"ON THE DIRECT PRODUCT OF OPERATOR ALGEBRAS, II I

TAKASI TURUMARU

(Received September 3,1954)

Y. Misonou, in his preceding paper [3], has studied the direct-product of arbitrary W^{ϵ} -algebras generalizing the notion due to F. J. Murray-J. von Neumann [4] for factors of type I. It is defined as follows.

Let A_1 and A_2 be W^* -algebras on Hilbert spaces H_1 and H_2 respectively. Then the direct-product $A_1 \otimes A_2$ of A_1 and A_2 is defined as the weak closure (in the algebra of bounded operators on $H_1 \times H_2$) of the algebraical directproduct $A_1 \odot A_2$.

The main purpose of the present note is to clarify the relationship between A_{1*} , A_{2*} and $(A_1 \otimes A_2)$ ^{*}, where A_* denotes the set of all σ -weak continous (ultra-faiblement continue) linear functions on a W^* -algebra A [1], and as its application we shall prove Y. Misonou's Theorem 1.

Let A_1 and A_2 be W^* -algebras on Hilbert spaces H_1 and H_2 respectively, and let $A_1 \otimes A_2$ be the direct-product of A_1 and A_2 on $H_1 \times H_2$. Moreover, let A_{1*} , A_{2*} and $(A_1 \otimes A_2)_*$ be the Banach space of all σ -weakly continuous linear functionals on A_1 , A_2 and $A_1 \otimes A_2$ respectively, then

$$
(A_{1*})^* = A_{1}, (A_{2*})^* = A_{2}
$$
 and $((A_1 \otimes A_2)_*)^* = A_1 \otimes A_2$

as Banach spaces (cf. J. Dixmier [1]).

As in [6], we shall denote the operator bound

 $\sum_{i=1}^{n} x_i \times y_i$ $\forall (x_i \in A_1, y_i \in A_2)$ by $\alpha \left(\sum_{i=1}^{n} x_i \times y_i \right)$, therefore its associate norm α' is defined as follows (cf. R. Schatten [5]):

$$
\alpha'\bigg(\sum_{j=1}^m\varphi_j\times\psi_j\bigg)=\sup\frac{\bigg|\bigg(\sum_{j=1}^m\varphi_j\times\psi_j\bigg)\bigg(\sum_{i=1}^nx_i\times y_i\bigg)\bigg|}{\alpha\bigg(\sum_{i=1}^nx_i\times y_i\bigg)}
$$

where sup is taken over all expressions $\sum_{i=1}^\infty x_i \times y_i \in A_1 \odot A_2$; that is, α' -norm

is a functional norm.

Then our aimed theorem is the following

THEOREM 1.
$$
A_{1*} \times \mathbf{a} \cdot A_{2*} = (A_1 \otimes A_2)_*.
$$

We shall devide the proof into two steps.

 $\mathcal{L}_{1} \bullet \cup \mathcal{L}_{2} \bullet = \mathcal{L}_{1} \bullet \cup \mathcal{L}_{2} \bullet$ $A_{1*} \odot A_{2*} \subseteq (A_1 \otimes A_2)_*.$

PROOF, $\varphi \in A_{1^*}, \psi \in A_{2^*}$ imply the following representations [1]

$$
\varphi(x)=\sum_{i=1}^{\infty}\langle\xi_{i}x,\ \xi_{i}>\,\psi(y)=\sum_{j=1}^{\infty}\langle\eta_{j}y,\ \eta_{j}\rangle
$$

where
$$
\sum_{i=1}^{\infty} \|\xi_i\|^2
$$
,
$$
\sum_{i=1}^{\infty} \|\xi_i\|^2
$$
,
$$
\sum_{j=1}^{\infty} \|\eta_j\|^2
$$
, and
$$
\sum_{j=1}^{\infty} \|\eta_j\|^2
$$
 are all finite. Therefore

$$
\varphi \times \psi(x \times y) = \sum_{i,j} \langle \xi_i x, \xi_i \rangle \cdot \langle \eta_j y, \eta_j \rangle
$$

$$
= \sum_{i,j} \langle \xi_i \times \eta_i \rangle (x \times y), \xi_i \times \eta_j \rangle
$$

and

$$
\sum_{i,j}|\,\xi_i\times \eta_j|^2=\sum_{i,j}|\xi_i|^2\bm\cdot \| \eta_j\|^2=\sum_{i}|\xi_i|^2\bm\cdot \| \sum_{j} \| \eta_j\|^2
$$

and similarly $\sum \xi_i \times \eta_j$ ² are both finite, and, since $A_1 \odot A_2$ is weakly $\overline{\mathbf{r}, \mathbf{j}}$ dense in $A_1 \otimes A_2$, $\varphi \times \psi$ can be extended onto $A_1 \otimes A_2$ preserving its $\texttt{representation} \text{; then } \phi \times \psi \in (A_1 \otimes A_2)_{\ast}.$

Since an arbitrary element of $A_{1*} \odot A_{2*}$ is a linear combination of the elements of the form $\varphi \times \psi$, we complete the proof of Lemma 1.

LEMMA 2. A_{1*} \odot A_{2*} is α' -dense in $(A_1 \otimes A_2)_*.$

Proof. Let ϕ be an arbitrary element of $(A_1\otimes A_2)_*$, and let its repre sentation be $\phi(.) = \sum_{i=1}^{n} \langle u_i, v_i \rangle$, where $\sum_{i=1}^{n} ||u_i||^2$ and $\sum_{i=1}^{n} ||v_i||^2$ are

Now, if an arbitrary small positive number *£* is given, then there exists an integer n_0 such that

$$
\left(\sum_{i=n_0+1}^{\infty} |u_i|^2\right)^{1/2} \left(\sum_{i=n_0+1}^{\infty} \|v_i\|\right)^{1/2} < \varepsilon/3.
$$

Put ϕ' (.) = $\sum_{i=1}^{n_0} < u_i \cdot v_i > 0$

$$
\alpha'(\phi - \phi') = \|\phi - \phi'\| \leq \left(\sum_{n_0+1}^{\infty} \|u_t\|^2\right)^{1/2} \left(\sum_{n_0+1}^{\infty} \|v_t\|^2\right)^{1/2} < \varepsilon/3.
$$

Since $\{u_i\}$, $\{v_i\}$ are elements of $H^1 \times H_1$ and $H_1 \odot H_2$ is dense in $H_1 \times H_2$, $\text{there exist} \: \sum_{i}^{p_i} \xi^i_j \times \overline{\xi^i_j}, \: \sum_{i}^{\eta_i} \eta^i_k \times \overline{\eta^i_k} \: \text{succ}$

$$
|u_i - \sum_{j=1}^{n_i} \xi_j^i \times \xi_j^i| < \varepsilon/3n_0\lambda
$$
\n
$$
(i = 1, 2, \dots, n_0)
$$
\n
$$
|v_i - \sum_{k=1}^{n_i} \eta_k^i \times \overline{\eta}_k^i| < \varepsilon/3n_0\lambda
$$

where $\lambda = \max (\langle u_i, u_i \rangle, \langle v_i \rangle)$.

Now define the functionals

210 T. TURUMARU

$$
\phi''(.) = \sum_{i=1}^{n_0} < \left(\sum_{j=1}^{p_i} \xi_j^i \times \xi_j^i\right), v_i > \\
\text{and} \qquad \phi_0(.) = \sum_{i=1}^{n_0} < \left(\sum_{i=1}^{p_i} \xi_j^i \times \xi_j^i\right), \sum_{k=1}^{q_i} \eta_k^i \times \eta_k^k
$$

then clearly $\phi_0(.) \in A_{1^*} \odot A_{2^*}$, and

$$
\alpha'(\phi - \phi_0) \leq \alpha'(\phi - \phi') + \alpha'(\phi' - \phi'') + \alpha'(\phi'' - \phi_0)
$$

\n
$$
\leq \varepsilon/3 + \alpha' \Biggl(\sum_{i=1}^{n_0} < u_i - \sum_{j=1}^{n_i} \xi_j^i \times \overline{\xi_j^i}\Biggr), v_i > \Biggr) + \alpha' \Biggl(\sum_{i=1}^{n_0} < \Biggl(\sum_{j=1}^{n_i} \xi_j^i \times \xi_j^i\Biggr),
$$

\n
$$
\Biggl(v_i - \sum_{k=1}^{n_i} \eta_k^i \times \overline{\eta_k^i}\Biggr) > \Biggr) \leq \varepsilon/3 + \sum_{i=1}^{n_0} |u_i - \sum_{j=1}^{n_i} \xi_j^i \times \overline{\xi_j^i}| \quad |v_i| + \sum_{i=1}^{n_0} \sum_{j=1}^{n_i} \xi_j^i \times \overline{\xi_j^i}|
$$

\n
$$
|v_i - \sum_{k=1}^{n_i} \eta_k^i \times \overline{\eta_k^i}| \leq \varepsilon/3 + \sum_{i=1}^{n_0} \lambda \varepsilon/3n_0\lambda + \sum_{i=1}^{n_0} \lambda \varepsilon/3n_0\lambda = \varepsilon.
$$
 Q.E.D.

COROLLARY 1. *Let C{H) be the set of all completely continuous operators on a Hilbert space H, then*

$$
(C(H_1)\times {}_{\alpha}C(H_2))^*=C(H_1)^*\times {}_{\alpha'}C(H_2)^*.
$$

Proof. Let $F(H_i)$ be the full operator algebras on H_i , then $F(H_i)$ are trace classes of operators on H_i ; and moreover $F(H_i)$ ^{*} are conjugate spaces, of $C(H_i)$ $(i = 1, 2)$. And finaly by [6]

$$
C(H_1)\times {}_{\alpha'}C(H_2)=C(H_1\times H_2),
$$

therefore by our Theorem *1,*

$$
[C(H_1) \times {}^{\alpha}C(H_2)]^* = C(H_1 \times H_2)^*
$$

= $F(H_1 \times H_2)_*$
= $F(H_1)_* \times {}_{\alpha'}F(H_2)_*$
= $C(H_1)^* \times {}_{\alpha'}C(H_2)^*.$ q. e. d.

 \geq ,

THEOREM 2 (Y. Misonou [3; Thm. 1]). Let A_1 be a W^{*}-algebra on Hilbert *spaces* H_1 and K_1 ; and let A_2 be a W*-algebra on a Hilbert space H_2 and K_2 . Then the direct product of A_1 and A_2 on $H_1 \times H_2$ is algebraically \ast -isomorphic *to the one of* A_1 *and* A_2 *on* $K_1 \times K_2$ *.*

PROOF. A_{1^*}, A_{2^*} and α -norm are determined by algebraic characters of A_1 and A_2 , and therefore α' -norm is determined algebraically. Now let A_1 $\otimes A_2 = A$ on $H_1 \times H_2$ and $A_1 \otimes A_2 = B$ on $K_1 \times K_2$. Then by the above mentioned facts and by our theorem A_* and B_* are isometric as Banach spaces.

Now, by our Theorem

$$
A = (A_*)^* = (A_{1^*} \times \alpha \cdot A_{2^*})^*
$$

$$
B = (B_*)^* = (A_{1^*} \times \alpha \cdot A_{2^*})^*.
$$

Therefore, by identifying the elements of A and B as functionals on $A_1^* \times$ α ^{A_{2*}, we have the isometry between A and B as Banach spaces.}

While by a Theorem due to R. V. Kadison $[2;$ Thm. 14], the Banach space isometry between two W^* -algebras, is a direct sum of $*$ -isomorphism and

anti-*-isomorphism.

Now, the above-described isometry between *A* and *B* contains clearly $A_1 \odot A_2$ in the *-isomorphic part. Since $A_1 \odot A_2$ is dense in A, the proof of Theorem 2 is completed.

REFERENCES

- [1] J. DlXMlER, Formes lineaires sur un anneau d'operateurs, Bull. Soc. Math. France, 81(1953), 9-39.
- [2] R.V.KADISON: Isometries of operator algebras, Ann. of Math., 54(1951), 325-338.
- [3] Y. MISONOU: On the direct-product of W^* -algebras, this journal,
- [4] F. J. MURRAY-J.v. NEUMANN: On rings of operators, Ann. of Math., 37(1936), 116-229.
- £5] R. SCHATTEN: A theory of cross-spaces, Princeton, 1950.
- J6] T. TURUMARU: On the direct-product of operator algebras, I, II, This Journal Vol. 5(1953).

TÔHOKU UNIVERSITY, SENDAI.