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Introduction. From the algebraical point of view, the direct product of
operator algebras is useful for the study of operator algebras. This notion
is originally due to F.J. Murray and J.von Neumann [9,10]. They have
investigated chiefly the direct product of a factor of type I and a factor in
general type. Recently, T.Turumaru [17,18] has investigated the direct
product of C*-algebras and obtained many interesting results.

The present paper is devoted to a natural step in the direct product of
W+-algebras. Let M, and IM, be W+-algebras on Hilbert spaces &; and 9,
respectively. .Then the direct product IM; &) M, of M, and M, is defined as the
weak closure of the algebraical direct product of M, and M, on the Hilbert
space ;X $,. Therefore the concept of the direct product of W+-algebras
depends on the underlying Hilbert spaces. One of purposes of this paper is
to show that IM; &) IM[, does not depend on underlying Hilbert spaces in alge-
braical sense. That is, if IM,;, M, are represented as W+-algebras on another
Hilbert spaces &, &, respectively, then M; Q) M, on £, ® 9, is algebraically *-
isomorphic (in the following we shall state isomorphic) to the one on & X &
(Theorem 1).

The study of the relation between the semi-finite W*-algebras and the
Hilbert algebras is fostered by F.J. Murray and J. von Neumann and develop-
ed by J. Dixmier, H. A. Dye, R.Godement, I.E.Segal and many authors. R.
Pallu de la Barriére has invastigatad the direct product of Hilbert algebras. Our
second purpose is to study of the relations between the direct product of Hil-
bert algebras and the one of W*-algebras which is stated in Theorem 2. This
result is the central role for the study of the direct product of semi-finite
W+-algebras. For example, as an application of it, we shall prove the com-
mutation theorem for the direct product in semi-finite case (Theorem 3).

The final section is devoted to the direct product of finite W*-algebras.
We shall show that the direct product of finite W*-algebras is finite too
(Theorem 4) and further we shall consider the type of direct product in
semi-finite case. There is a Y-operation in a finite W+-algebra in the sense of
J. Dixmier [2], and we shall consider the relation of H-operations between the
direct product of finite W*-algebras and them. An approximately finite factor
is a factor of type II,, which has simple construction, and seems fundamental
for the study of factors of type II,, We shall consider the direct product
of these factors and prove that this product is approximately finite (Theorem
6). The last theorem states that the fundamental group of the direct product
of two finite factors contains the fundamental group of each factors as its
subgroup.

1. The direct product of w*-algebras. In this section, we shall give
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the definition of the direct product and general theory of it.

By a W+*-algebra we mean a self adjoint weakly closed algebra of bounded
linear operators on a Hilbert space. Let M; and M., be W+*-algebras on
Hilbert spaces §; and . respectively. Then the algebraical direct product
of M, and M. can be considered as an operator algebra on the Hilbert
space ;%) 9. in the sense of F.J. Murray and J.von Neumann [9]. We shall
define the direct product of M, and M, as the weak closure of it on §; %
9. and denote this as M; % M, We shall use the notations in [17,18], for
example, M, ® M. means the algebraical direct product of IM,;, M, and for
® € M, ©M.

q):zA,;XBi
i

means that & contains 3 A; x B; as its expression.

In this definition the direct product of W+-algebras depends on their
underlying Hilbert spaces. Our first aim is to show that the direct product
of W+-algebras -does not depend on their underlying Hilbert spaces in alge-
braical sense.

THEOREM 1. Let M, be @ W+-algebra on Hilbert spaces §, and 8. Let
M. te a W+-algebra on Hilbert spaces . and K. Then the direct product of
M, and M, on O, X . is isomorphic to the one of M, and M, on & X K.

To prove the above, we need some lemmas. The next lemma can be
proved without difficulties and we shall omit its proof.

LEMMA 1. Let ., $. be two Hilbert spaces and
3:)1 = 2 @1,&!, 5:)3 = 2 ‘@‘.’,ﬁ
@ B
be direct decompositions of D, 9. respectively, then

O 9= 2 @1,“ ¢ ‘9213'
B

LEMMA 2. Let M, and M, be two W+-algebras on Hilbert spaces £, and
9. respectively and suppose that M, = 2 M, , and M, = 2 M.,z be the
I B

direct decompositions. Then
Ml ® Mz = 2 Ml,w @ Mz,ﬁ-
a,g

Proor. By the assumptions, there exists families {E.} in M, and {F.}
in M. of mutually orthogonal non-zero central projections satisfyingZEd,

= I; and ZFg = I, where 7, and I are the units of M, and IM, respectively.
B
Let ., and £, be the ranges of E, and Fg, then §, = 2‘911“ and 9, =

2 9., and we can consider M, », M,z as W*-algebras on £,4, §, s respectively.
B



ON THE DIRECT PRODUCT OF W*-ALGEBRAS 191

By Lemma 1 we have

Do 9. = Z gx.m ) &):,ﬁ.
@, 8 .

Let & be an element of 2 M, » X M,,g, then we can decompose as following :
a,p °

® = 2(1),,;,,3 where ®o g€ M, s @ M.,s We can choose a directed set
®,8 . .
{®a,p,; in M, ® M. which converges to ¢ strongly. Let
Dupr = > A%N x B8A and Py~ D A% x B
J ’ @,8.j
then it is obvious that ¢®, € M; ®) M. and &, converges to ¢ in strongest
topology. This proves that ¢ € IM; X) Mo..
By an analogous way, we can show that if ¢ € M, % M, then ¢ € 2
@8
M, » &) M.,s. This proves the lemma.

Now we shall introduce the following notion according to I. E. Segal [14].
An operator algebra M on a Hilbert space 9 is called an w-fold copy of an
operator algebra NN on a Hilbert space &, a being a cardinal number greater
than 0, if

(1) there is a set S of power « such that & consists of all functions f
on S to & for which the seriesz Lf(x) % is convergeant, with (f, g) defined as

> (%), 9(x), and

eSS
(2) M consists of all operators A of the form .(Af)(x) = Bf(x) for some
B in N.

Then we have the following lemma.

LeEMMA 3. Let M,, M, be W*-algebras on Hilbert spaces ., 9., and M, be
an a-fold copy of W*-algebra N, on a Hilbert space &,. Then M, ) M, on
the Hilbert space £, ) 9. is an a-fold copy of N, ) M, on the Hilbert space
K& D

Proor. By Lemma 1, there exists a set S of power « such that £,%%9,
consists of all functions on S to &, %) . for which the seriesz !l Pp(x)|2is

xeS
convergent, with

(@, ¥) = 2)($(®), V() for all ¢, $€H ® ..

zeN
)

Let @ be any element of M, ® M, and & ~ ZA,- x B;. Let ¢ be any

element of , ® . and ¢ ~ 2 fj x g;. Then there exists A; in N, with
i

(Aif)®) = Alfsx) for all j.
Therefore
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(X A x B)(Zfs x 95)) () = 2 (A )x) x Bugy
i J i,j
= 2 A® x By = (XA x B:) (25 % 95) 0
4J i J

and this show that (d¢)(x) = d'¢(x) where & =~ > A’ x B;. Since 9 OD.

is dense in §, ® 9., we can easily prove that for any vector ¢ in §, ® 9.
(DP)x) = D P(x).

It is known that the operator norm of ® € M, ® M, depends on M,
and M., but not on the underlying spaces. Hence & is an element in the
unit sphere of M; ® M, if and only if @’ is so. By the above consideration,
we have

D = D DIP(x) 2

xeS
Now we shall show that the mapping ® - &’ is strongly bicontinuous. Let
{®P,} be a directed set in M,; &) M, which converges to 0 strongly, then it
is obvious that &, converges to 0 strongly. Conversely suppose that &)
converges to 0 strongly. Let ¢ be any element in £,&$., .then for any & >
0 there exists a finite subset S’ of S such that 2 [l p(x)? < £2/2, Since & is

weS’
finite we can choose x such that

L, . 2
(i< 5 for A>p

where 7 is the number of §’. Then we have

[Drd 2= D D) 12 < D Dip(®) 124+ 2 D)2 b)) |2 < & for A > p.

reS zeS TeS’
That is | dap | < & for A > u. This proves that & > @’ is strongly biconti-
nuous on the unit spheres. Therefore, by a theorem due to I. Kaplansky [7],
this mapping can be extended topologically to the mapping from the unit
sphere of M, x) M, to the one of N;& M. It is clear that this extended
mapping holds the above equation. This proves the lemma.

By the above lemma, we can easily prove the following :

LemMa 4. L2t M, M, be as in the above lemma and suppose that M, be
a Bfold copy of W+algebra N, on a Hilbert space 8:. Then M;QM;: on O
® 9. is an aB-fold copy of N, Q) N, on & & &.

Two projections P,Q in a W+-algebra is called eguivalent if there exists
a partially isometric operator V in the algebra with P = VV*and Q = V*V.

LeMMA 5. Let M;, M, be W+-algebras on Hilbert spaces £, 9. respectively.
Let E be a projection in M, which is not annihilated by any non-zero central
projection of M, and moreover suppose that there exist infinitely many proje-
ctions in M, which are orthogonal to eah other and equivalent to E. Then
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M, ® M, is isomorphic to Mz ® M. where Mz is the contraction of M, on
the range of E.

ProoF. Since E is not annihilated by any non-zero central projection of
M;, M, is isomorphic to M.

Let {E,} be a maximal family of mutually orthogonal projections in M;
each of which is equivalent to E. Then {E.} is an infinite family by the
assumption. By the comparison theorem, there exists a central projection
F, such that

EF, = (I — 2 EJ)F, EF, £ (I1— 2EJ)F.
It is obvious that each E,F; is equivalent to EF,. Since {E,} is infinite set
Fy = (I — 2 EJ)F, + 2 EsF, < X EJF, < F..

This shows that 3 E,F, ~ F; and hence there exists a family of mutually
orthogonal projections {P,} such that P, < F,, P,F, ~ P,E and S P, =F.
By an analogous way to the above, we get a central projection F: which is.
orthogonal to F; and there exists a family of mutually orthogonal projections.
which are contained in F, and each of which is equivalent to F.E and the
upper ‘bound of them equals to F.. By the induction, we get a family of
mutually orthogonal central projections in IM, such that for each Fp there:
exists a family of mutually orthogonal projections {P%} such that

P* ~EF, > P*=F,.
By Lemma 2

M, ® M, = ZMlFa @M. and M,z M, = 2 (M 5)ra ) M..

Hence it is sufficient to show that Mg, <) M, is isomorphic to (IM; )y &) M.

By the above considerations, without loss of generality, we can assume
that there exists a family {Pg}gr of mutually orthogonal projections in IM;
such that 3, P3 = 7 and each Pg is equivalent to £. Then M, is an a-fold

8

copy of M,; where ais the cardinal of 1" (cf.[8]). Therefore by Lemma 3,
M,; ® M. is an a-fold copy of M,z IM.. This proves the lemma.

By the above lemma, we have the following :

LemMA 6. Let M,, M, be as in the above lemma. Let F be a projection in
M, which is not annihilated by any non-zero central projection in M, and
moreover suppose that there exist infinitely many projections which are
orthogonal to each other and equivalent to F. Then W, X M. is isomor phic
to M]E ® M:!F.

Proor oF THEOREM 1. We shall consider the identical mapping from IM,
on &, to M, on &, and denote this mapping as §. Then by a theorem due
to J. Dixmier [3, Proposition 2], @ can be expressed as product of the following:
three isomorphisms 6y, 6, 6;, that is, § = 6:6-6; :

6,(MI;) is an a-fold copy of M, for suitable cardinal «,

0:(6:(M,)) is the contraction of the range of some projection E in (6x
(VL)Y
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@, is a spatial isomorphism.
We can choose « such that there exist infinitely many projections in (61(M1))
which are orthogonal to each other and equivalent to E.

Analogously, the identical mapping ¢’ from M, on ¥, to M, on & can
be discribed as ¢’ = ¢; 6,0, where 6;, 61 and g, are analogous to ¢;, @, and 6;.

By Lemma 4 M, %) M, on 9, &, is isomorphic to 4,(IM;) & 6-(IM,) and
by Lemma 6 this is isomorphic to @«(6,(¥)) ® @, (6/(]M.)) and the later is
isomorphic to MM, ) M, on &, & R, since g, §; are spatial isomorphisms.
This proves the theorem.

ReEMARK 1. Recently, T.Turumaru and Z. Takeda obtained another proofs
of Theorem 1 independently of the author. These proofs will be appear in
this journal.

REMARK 2. By Theorem 1, for the study of purely algebraical properties
of direct products, we can consider it free from the underlying Hilbert
spaces.

2. The direct product of Hilbert algebras. In this section we shall
consider the direct product of Hilbert algebras and as an application of it
we shall prove the commutation theorem for the direct product in semi-
finite case in the sense of E.L.Griffin [5].

According to H.Nakano [11], we shall give the following definition :

A linear manifold ¥ in a Hilbert space %) is called a Hilbert algebra if
it satisfies the following conditions (1)-(5):

(1) A is dense in 9.

(2) A is a ring over the complex field.

(3) To each a € U, there exists an element a* € A such that (ab,c) =
(b, a*), (ba,c) = (b, ca*) for all b,c € .

(4) To each a € U, there exists aq=0 such that au < aq | for all
el
From the conditions (1)-(4), for each a € U, we can define unique bounded
linear operators L, and R, on § with

Lyx = ax, Rox= xa for all x€ U

(5) Lax = 0 (Rux = 0) for all a € A implies x = 0.

A Hilbert algebra % in a Hilbert space $ is called to be maximal if
there is no Hilbert algebra which contains U properly. It is known that any
Hilbert algebra is uniquely extended to a maximal Hilbert algebra (cf.[6])
and & is an H-system in the sense of W.Ambrose [1] and moreover its
maximal Hilbert algebra is the bounded algebra of the H-system. Let U is
a Hilbert algebra in § and B be its maximal extension, then we can consider
a bounded operator L, on $ for each a € B which is defined as in (5). The
weak closure of {L,|a € A} coincide with that of {L,|a € B} and this closure
will be called the right W*-algzbra of the given Hilbert algebra. Analogously
we can define the left W+-algebra of the given Hilbert algebra 2 as the weak
closure of {Rs|la € A}. By L(A) and R(A), we shall mean the left and right
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W -algebras of 2.

THEOREM 2. Let N,, U, be two Hilbert algebras in Hilbert spaces £., ..
Then A =N, @ N, is a Hilbert algebra in $ = D0 H: and L) = LA) R
LOL), RO = R 0 RA). .

ProoF. At first, we shall prove that %, ® . is a Hilbert algebra in ¥,
that is, A, © A, satisfies the conditions (1)-(5). It is obvious that %A; ® U

satisfies (1). For any ¢, ¥ € A; ® U, we define
qS\P:ZaiCj X bid;,  pF Ea,* x bF
where ¢ 2 a; X b; and ¢ ~ Zc‘ x dj. Then it is not difficult to show

that A; @ ‘lIz satisfies (2) and (3)
Let ¢ be as above and 4, Y. be arbitrary elements in A; & U, and

=~ Uy x vy, P Zsyc x t. Then
J
GV, ) = ((Za, X b)(zu, xvy), S x )
QZ au; X by, 2 S X t,c) z (ains, Sp)(bits, ;)

Il

i,J,k
= 2 (5, afsy)(vy, bity) = (2 u; X vj, z alsy X b*tk)
= (x”, Prra).

Analogously we have (Y1, Y) = (Yy, Yudp*). This shows that A, @ A,
satisfies the condition (3).
Let ¢, Y be as above and put

n=max (,Lyl, || Ly, ;).

I=i=n
“Then
I 2= > (@i, asx)bidy, bid;)

i, J,k, b

> (L5 Lo, ¢) (L%, Lo dy, dy)

iihl

= > LY L, LY L, le, e, d d

i,0,k,1

Sy 2 e di S2miyt ¢ P
k

i

“This shows that %, & Y, satisfies the condition (4).

Let 7; and 7, be the unites of L(2,) and L(.) respectively. Then we can
.choose a directed set {Las} and {Lyg} in the unit spheres of {L.|a € U;}
and {L,|b € A} such that L, and Zyz converge to [, and 7, strongly.
Obviously ®a,s ~ L. x Lyg converges to the identity operator on & strongly.
Let 4 be an element in § with Lgyr = 0 for all ¢ € A, © Az, Then
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Dupp =0 for all a, B.

This shows that ¢ = 0, since &, 5 converges to the identity on §. That is,
A, © U, satisfies the condition (5). Thus A; © U, is a Hilbert algebra in §.

Now we shall consider the second part of the theorem. It is obvious
that {Ly|¢ € U} is contained in L(2;) @ L(%,). Hence it is sufficient to show

that {Ls|¢p € A} is strongly dense in L(U;) ® L. Let & :EAg X Bg
i=1

be an arbitrary element in L(%;) ® L(2,) and put
A = Iax (1&g, | Bil).

For any ¥ € $ and & >0, we can choose ¥, € §; ® . such that

[ Y — A | < &/dn 2
Let Y, >~ z %5 X ¥; and put
j=1
p=max ([ x|, [¥5])
1=/s=m
Then for Ai, x, ...., %, there exists A; in {L;|a € U,} with
[(As — ADx; | < &/ dnmrp forj=1,....,m,
and for B, ¥, ....,Ys, there exists B in {L,|b € A} with
[(B; — B)y;| < &/dmmap  for j=1,....,m.

By a theorem due to I. Kaplansky [7], we may assume that |A;|< A and
| Bil <\ Let @~ > A’ x B/, then
4

[@ = W) — ¥ [S[D =W (% =y | S| S Acx B~ DA, x B] | &/4nns
< (ZAxB+ X4 ><B;i')e/4nx2§22xze/4nxz:5/2.

(@ — W] =] (;:A,.bi._ Zi:A;xB’)g:x,xyj“
§‘{E(ZZA;><B,~— ;A’xBi)g:x,xy.,,}
+!‘(§i:A;xBi-— ZA{_XB;)JZxey‘,.Ej
= 2 (A= A)x || Byl + Z, A'xy|- (B — B)ws|

< 2mnpsldmnp = E/2.
Hence we have
(@ =YW =@ -V —V) + (D -V <E2+¢E/2=¢
This proves that {Ly|¢ € U} is strongly dense in L(2;,) @ L(UA;), since ¥

belongs to {Ly|¢ € A}. That is L(A) = LAL) ® L(.). By an analogous way,
we can prove that R(Y) = R(U;) ® R.). '
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Our next step is to show the following? :

THEOREM 3. Lot M, and M, be two semi-finite W+algebras on Hilbert
spaces 9, and . respectively, then we have
(%) M; 0 M; = (M; ® M,Y.

In order to prove the above we shall show some lemmas. We shall use
the following terminology which was introduced by I.E.Segal [15]. A W*-
algebra is called standard if it is unitarily equivalent to the right (or left)
W*-algebra of some Hilbert algebra.

LEMMA 7. Let M, M, be two standard W*-algebras, then the equation (x)
is valid.

Proor. By the assumptions, M; and IM; can be considered as the right
W+-algebra of Hilbert algebras 2, and . in their underlying Hilbert spaces
respectively. By Theorem 2, %; ® . is the right W*-algebra of the Hilbert
algebra %; @ A,. There (M; & IMM.Y is the left W*-algebra of %; ©® .. On
the other hand, M; ® M, is the left algebra of %; ® U, since M; and M, are
left W+-algebras of ; and 2, respectively. This proves the lemma.

Let M be an arbitrary W+algebra and IN be a full operator algebra on
an a-dimensional Hilbert space. According to F. J. Murray and J. von Neumann
[10], we shall denote N ® M by M,. Then there exist a family {P.} in N,
of power «, where each P, is a minimal projection. Let /; and /; be units
of N and M and put

b= P x I,
then each &, is a projection in N ) M and further they are equivalent to
each other. It is clear that the contraction of (N %) M) on the range of ®,
is isomorphic to I, %) M,. Therefore, by an analogous method to [8, Theorem
2], we have the following lemma.

LEMMA 8. Let M be a W+-algebra, then (M®)Y is unitarily equivalent to
an a-fold copy of M.

LemMa 9. Let M,, M., be standard W+-algebras, then the equation (%) is
valid for M7, M3.

Proor. As we noticed above, (IM{), and (M%) are « and B-fold copies
of M, and M, respectively. Hence, by Lemma 5, (M%)’ %) (M%) is an a@-fold
copy of M, ) ML,

By the definition,

M‘f®M%= N, % M, @ N ) M,
where N; and N, are factors of type I, and Iz It is clear that N, & M,
& N, ® M, is unitarily equivalent to N; @) M; ® N, M,. Therefore

M7 @ M = (M, 9 M,)**,

1) This theorem is proposed by Turumaru in a conversation.
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since N, ® N is of type I.g by the above lemma. This shows that (M? Q
MPBY is an aB3-fold copy of (M; %) M.Y. By the above lemma

(M, ® M./ = M; ® M.
This proves the lemma.

LemMA 10. M, and M, be an a-fold copy of standard W+-algebra and a
B-one of N, and N, respectively. Then the equation (¥)is valid for M, and M,.

ProOF. By the assumptions M; = N;* and M, = N,8. Hence
M; M, = N;* (9 N = (N] (0 N})* = (N1 ) N)*#

by Lemma 7 and the proof of the preceding lemma. On the other hand, by
Lemma 5, M; & M, is an afB-fold copy of N, & N, that is, (IM; ® M,) =
(N, ® N.,y*8, This proves the lemma.

LemMma 11. Let M be the direct product of W+-algebras M, and M,. Let
O~P x @ where P and Q are projections in M, and M. respectively, then ®
is a projection in M and My is isomor phic to M .p ) May.

Proor. It is obvious that ¢ is a projection. MMy, M,;p %) IM,, are isomor-
phic to ® M &, PM,P X QM.R respectively, hence it is sufficient to show
that (& M &) and PM, P X) QM.Q are isomorphic to each other. It is clear
that (M, ® M,)® is isomorphic to PM,P (¢ QM. and moreover this
isomorphism is spatial one. Since ®(M; & M.)® and PM,P ) QM.Q are
weakly closed in ®M® and P M, P &) QM.Q, the above isomorphism can
be extended to the isomorphism from ®M® to PM,P %) @M.Q. This proves
the lemma.

REMARKS. In the above lemma, we assumed that P and @ lie in M, and
M. respectively. This assumptions is not necessary. The above lemma is
true for P€ M; and Q € M.,

LEMmA 12. Suppose that (%) is valid for W+-algebras M, and M.. Let P,
Q be projections in M, M. respectively and & ~ P x Q, then we have

(ML) 69 (Mse)" = (M O ML),

Proor. It is known that (Mir/ = M;, and (M. = M, (cf. [9, Lemma
11.3.2]). Hence, by the above remark, we have

(Mip/ ® (Mae) = M;p & My = (M; ® M = (M, 6 M),

Proor oF THEOREM 3. As we have noticed, M; and M., isomorphic to
the left W+-algebras of some Hilbert algebras in Hilbert spaces &, and §,,
that is, IM, and M. can be represented as standard W--algebras on §; and
&, respectively. By an analogous way to the proof of Theorem 1, the
identical mapping § from M; on &, to M, on §, can be described as 6 = g,
0.6, where @,, 6. are ¢; are analogous to those in the proof of Theorem 1.
We shall write the identical mapping from M on &, to M on £, as ' = 6,6;
6; where @], 6; and g, are analogous to those of Theorem 1. Then, by Lemma
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7, (%) is true on £, ® .. By Lemmas 10,11, () is valid for @.(6:(M,)) and 6;.
(6,(ML)). Therefore

(Ml ® M2)’ = M{ @ M;;

since M; on £, and M, on 9. are unitarily equivalent to @.(6:(IM;)) and ;.
(6;,(M)) respectively.

REMARK. In Theorem 3, we assume that IM; and IM. are semi-finite.
In the general case, Theorem 3 is still open.

3. The direct product of finite W-*algebras. In this section, we shall.
consider the direct product of finite W*-algebras. A projection P in a W*-
algebra is called finite if P=Q and P~ & imply P =&. A W+*algebra is.
called finite if the unite is finite. Then a W+*-algebra is semi-finite if any-
non zero central projection contains a non zero finite projection. Let IM be
a semi-finite W+*-algebra on a Hilbert space &, then there exists a Hilbert.
algebra % in a suitable Hilbert space & such that M is isomorphic to the
left W -algebra of U (cf.[12,15]). Moreover if M is finite and o-finite, that
is, any orthogonal family of projections is at most countable, then M can
be taken as a maximal Hilbert algebra in a suitable Hilbert space [6].
Conversely, it is clear that such maximal Hilbert algebra can be considered.
as a finite W*-algebra. The next theorem is stated in [15, §5].

THEOREM 4. Let M,, M, be finite W*-algebras, then M, (x) M. is a finite
Wt-algebra.

Proor. Let I, and I, be the units of IM; and M. respectively. There
exists a family {E.} of mutually orthogonal central projections in IM; such.
that 3, E, = I, and the contraction of IM; on the range of E, is o-finite.
Then M, = SM,,» where M, is the contraction of M, on the range of E,.
Analogously, we can find a family {Fg} of mutually orthogonal central.
projections in IM; and let IM, g be the contraction of M. on the range of Fp.
Then, by Lemma 2, we have

M,OM:;= > M & M,
@,
If each M, ,® M. is finite, then M, () M; is finite. Therefore we can
assume that IM; and M, are o-finite without loss of generality.

Now, let M,, M, be finite o-finite W+-algebras. Then IM,;, M, are
isomorphic to left W+*-algebras of suitable Hilbert algebra A, %, in Hilbert
spaces §,, 9, respectively. By Theorem 1, it is sufficient to consider M, ®-
M., on ; X .. By Theorem 2,

It is clear that L(%, ® %A,) is isomorphic to the maximal extension of the:

Hilbert algebra A, ©® A, since the unit is contained in A; @ .. Therefore
M, X M; is finite.

According to I.E.Segal [14], we shall introduce the following notion::
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A Wt-algebra is called hyper-reducible if its commutor is commutative.
Then the following lemma is obvious.

LemMmA 13, If M:, M. are hyper-reducible W*-algebras, then M, Q) M, is
so.

Now we shall consider the type of the direct product.

THEOREM 5. Let M be the direct product of semi-finite W*-algebras M,
and M,. If both M, and M, are of type 1, then M is of type 1. If one of
M,, M. is of type Il then M s of type 1I.

Proor. Suppose that M; and M. are of type I, then they can be decom-
posed as following :

M1 = 2 M[,w and Mz = 2 ngp,
@ B
where M, , and M. are of type I, and Iz respectively. By Lemma 2,

M= > Mo ® M.
«,B

If every M, « %) Mg is of type I, then M is so, hence we assume without
loss of generality that IM, and M: are of type I, and Iz respectively. Then
M; and M, are @ and [B-fold copies of hyper-reducible algebras where a
and B are suitable cardinals (cf.[9, Theorem 2]). Therefore, by Lemma 4,
and the preceding lemma, M; & M, is an @3-fold copy of a hyper-reducible
algebra. Hence, by Theorem 3, (M, (&) M.) is so, that is, IM; %) M. is of
type 1.

Next, we shall show that M is semi-finite. As we noticed, IM; and M;
are isomorphic to left W+-algebras of some Hilbert algebras, say A; and U,
respectively. Then IM; &) M. is isomorphic to L(U) () LAy = LA, @ Wy).
This shows that M, %) M. is semi-finite.

Finally we suppose that M; is of type II. It is known that M; and M,
can be represented as W+-algebras faithfully on some Hilbert spaces such
that M, and are finite on these spaces. It is sufficient to show that (M, ®
M,y = M, ® M, is of type IL. If M; ¢ Mj; is of type I, then we can choose
a central projection & in M;® M, and an integer p so large that the
contraction of M;® M, is of type I, since M; (& M, is finite. Therefore
any family of mutually orthogonal equivalent projections contains at most p
elements. On the other hand, it is clear that there exists in this contraction
a family of mutually orthogonal equivalent projections which contains more
than p elements. This is a contradiction, that is, M; & M, is of type IL

Analogously, we can prove the remainder part of the theorem.

ReMARK. In the above theorem, we assume that IM; and IM; are semi-
finite. We can not indicate the status of Theorem 5 when we pass from
semi-finite case to general one.

By Theorem 4, M = M, ® M. is finite if M; and M, is finite. Hence
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there exist B-operations in IM, M; and M, in the sense of J. Dixmier [2]. We
shall show the following : '

THEOREM 6. Let M1, M. be finite W*-algebras and ® be an element in M,
© M, and let &~ > A; x Bi. Then ®% ~ >, A x Bf.
[3 12

Proor. It is sufficient to prove in the case & ~¥ A x B. Let &, ~ A% x
B’ and Z be the center of M = M, ® M, and M, be the unitary group of
M. Let K; be the smallest uniformly closed convex set which contains {¥
®V-1|V € M,}. Then, J. Dixmier [2] proved that K; (1 Z is not empty and
contains only the element ®*¢. On the other hand, for every & > 0 there exist
unitary elements Uy, ....,Us in M, V5, ...., Vpin Mzand As > 0,5 >0 (SN
= Su; = 1) such that

1A — IINUAU < £ By — 3w VBV, < £
i 21} j 21)
where v =max ([ Al, [ B|). Let
&, ~ D2 npUs x V(A x B)(Us x V)L
i,J
Then

[y — D1l =14% x BY — D2 npgUs X Vi) (A x B)(Us x V)t
Ji,

<| A% x B — 2INUAU; x BY |+ 2 MUAU: x BY —
_ 2 AU X V) (A x BYU; x V)=t
i,J

<|AY — 2NUAUT - | Bl + 20 NUAU: - | BY — 3 wV,BV31
i i J

<([A% +1A])/2v<e.
That is, &, can be approximated by the elements in K, uniformly. This
proves &, = ®7 since P, is in Z.
In the following, we shall study the direct product of factors.

LeEMMA 14. Zet M, and M. are factors on Hilbert spaces ), and £,
respectively, then M, () M, is a factor.

Proor. It is clear that M, &) M. is generated by M, ® I, and I; ®) M.
where I, and I, are units of IM; and M., Let B, B; be the full operator
algebras on £;, . respectively and put P = B; ®) .. Then

M, QLCP and I; ® M. P.

By Theorem 5, P and P’ are of type I and so they are normal. Hence, by

a lemma due to F.J. Murray and J. von Neumann [9, Lemma 11.1.3], M; &)
M. is a factor.

By Theorem 6 and Lemma 14, we have the following :
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COROLLARY. Let M, and M; be finite factors, then M = MM is a
_finite factor. Let 7,7, T, be the traces of M, M,, M. respectively. Then

(P) = 2 T1(A)ry(B:)
i

where & € M, @ M, and ® ~ >, A; x B,

In the following we shall consider only direct product of finite factors.
“The really interesting is the direct product of factors of type II,. We shall
‘use terminologies algebraical type, approximate finiteness and fundamental
.group which are introduced by F.J. Murray and J.von Neumann[10].

THEOREM 7. Let M,, M. be two approximately finite factors, then M; &)
M. is an approximately finite factor.

ProoF. Let 7,7, 72 be traces of M = MM, M,, M, and [[-, -1], [[+, <111,
[+, -1]: be norms of the pre-hilbert spaces which are generated by M, r; M,
‘T;Mly, T2 respectively. Then for any &y, ...., &, € M and & > 0, there exist
Yy, ....,V, € M, ©® M. such that

[[®n -~ Wall < %for n=1....,m

p(n)
Let @, ~ > Au: X Bn; and put
i=1
p=max (|An., |Bn:) and p = max (D(n)).
‘Since M, is approximately finite, for A, (n=1,.....m;i=1,..... (pn)) and
-&/4up, there exists a subring N, of M, with following properties :
(i) N, is of finite order,
(ii) there exist A, ; such that
[MAn:— A, 1L < &/4up for n=1,....,m; i=1,....,p(n).

“"We choose an analogous subring N, of IM; and its elements B,,,,.
Let

o(n)
v, ~ XA, x B,
i=1
‘then
(W — V=12 At X Bus— 2 A;, % B, 1l

S Ani X By — 2 A, X Bagll +[[ 2 A}, X Bag — 2 A, x B, 1]
i i i 1

= E["[[An,i - A;"{]]l + Z I‘L[[Bn,i - B;,;]];g < 8/4 -+ 8/4 = 8/2
i i

Accordingly
[(®n— VI S [Pw— Vull + [[Vr — PLII< /2 + /2 = &,
It is obvious that N = N, ® N, is of finite order and ¥, € N. This proves
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‘the theorem.

Since all approximately finite factors areisomorphic [10], we have the
following :

COROLLARY. Let My, M. be two approximately finite factors, then I, X) M
and M,, M have the same algebraical type.

Finally we shall consider the fundamental groups of direct products.

THEOREM 8. Let M be the direct product of finite factors M, M. Then
the fundamental group of M contains the fundamental groups of M., M, as
ats subgroups.

Proor. Let &, ®,, &, be the fundamental groups of IM, N, IM, respectively.
Tt is sufficient to prove that if 8 € &, then 6 is contained in .

Let =, 7, 7: be traces of M, M, M. respectively. By the assumption,
there exists a projection P in M; such that +(P) = € and IM,p is isomorphic
to M,. Let & ~ P x I, where [, is the unit of IM,. Then

(D) = T1(P) - 7o(L) = 6.
Hence it is sufficient to show that MM, is isomorphic to IM. By an analogous
way to the proof of Theorem 1, we can show that IM;r® M. and IM; & M,
have same algebraical type. By Lemma 11, IM,»& M, is isomorphic to Mj.
“That is, M is isomorphic to M, This proves the theorem.

It is known that the fundamental group of an approximately finite factor
<contains all € in 0 < 6 < o [10]. Hence we have the following :

COROLLARY. Let M, M; be finite factors and suppose that one of them is
approximately finite, then the fundamental group of M, X M, contains all 0 in
0 <0< oo,
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