ON THE DIRECT-PRODUCT OF OPERATOR ALGEBRAS, III

TAKASI TURUMARU

(Received September 3, 1954)

Y. Misonou, in his preceding paper [3], has studied the direct-product of arbitrary W^{*} -algebras generalizing the notion due to F. J. Murray-J. von Neumann [4] for factors of type I. It is defined as follows.

Let A_1 and A_2 be W^* -algebras on Hilbert spaces H_1 and H_2 respectively. Then the direct-product $A_1 \otimes A_2$ of A_1 and A_2 is defined as the weak closure (in the algebra of bounded operators on $H_1 \times H_2$) of the algebraical directproduct $A_1 \odot A_2$.

The main purpose of the present note is to clarify the relationship between A_{1*} , A_{2*} and $(A_1 \otimes A_2)_*$, where A_* denotes the set of all σ -weak continuus (ultra-faiblement continue) linear functions on a W*-algebra A [1], and as its application we shall prove Y. Misonou's Theorem 1.

Let A_1 and A_2 be W^* -algebras on Hilbert spaces H_1 and H_2 respectively, and let $A_1 \otimes A_2$ be the direct-product of A_1 and A_2 on $H_1 \times H_2$. Moreover, let A_{1*}, A_{2*} and $(A_1 \otimes A_2)_*$ be the Banach space of all σ -weakly continuous linear functionals on A_1, A_2 and $A_1 \otimes A_2$ respectively, then

$$(A_{1*})^* = A_1, (A_{2*})^* = A_2 ext{ and } ((A_1 \otimes A_2)_*)^* = A_1 \otimes A_2$$

as Banach spaces (cf. J. Dixmier [1]).

As in [6], we shall denote the operator bound

 $\|\sum_{i=1}^{n} x_{i} \times y_{i}\| (x_{i} \in A_{1}, y_{i} \in A_{2}) \text{ by } \alpha \left(\sum_{i=1}^{n} x_{i} \times y_{i}\right), \text{ therefore its associate norm} \alpha' \text{ is defined as follows (cf. R. Schatten [5]):}$

$$lpha'\left(\sum_{j=1}^{m}arphi_{j} imes\psi_{j}
ight)=\suprac{\left|\left(\sum_{j=1}^{m}arphi_{j} imes\psi_{j}
ight)\left(\sum_{i=1}^{n}x_{i} imes y_{i}
ight)
ight|}{lpha\left(\sum_{i=1}^{n}x_{i} imes y_{i}
ight)}$$

where sup is taken over all expressions $\sum_{i=1}^{n} x_i \times y_i \in A_1 \odot A_2$; that is, α' -norm

is a functional norm.

Then our aimed theorem is the following

THEOREM 1.
$$A_{1*} \times {}_{a'}A_{2*} = (A_1 \otimes A_2)_*.$$

We shall devide the proof into two steps.

LEMMA 1. $A_{1*} \odot A_{2*} \subseteq (A_1 \otimes A_2)_*.$

PROOF. $\varphi \in A_{1^*}, \psi \in A_{2^*}$ imply the following representations [1]

$$\varphi(x) = \sum_{i=1}^{n} \langle \xi_i x, \xi_i \rangle, \psi(y) = \sum_{j=1}^{n} \langle \eta_j y, \eta_j \rangle$$

where
$$\sum_{i=1}^{\infty} |\xi_i|^2$$
, $\sum_{i=1}^{\infty} ||\overline{\xi_i}||^2$, $\sum_{j=1}^{\infty} ||\eta_j||^2$, and $\sum_{j=1}^{\infty} ||\overline{\eta_j}||^2$ are all finite. Therefore
 $\varphi \times \psi(x \times y) = \sum_{i,j} \langle \xi_i x, \overline{\xi_i} \rangle \cdot \langle \eta_j y, \overline{\eta_j} \rangle$
 $= \sum_{i,j} \langle (\xi_i \times \eta_i)(x \times y), \overline{\xi_i} \times \overline{\eta_j} \rangle$

and

$$\sum_{i,j} ||\xi_i imes \eta_j||^2 = \sum_{i,j} ||\xi_i||^2 \cdot ||\eta_j||^2 = \sum_i ||\xi_i||^2 \cdot ||\sum_j ||\eta_j||^2$$

and similarly $\sum_{i,j} \xi_i \times \overline{\eta_j}^2$ are both finite, and, since $A_1 \odot A_2$ is weakly dense in $A_1 \otimes A_2$, $\varphi \times \psi$ can be extended onto $A_1 \otimes A_2$ preserving its representation; then $\varphi \times \psi \in (A_1 \otimes A_2)_*$.

Since an arbitrary element of $A_{1*} \odot A_{2*}$ is a linear combination of the elements of the form $\varphi \times \psi$, we complete the proof of Lemma 1.

LEMMA 2. $A_{1*} \odot A_{2*}$ is α' -dense in $(A_1 \otimes A_2)_{*}$.

PROOF. Let ϕ be an arbitrary element of $(A_1 \otimes A_2)_*$, and let its representation be $\phi(.) = \sum_{i=1}^{\infty} \langle u_i, v_i \rangle$, where $\sum_{i=1}^{\infty} ||u_i||^2$ and $\sum_{i=1}^{\infty} ||v_i||^2$ are finite.

Now, if an arbitrary small positive number \mathcal{E} is given, then there exists an integer n_0 such that

$$\left(\sum_{i=n_0+1}^{\infty} ||u_i||^2\right)^{1/2} \left(\sum_{i=n_0+1}^{\infty} ||v_i||\right)^{1/2} < \varepsilon/3.$$

Put $\phi'(.) = \sum_{i=1}^{n_0} \langle u_i \cdot , v_i \rangle$ on $A_1 \otimes A_2$, then

$$\alpha'(\phi - \phi') = \|\phi - \phi'\| \leq \left(\sum_{n_0+1}^{\infty} \|u_i\|^2\right)^{1/2} \left(\sum_{n_0+1}^{\infty} \|v_i\|^2\right)^{1/2} < \varepsilon/3.$$

Since $\{u_i\}, \{v_i\}$ are elements of $H^1 \times H_2$ and $H_1 \odot H_2$ is dense in $H_1 \times H_2$, there exist $\sum_{i=1}^{p_i} \xi_j^i \times \overline{\xi_j^i}, \sum_{k=1}^{q_j} \eta_k^i \times \overline{\eta_k^i}$ such that

$$egin{aligned} & |u_i - \sum_{j=1}^{p_i} \xi_j^i imes \xi_j^i| < arepsilon/3 n_0 \lambda \ & (i=1,2,\ldots,n_0) \ & |v_i - \sum_{k=1}^{q_4} \eta_k^i imes \overline{\eta_k^i}| < arepsilon/3 n_0 \lambda \end{aligned}$$

where $\lambda = \max(|u_i|, |v_i|)$.

Now define the functionals

T. TURUMARU

$$\phi^{\prime\prime}(.) = \sum_{i=1}^{n_0} < \left(\sum_{j=1}^{p_i} \xi_j^i \times \xi_j^i\right) \cdot, v_i >$$

$$\phi_0(.) = \sum_{i=1}^{n_0} < \left(\sum_{j=1}^{p_i} \xi_j^i \times \xi_j^i\right) \cdot, \sum_{k=1}^{q_i} \eta_k^i \times \overline{\eta_k^i}$$

and

then clearly $\phi_0(.) \in A_{1*} \odot A_{2*}$, and

$$\begin{aligned} \alpha'(\phi - \phi_0) &\leq \alpha'(\phi - \phi') + \alpha'(\phi' - \phi'') + \alpha'(\phi'' - \phi_0) \\ &\leq \varepsilon/3 + \alpha' \left(\sum_{i=1}^{n_0} < \left(u_i - \sum_{j=1}^{p_i} \xi_j^i \times \overline{\xi_j^i} \right) \cdot, v_i > \right) + \alpha' \left(\sum_{i=1}^{n_0} < \left(\sum_{j=1}^{p_i} \xi_j^i \times \overline{\xi_j^i} \right) \cdot, v_i > \right) \\ &\left(v_i - \sum_{k=1}^{q_i} \eta_k^i \times \overline{\eta_k^i} \right) > \right) \leq \varepsilon/3 + \sum_{i=1}^{n_0} u_i - \sum_{j=1}^{p_i} \xi_j^i \times \overline{\xi_j^i} = v_i + \sum_{i=1}^{n_0} \sum_{j=1}^{p_i} \xi_j^i \times \overline{\xi_j^i} = v_i + \sum_{i=1}^{p_i} \xi_j^i \times \overline{\xi_j^i} = v_i + \sum_{i=1}^{p_i} \sum_{j=1}^{p_i} \sum_{j=1}^{p_i} \xi_j^i \times \overline{\xi_j^i} = v_i + \sum_{i=1}^{p_i} \sum_{j=1}^{p_i} \xi_j^i \times \overline{\xi_j^i} = v_i + \sum_{i=1}^{p_i} \sum_{j=1}^{p_i} \xi_j^i \times \overline{\xi_j^i} = v_i + \sum_{i=1}^{p$$

COROLLARY 1. Let C(H) be the set of all completely continuous operators on a Hilbert space H, then

$$(C(H_1) imes_{lpha}C(H_2))^*=C(H_1)^* imes_{lpha'}C(H_2)^*.$$

PROOF. Let $F(H_i)$ be the full operator algebras on H_i , then $F(H_i)$ * are trace classes of operators on H_i ; and moreover $F(H_i)$ * are conjugate spaces of $C(H_i)$ (i = 1, 2). And finally by [6]

$$C(H_1) imes {}_{lpha'}C(H_2) = C(H_1 imes H_2),$$

therefore by our Theorem 1,

$$\begin{split} [C(H_1) \times \alpha C(H_2)]^* &= C(H_1 \times H_2)^* \\ &= F(H_1 \times H_2)_* \\ &= F(H_1)_* \times \alpha' F(H_2)_* \\ &= C(H_1)^* \times \alpha' C(H_2)^*. \end{split} \quad q. e. d. \end{split}$$

>,

THEOREM 2 (Y. Misonou [3; Thm. 1]). Let A_1 be a W*-algebra on Hilbert spaces H_1 and K_1 ; and let A_2 be a W*-algebra on a Hilbert space H_2 and K_2 . Then the direct product of A_1 and A_2 on $H_1 \times H_2$ is algebraically *-isomorphic to the one of A_1 and A_2 on $K_1 \times K_2$.

PROOF. A_{1*}, A_{2*} and α -norm are determined by algebraic characters of A_1 and A_2 , and therefore α' -norm is determined algebraically. Now let $A_1 \otimes A_2 = A$ on $H_1 \times H_2$ and $A_1 \otimes A_2 = B$ on $K_1 \times K_2$. Then by the above mentioned facts and by our theorem A_* and B_* are isometric as Banach spaces.

Now, by our Theorem

$$A = (A_*)^* = (A_{1*} \times_{\alpha'} A_{2*})^*$$
$$B = (B_*)^* = (A_{1*} \times_{\alpha'} A_{2*})^*.$$

Therefore, by identifying the elements of A and B as functionals on $A_1^* \times {}_{\alpha'}A_{2*}$, we have the isometry between A and B as Banach spaces.

While by a Theorem due to R. V. Kadison [2; Thm. 14], the Banach space isometry between two W^* -algebras, is a direct sum of *-isomorphism and

210

anti-*-isomorphism.

Now, the above-described isometry between A and B contains clearly $A_1 \odot A_2$ in the *-isomorphic part. Since $A_1 \odot A_2$ is dense in A, the proof of Theorem 2 is completed.

REFERENCES

- [1] J. DIXMIER, Formes linéaires sur un anneau d'opérateurs, Bull. Soc. Math. France, 81(1953), 9-39.
- [2] R. V. KADISON: Isometries of operator algebras, Ann. of Math., 54(1951), 325-338.

- [3] Y. MISONOU: On the direct-product of W*-algebras, this journal,
 [4] F. J. MURRAY-J. V. NEUMANN: On rings of operators, Ann. of Math., 37(1936), 116-229.
- [5] R. SCHATTEN: A theory of cross-spaces, Princeton, 1950.
- [6] T. TURUMARU: On the direct-product of operator algebras, I, II, This Journal Vol. 5(1953).

TÔHOKU UNIVERSITY, SENDAI.