=1}^{M} \frac{1}{k} \max _{k \pi \mid M \leq \xi \leq(k+1) \pi / M}\left|\int_{k \pi \mid M T}^{\xi} f(t) d t\right|=o\left(1 / M^{1-\alpha}\right) \quad(M \rightarrow \infty) .
$$

Let us now prove Theorem 4.

$$
\begin{aligned}
\sum_{n=M}^{N} \frac{a_{n}}{n^{\alpha}} & =2 \sum_{\pi=M}^{N} \frac{1}{n^{\alpha}} \int_{0}^{\pi} f(t) \cos n t d t \\
& =\frac{2}{\pi} \int_{0}^{\pi} f(t)\left(\sum_{n=M}^{N} \frac{\cos n t}{n^{\alpha}}\right) d t \\
& =\frac{2}{\pi} \int_{0}^{\pi} f(t) d t \int_{M}^{N} \frac{\cos u t}{u^{\alpha}} d u \\
& +\frac{2}{\pi} \int_{0}^{\pi} f(t)\left(\sum_{n=M}^{N} \frac{\cos n t}{n^{\alpha}}-\int_{\Delta}^{N} \frac{\cos u t}{u^{\alpha}} d u\right) d t \\
& =I_{1}+I_{2},
\end{aligned}
$$

say. By Lemma $1, I_{2}=o(1)$.

$$
I_{1}=\int_{0}^{\pi} f(t) d t \int_{N}^{\infty} \frac{\cos u t}{u^{\alpha}} d u-\int_{0}^{\pi} f(t) d t \int_{N}^{\infty} \frac{\cos u t}{u^{\alpha}} d u
$$

$$
=I_{1,1}-I_{1,2},
$$

say, and

$$
I_{1,1}=\int_{0}^{\pi \mid M I}+\int_{\pi / M}^{\pi}=I_{1,1,1}+I_{1,1,2},
$$

say. We have

$$
\begin{aligned}
I_{1,1,1} & =\int_{0}^{\pi / M I} \frac{f(t)}{t^{1-\alpha}} d t \int_{M t}^{\infty} \frac{\cos v}{v^{\alpha}} d v=o(1) . \\
I_{1,1,2} & =\int_{\pi / M}^{\pi} \frac{f(t)}{t^{1-\alpha}} d t \int_{M t}^{\infty} \frac{\cos v}{v^{\alpha}} d v \\
& =\int_{\pi / M}^{3 \pi / 2 M}+\sum_{k=1}^{M-2} \int_{(k+1 / 2) \pi / M}^{(k+3 / 2) \pi \mid I M}+\int_{(M-1 / 2) \pi / 3}^{\pi} \\
& =J_{0}+\sum_{k=1}^{M-1} J_{k}+J_{M},
\end{aligned}
$$

say, where

$$
\left|J_{k}\right| \leqq \frac{A}{k^{\alpha}} \max _{(k+1 / 2) \pi / M \leq 5 \leq(k+3 / 2) \pi / \mu M}\left|\int_{(k+1 / 2) \pi / M}^{\xi} \frac{f(t)}{t^{1-\alpha}} d t\right|
$$

for $1 \leqq k \leqq M-1$. We get similar estimations for J_{0} and $J_{M r}$. Thus we get $I_{1,1,2}=o(1)$ by (3).

References

[1] R. P. BoAs, Integrability of Trigonometric Series (III), Quart. Jour. Math. Oxford (2), 3 (1952), 217-21.
[2] G. SunOuchi, Integrability of Trigonometrical Series, Jour. of Math., 1 (1953).
[3] B. Sz-NAGY, Séries et integrales de Fourier des fonctions monotones non bornées, Actade. Szeged, 13 (1949), 118-35.
[4] R. P. Boas, Integrability of Trigonometric Series (I), Duke Math. Jour., 18 (1951) 787-93.
[5] S. Isumi, On some Trigonometrical Series (XI), This Journal (in the press).
[6] R. Salem, Comptes Rendus, 197 (1933), 1175 ; 201 (1935), 470.
[7] A. Zygmund, Trigonometrical Series, Warszawa-Lwów, 1935.

[^0]: 1) In the proof of $I_{1}=o(1)$, ordinary convergence of $\Sigma a_{n} / n^{\alpha}$ is used. If its absolute convergence is used, the proof becomes simpler. But this proof is used in the proof of Theorem 3.
