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Introduction. From the algebraical point of view, the direct product of
operator algebras is useful for the study of operator algebras. This notion
is originally due to F. J. Murray and J. von Neumann [9,10]. They have
investigated chiefly the direct product of a factor of type I and a factor in
general type. Recently, T. Turumaru [17,18] has investigated the direct
product of C*- algebras and obtained many interesting results.

The present paper is devoted to a natural step in the direct product of
PF*-algebras. Let Mx and M2 be TF*-algebras on Hubert spaces § x and ξ>2

respectively. .Then the direct product Mi ® M2 of M t and M 2 is denned as the
weak closure of the algebraical direct product of Mx and M 2 on the Hubert
space £)x (x) £)2. Therefore the concept of the direct product of PF*-algebras
depends on the underlying Hubert spaces. One of purposes of this paper is
to show that M τ (x) M 2 does not depend on underlying Hubert spaces in alge-
braical sense. That is, if M L M 2 are represented as W*-algebras on another
Hubert spaces ®Ί, R2 respectively, then Mi ® M 3 on ©j ® ξ)2 is algebraically *-
isomorphic (in the following we shall state isomorphic) to the one on $Ί (x) $2

(Theorem 1).
The study of the relation between the semi-finite W*-algebras and the

Hubert algebras is fostered by F. J. Murray and J. von Neumann and develop-
ed by J. Dixmier, H. A. Dye, R. Godement, I. E. Segal and many authors. R.
Pallu de la Barriere has investigated the direct product of Hubert algebras. Our
second purpose is to study of the relations between the direct product of Hil-
bert algebras and the one of W*- algebras which is stated in Theorem 2. This
result is the central role for the study of the direct product of semi-finite
W*-algebras. For example, as an application of it, we shall prove the com-
mutation theorem for the direct product in semi-finite case (Theorem 3).

The final section is devoted to the direct product of finite W*-algebras.
We shall show that the direct product of finite W*-algebras is finite too
(Theorem 4) and further we shall consider the type of direct product in
semi-finite case. There is a ^-operation in a finite W*-algebra in the sense of
J. Dixmier [2], and we shall consider the relation of fcj-operations between the
direct product of finite W*-algebras and them. An approximately finite factor
is a factor of type IIX, which has simple construction, and seems fundamental
for the study of factors of type IIlβ We shall consider the direct product
of these factors and prove that this product is approximately finite (Theorem
6). The last theorem states that the fundamental group of the direct product
of two finite factors contains the fundamental group of each factors as its
subgroup.

1. The direct product of w*-algebras. In this section, we shall give
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the definition of the direct product and general theory of it.
By a W*-algebra we mean a self adjoint weakly closed algebra of bounded

linear operators on a Hubert space. Let Mi and M 2 be W*-algebras on
Hubert spaces £>i and £>2 respectively. Then the algebraical direct product
of Mi and M^ can be considered as an operator algebra on the Hubert
space ξ)λ © £)2 in the sense of F. J. Murray and J. von Neumann [9]. We shall
define the direct product of M 2 and M 2 as the weak closure of it on £)j ®
£>2 and denote this as Mi ® M 2 . We shall use the notations in [17,18], for
example, M x 0 M 2 means the algebraical direct product of M l 5 M 2 and for
φ € M2 © M 2

Φ ̂  2 Λ x £*
i

means that Φ contains 2 At x B{ as its expression.
In this definition the direct product of W*- algebras depends on their

underlying Hubert spaces. Our first aim is to show that the direct product
of W*-algebras does not depend on their underlying Hubert spaces in alge-
braical sense.

THEOREM 1. Let M τ be a W*-aIgebra on Hubert spaces ξ)} and ff2. Let
M 2 he a W*-algebra on Hubert spaces ©2 and ^ 2 . Then the direct product of
M i and M 2 on & ® ξ)2 is isomorphic to the one of M x and M 2 on @ι ® $2.

To prove the above, we need some lemmas. The next lemma can be
proved without difficulties and we shall omit its proof.

LEMMA 1. Let ξ>1} C>2 be two Hubert spaces and

CO β

be direct decompositions of <£)1? £>2 respectively, then

LEMMA 2. Let M x and M 2 ^^ ^ o W*-algebras on Hilbert spaces ξ)r and

£>2 respectively and suppose that M τ = 2 M i ,« β ^ M 2 = 2 ^ , j s ^ ^ e

a β

direct decompositions. Then

PROOF. By the assumptions, there exists families {Ea} in Mτ and

in M 2 of mutually orthogonal non-zero central projections satisfying 2 ^ *

= 7X and 2 ^ = /2 where Iτ and 72 are the units of Mλ and M 2 respectively.
β

Let ξ)hcc and ©2ijS be the ranges of EΛ and F^, then & = 2 ^ '

2 ^ ' i 3 a Q ( ^ w e c a n consider M 1 Λ , M2,β as W*-algebras on ξ>hΛf ©2jβrespectively.
β
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By Lemma 1 we have

a,β

Let φ be an element of 2 ^ α ® M3>j3, then we can decompose as following :
*,β' •

Φ --= 2 Φ«,β where Φ*^ € M1)0} ® M-,,3. We can choose a directed set

{Φ«,/3,λ} in Mj 0 ]YL which converges to φa,β strongly. Let

Φ-.β.λ - 2 A " ' λ x βf'λ a n d Φλ - 2 Aj'λ x BJΛ>
j ' α,.e.j

then it is obvious that Φ λ € Mτ ® M- and φ λ converges to Φ in strongest
topology. This proves that Φ € Mx ® M>.

By an analogous way, we can show that if φ ^ M, ® M 2 then φ 6 2
a,β

M l i Λ ® M 3 | 3 . This proves the lemma.

Now we shall introduce the following notion according to I. E. Segal [14].
An operator algebra M on a Hubert spacs £) is called an a-fold copy of an
operator algebra N on a Hubert space ®, a being a cardinal number greater
than 0, if

(1) there is a set S of power a such that £> consists of all functions /

on S to $ for which the series 2 \]f(χ) 2 * s convergent, with (f,g) defined as
XεS

Σ </(*), g(x», and

(2) M consists of all operators A of the form (Af)(x) = Bfix) for some
B in N.
Then we have the following lemma.

LEMMA 3. Let M τ , M 2 be W*-algebras on Hubert spaces &1} & and Mτ be
an a-fold copy of W*-algebra N\ on a Hilbert space &x. Then M τ ® M 2 on
the Hilbert space Sfrx (x) «£>2 is an a-fold copy of NΛ ® M 2 on the Hilbert space

PROOF. By Lemma 1, there exists a set S of power a such that §i

consists of all functions on 5' to ffix ® ξ)3 for which the series 2 ί! Φ(χ) I? i
XeS

convergent, with

^Σ for all φ,

Let φ be any element of M x © M 2 and Φ — 2 Ά< x -̂ ί Let φ be any
i

element of ξ)Ί © & and φ 2̂  2 >0 x 9J Then there exists A\ in N x with

= A'/j(x) for all /

Therefore
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( ( 2 At x Bt)(Σfj x ffi)) (*) = Σ (AifXx) x Bidj

= Σ A'/x*) x ̂  = ( Σ A'ι x β*) ( Σ Λ x ^)

and this show that (Φφ)(*) = Φ'φ(#) where Φ ' ~ 2 \ A ;
 x β« S i n c e &

i

is dense in ξfτ (x) £)2, we can easily prove that for any vector φ in ^ ® £)2

(φφ)(#) = Φ'φfo).

It is known that the operator norm of Φ € M] 0 M2 depends on MA

and M2, but not on the underlying spaces. Hence Φ is an element in the
unit sphere of Mi © M 2 if and only if φ ' is so. By the above consideration,
we have

xeS

Now we shall show that the mapping Φ -> Φ' is strongly bicontinuous. Let
{Φλ} be a directed set in Mx 0 M. which converges to 0 strongly, then it
is obvious that φ^ converges to 0 strongly. Conversely suppose that φ^
converges to 0 strongly. Let φ be any element in £>i(x)£)2,, then for any £ >

0 there exists a finite subset Sf of S such that 2 d Φί^ΐl < εil2- S i n c e s ' i s

finite we can choose μ such that

> < ζf for λ > μ

where n is the number of S'. Then we have

II ΦλΦ \* - Σ I φ W<*) P < Σ φ ^ W ;i2 + 2 I I Φλ ί!2II Φ(*) II2 < f 2 f o r λ > μ
xeS xeS xei>'

That is I Φλφ jl < £ for λ > μ. This proves that Φ -> Φ7 is strongly biconti-
nuous on the unit spheres. Therefore, by a theorem due to I. Kaplansky [7],
this mapping can be extended topologically to the mapping from the unit
sphere of M τ ® M 2 to the one of N\ ® M2. It is clear that this extended
mapping holds the above equation. This proves the lemma.

By the above lemma, we can easily prove the following :

LEMMA 4. L?t M I ? M 2 be as in the above lemma and suppose that M 2 be
a β-fold copy of W*-algebra N 2 on a Hubert space $3. Then Mx(χ)M2 on ξ>τ

is an aβ-fold copy of N x ® N 2 on ®Ί ® ffa.

Two projections P, Q in a PF*-algebra is called equivalent if there exists
a partially isometric operator V in the algebra with P = F F * and Q — V*V.

LEMMA 5. Let M h M 2 te W*-algebras on Hilbert spaces $lf £>2 respectively.
Let E be a projection in Mj which is not annihilated by any non-zero central
projection of ΉLX and moreover suppose that there exist infinitely many proje-
ctions in Mi which are orthogonal to eah other and equivalent to E. Then
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M i ® M 3 is isomorphic to M i ^ ® M 2 where M ^ 25 the contraction of Mi on
the range of E.

PROOF. Since E is not annihilated by any non-zero central projection of

Mi, M l £ is isomorphic to Mx.
Let {Ea} be a maximal family of mutually orthogonal projections in Mί

each of which is equivalent to E. Then {£«} is an infinite family by the
assumption. By the comparison theorem, there exists a central projectioa
Fι such that

EFΛ > (I - 2 EΛ)Flf EFλ < (/ - ^ΣEΛ)FX.
It is obvious that each EΛFι is equivalent to EFX. Since {Ea} is infinite set

This shows that 2 F*/^ — Fx and hence there exists a family of mutually^
orthogonal projections {PJj- such that P\ <: F1} P\Fi ~ Pι

μE and Σ P ^ = Flm

By an analogous way to the above, we get a central projection Fz which is
orthogonal to F3 and there exists a family of mutually orthogonal projections
which are contained in Fz and each of which is equivalent to FZE and the
upper !bound of them equals to FΛ. By the induction, we get a family of
mutually orthogonal central projections in M τ such that for each Fβ there
exists a family of mutually orthogonal projections {P*} such that

By Lemma 2

Mi ® M 2 = 2 M ^ α ® M - a n d M i « ® M 2

Hence it is sufficient to show that Ml£o> ® M 2 is isomorphic to (MΊE)F* ® M2.

By the above considerations, without loss of generality, we can assume

that there exists a family {Pβ}βeτ of mutually orthogonal projections in MJ

such that 2 Pβ = / and each Ps is equivalent to F. Then M t is an α-fold

copy of M l£; where α is the cardinal of Γ (cf. [8]). Therefore by Lemma 3,
Mi (x) M 2 is an α-fold copy of M l £;® M2. This proves the lemma.

By the above lemma, we have the following :
LEMMA 6. Let Mi, M 2 be as in the above lemma. Let F be a projection in

M^ which is not annihilated by any non-zero central projection in M 2 and
moreover suppose that there exist infinitely many projections which are
orthogonal to each other and equivalent to F. Then M t ® M 2 is isomorphic
to M l £j® M2 F.

PROOF OF THEOREM 1. We shall consider the identical mapping from M*
on $1 to M t on ®λ and denote this mapping as θ- Then by a theorem due
to J. Dixmier [3, Proposition 2], θ can be expressed as product of the following
three isomorphisms θi, θz, Θ3, that is, θ = Θ3Θ2Θ1:

0i(Mi) is an α-fold copy of M τ for suitable cardinal ct,
Θ>Λ(ΘICN£I)) is the contraction of the range of some projection E in (0 t

(MO)',
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θz is a spatial isomorphism.
We can choose a such that there exist infinitely many projections in (ft(Mi)/
which are orthogonal to each other and equivalent to E.

Analogously, the identical mapping βf from M 2 on £>2 to M 2 on $>2 can
be discribed as ff = Θ'dθ2θ[ where θv θ'2 and #3 are analogous to θi, Θ>Λ and #3.

By Lemma 4 Mj ® M 2 on & ® £>2 is isomorphic to ^(MO ® &>(M3) and
by Lemma 6 this is isomorphic to ft(ft(M3)) ® ^ (#(M3)) and the later is
isomorphic to Mx ® M2, on ^j ® $2? since 05, θ'3 are spatial isomorphisms.
This proves the theorem.

REMARK 1. Recently, T. Turumaru and Z. Takeda obtained another proofs
of Theorem 1 independently of the author. These proofs will be appear in
this journal.

REMARK 2. By Theorem 1, for the study of purely algebraical properties
of direct products, we can consider it free from the underlying Hubert
spaces.

2. The direct product of Hubert algebras. In this section we shall
consider the direct product of Hubert algebras and as an application of it
we shall prove the commutation theorem for the direct product in semi-
finite case in the sense of E. L. Griffin [5].

According to H. Nakano [11 J, we shall give the following definition:
A linear manifold % in a Hubert space ξ) is called a Hubert algebra if

it satisfies the following conditions (1H5):
(1) % is dense in £>.
(2) 21 is a ring over the complex field.
(3) To each a € 21, there exists an element a* € 21 such that (ab, c) =

(b, a*), (ba, c) - (b, ca*) for all b, c € S2ϊ.
(4) To each a € 21, there exists aa £: 0 such that au ί <Ξ cca\u j for all

From the conditions (ΓK4), for each a € 21, we can define unique bounded
linear operators La and Ra on ξ) with

Lax = ax, RάX = xa for all x € 21.

(5) Lax - 0 (Rax = 0) for all « € 21 implies * = 0.
A Hubert algebra 2ί in a Hubert space ξ> is called to be maximal if

there is no Hubert algebra which contains 2Ϊ properly. It is known that any
Hubert algebra is uniquely extended to a maximal Hubert algebra (cf. [6J)
and $ is an H-system in the sense of W. Ambrose [1] and moreover its
maximal Hubert algebra is the bounded algebra of the //"-system. Let 2ί is
a Hubert algebra in £) and S be its maximal extension, then we can consider
a bounded operator La on £> for each β ζ S which is defined as in (5). The
weak closure of {La\a € 21} coincide with that of {La\a € 53} and this closure
will be called the right W*-alg3bra of the given Hubert algebra. Analogously
we can define the left W^-algebra of the given Hubert algebra 2ί as the weak
closure of {Ra\a € 21}. By L(2ΐ) and R(2I), we shall mean the left and right
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IF1-algebras of ?ί.

THEOREM 2. Let %, 9ί2 be tiυo Hϊlbsrt algebras in Hubert spaces $)1} £)2.
Then 9ί = % © % is a Hubert algebra in £ = & ® & and L(9I) = 4

J3) ® R(3ϊa;.

PROOF. At first, we shall prove that 9^ © 9I3 is a Hubert algebra in £),
that is, 9ίχ © 9ίo satisfies the conditions (1H5). It is obvious that 9ίτ © 9ί2

satisfies (1). For any φ, ψ ^ 3ίi © 9ϊa, we define

φ ψ ^ 2 ^ ^ x
 MJ» Φ* — 2 α* x *̂

where φ ^ ^ ai x bt and -ψ 2r: 2 c, x ^ . Then it is not difficult to show

that 3TX © 9la satisfies (2) and (3).
Let φ be as above and ψ1, ψ2 be arbitrary elements in 9I2 © 9ίo and ^

j

Ί , w - ((2 a< χ ^ )(

= ( 2 ̂  x **̂ > 2 Sfc χ **) = 2
•l,j l i,j,k

= 2 (MJ> ΦkXvj, tit*) = ( 2 w.> χ ^, 2 )

= (ψ, φ*ψa).

Analogously we have (^φ, ̂ 2 ) = (Ψ1!, 'Ψ'aφ*). This shows that 9l2 © 9ί2

satisfies the condition (3).

Let φ, ψ1 t>e as above and put

η = max (i Zαί |i, j| Lh jj).

Then

*, ajcι)(btdk, bjdt)

2 d 1 c S 2m2rf φ ||2.

This shows that Vϊx © 9ί2 satisfies the condition (4).
Let Iι and /3 be the unites of L(9ix) and L(9ίa) respectively. Then we can

•choose a directed set {Laa} and {^} in the unit spheres of {La\a € %}
and {Z&[^6 9ί2} such that La* and £&/3 converge to /j and /2 strongly.
Obviously ΦΛ,3 — ώ« x ^δβ converges to the identity operator on £) strongly.
Let ψ be an element in $ with Zφi/r = 0 for all φ € 9XΊ © 9ί2. Then



196 Y. MISONOU

Φ«,βΦ = 0 for all a, β.

This shows that φ = 0, since Φa%β converges to the identity on £). That is,
Sίx © 9ί2 satisfies the condition (5). Thus % © 3I3 is a Hubert algebra in £>.

Now we shall consider the second part of the theorem. It is obvious
that {Lφ\φ € 31} is contained in I*(%) © L(2l2). Hence it is sufficient to show

that {Lφ\φ € 21} is strongly dense in L ^ ) © L(2l2). Let φ-
4 =

be an arbitrary element in L(3ίχ) © L(3ί2) and put

λ = max (|| A (I, ||B,|j).

For any ψ £ <£> and θ > 0, we can choose ^ I € ©i Θ $ 2 such that

Let ^ i ~ 2 Λi x ^ a n d P u t

/A = max (ί!#/||, ! |^ i ! ) .

Then for Ai,Xι, , Xm there exists A\ in {Zα|β € %} with

— A't)Xj [ί < ε/4nm\μ for y = 1, , m,

and for 5 i ? jyl7 ,^7Λ, there exists B\ in {Zδ|^ € 2ί2} with

(([Bi - B$yj)] < S/4nm Xμ f or / = 1, . . . . , ^ .

By a theorem due to I. Kaplansky |7]> we may assume that |ί A\ f| < λ and

\ [I < λ. Let Φ ~ 2 AΊ x sί» t h e n

i

|| (φ - Ψ) (ψ - ψ ,) II s ϋ Φ - Ψ ίMs ̂  - Ψ̂ i ϋ ̂  !ί 2 ^ < x ̂  - 2-A; x # ' II
i i

^ ( 2 II -A< x Bί + 2 -A; x #; ||) £/4^λ2 ̂  2nX*ε/4nX* - 5/2.
ί i

II(Φ-Will = 11 (ΣAXBI- 2 ^ X ^ ) Σ ^ X ^ ) |

* « j

+ is(2A; x # £ - 2 Λ ' x s ; ) 2 ^ XΛII
i i j

^ 2 iί (A - A;)*, I ;i B^II + 2 '•A'* li !i (βί - Bdyj il

< 2mn\\μ.ε/4rnm\μ = 5/2.

Hence we have

I!(Φ - Ψ)Ψ !I s HίΦ - Ψ)(Ψ - Ψ i)!ί + ii(Φ - W i ! i < ^/2 + s/2 = 5.

This proves that { £ φ | φ € 3ί} is strongly dense in L(9ίi) © LfSίa), since
belongs to {Lφ\φ € 91}. That is L(9ί) = LC^) ® L(δ(2). By an analogous way,
we can prove that R(3l) = R(%) (x) R(%Λ).
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Our next step is to show the following1 > :

THEOREM 3. Let Mτ and M 2 be two semi-finite W*-algebras on Hubert
spaces ξ)τ and $)3 respectively, then we have

(*) M ; ® M ; = (Mi ® M2y.

In order to prove the above we shall show some lemmas. We shall use
the following terminology which was introduced by I. E. Segal [15]. A W*-
algebra is called standard if it is unitarily equivalent to the right (or left)
W*-algebra of some Hubert algebra.

LEMMA 7. Let Mi, M 2 be two standard W*-algebras, then the equation (*)
is valid.

PROOF. By the assumptions, Mx and M 3 can be considered as the right
TF*-algebra of Hubert algebras 3ίx and 2ί2 in their underlying Hubert spaces
respectively. By Theorem 2, %x 0 %> is the right T7*-algebra of the Hubert
algebra 3d © 9Ia. There (Mι ® M2)' is the left FP-algebra of % 0 31,. On
the other hand, M; ® M^ is the left algebra of 2ίχ 0 9ί2 since M^ and M^ are
left W*-algebras of 9ί] and 9ί2 respectively. This proves the lemma.

Let M be an arbitrary W*-algebra and N be a full operator algebra on
an a.-dimensional Hubert space. According to F. J. Murray and J. von Neumann
[10], we shall denote N ® M by M«. Then there exist a family {Pμ} in N,
of power a, where each Pμ is a minimal projection. Let h and h be units
of N and M and put

Φ μ - P x 72,

then each Φ μ is a projection in N (x) M and further they are equivalent to
each other. It is clear that the contraction of (N (x) M)' on the range of φ μ

is isomorphic to IL (x) Mj. Therefore, by an analogous method to [8, Theorem
2], we have the following lemma.

LEMMA 8. Let M be a W*-algebra, then (Mα/ is unitarily equivalent to
an a-fold copy of M'.

LEMMA 9. Let M1? M 2 be standard W*-algebras, then the equation (*) is
valid for M f , M t

PROOF. AS we noticed above, (M?)', and (Mf)' are a and /3-fold copies
of M; and M^ respectively. Hence, by Lemma 5, (M?)' ® (M?)r is an aβ-iold
copy of M; © M .̂

By the definition,

Mf ® M ^ - Nτ ® Mx ® N2 ® M 2

where N x and N 2 are factors of type IΛ and 1̂ . It is clear that N x ® Mi
® N 2 ® M 2 is unitarily equivalent to Nτ ® Mτ ® N 2 ® M2. Therefore

1) This theorem is proposed by Turumaru in a conversation.
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since JN\ ® N 2 is of type lΛβ by the above lemma. This shows that (Mf
Mf)' is an aβ-ίold copy of (Mx ® M2y. By the above lemma

(Mi ® M 2 / = M ; ® M ;

This proves the lemma.

LEMMA 10. M7 owd M 2 £>£ an a-fold copy of standard W*-algebra and a
β-one of N] and N 2 respectively. Then the equation (#) is valid for M τ and M2.

PROOF. By the assumptions M{ = N[a and "M'2 = N^. Hence

M ; ® M ; = Nf ® N'f - (N; ® N ^ = (NΊ ® N2)«£

by Lemma 7 and the proof of the preceding lemma. On the other hand, by
Lemma 5, M x ® M 2 is an aβ-folά copy of N τ ® N2, that is, (Mi (x) M2)' =
(Nx (x) N2)

/aP. This proves the lemma.

LEMMA 11. Let M be the direct product of W*-algebras M τ and M2. Let
φ2^P x Q where P and Q are projections in ML and M 2 respectively, then Φ
is a projection in M and M φ is isomorphic to M : p x) M2Q.

PROOF. It is obvious that Φ is a projection. Mφ, Mip®M2ρ are isomor-
phic to Φ M Φ, PMiP ® QM2Q respectively, hence it is sufficient to show-
that ( Φ M φ ) and PM tP(χ) QH/£ΛQ are isomorphic to each other. It is clear
that Φ(Mχ 0 M2)Φ is isomorphic to P M t P © QMΛQ and moreover this
isomorphism is spatial one. Since Φ(Mτ 0 M2)Φ and PMiP Q QM>Q are
weakly closed in ΦMΦ and P M Ί P ® QM2Q, the above isomorphism can
be extended to the isomorphism from Φ M φ to PMτP ® QM2ζ). This proves
the lemma.

REMARKS. In the above lemma, we assumed that P and Q lie in Mi and
M 2 respectively. This assumptions is not necessary. The above lemma is
true for P € M; and Q € Mi.

LEMMA 12. Suppose that (*) is valid for W*-algebras Mi and M2. Let P,
Q be projections in M7, M2 respectively and φ — P x Q, then we have

(M ιPy ® ίMaQy - (M t ® Mayφ.

PROOF. It is known that (Mτp/ = M; p and (M2ρy = M.'ρ (cf. [9, Lemma
11. 3. 2]). Hence, by the above remark, we have

(M ιPy ® (Maρy - M ; P ® M^ρ = ( M ; ® M : ) Φ - ( M T ® M 2 ) Φ .

PROOF OF THEOREM 3. As we have noticed, M τ and M 2 isomorphic to
the left W*-algebras of some Hubert algebras in Hubert spaces Sϊt and ^ 2,
that is, Mi and M y can be represented as standard W -algebras on $Ί and
S2 respectively. By an analogous way to the proof of Theorem 1, the
identical mapping θ from MΊ on $\ to M! on £>t can be described as θ = Θ3
θ£ι where θι, θ i are β3 are analogous to those in the proof of Theorem 1.
We shall write the identical mapping from M 2 on ®> to M 2 on ξ)τ as 6r = Θ3Θ2
ΘΊ where θ[, θ'2 and θ's are analogous to those of Theorem 1. Then, by Lemma



ON THE DIRECT PRODUCT OF ft^-ALGEBRAS

7, (*) is true on Sti ® $2. By Lemmas 10,11, (*) is valid for 02(0i(Mi)) and ff*
Therefore

(M, ® M2/ = M; 0 M;,

since Mi on ξ)τ and M 2 on & are unitarily equivalent to fe(ft(Mi)) and ^
(Θ[(M)) respectively.

REMARK. In Theorem 3, we assume that Mi and M 2 are semi-finite.
In the general case, Theorem 3 is still open.

3. The direct product of finite W-*algebras. In this section, we shall_
consider the direct product of finite W¥-algebras. A projection P i n a W*-
algebra is called finite if P > Q and P ^ Q imply P = Q. A W*-algebra is™
called finite if the unite is finite. Then a W*-algebra is semi-finite if any
non zero central projection contains a non zero finite projection. Let M be
a semi-finite YFK-algebra on a Hubert space £>, then there exists a Hubert
algebra 3ί in a suitable Hubert space $ΐ such that M is isomorphic to the
left W -algebra of % (cf. [12,15]). Moreover if M is finite and σ-finite, that
is, any orthogonal family of projections is at most countable, then M can
be taken as a maximal Hubert algebra in a suitable Hubert space [6].
Conversely, it is clear that such maximal Hubert algebra can be considered
as a finite W*-algebra. The next theorem is stated in [15, §5J.

THEOREM 4. Let M b M 2 be finite W*-algebras, then M X ® M 2 is a finite
W*-algebra.

PROOF. Let Ij and h be the units of Mi and M 2 respectively. There
exists a family {E<*} of mutually orthogonal central projections in Mx such,
that 2 E<* = I\ and the contraction of M] on the range of EΛ is σ-finite.
Then Mτ = XMlyΛ where Mi,as is the contraction of M x on the range of EΛ.
Analogously, we can find a family {Fβ} of mutually orthogonal central
projections in M 2 and let M2jβ be the contraction of M 2 on the range of Fβ.
Then, by Lemma 2, we have

M , ® M 2 = 2 M l j β ® M 2 , β .
,cc,β

If each M l ) ί { ®M2,β is finite, then M i @ M 2 is finite. Therefore we can
assume that Mi and M 2 are σ-finite without loss of generality.

Now, let Mi, M 2 be finite σ-finite W*-algebras. Then M1? M 2 are
isomorphic to left PF^-algebras of suitable Hubert algebra 31, 3t2 in Hubert
spaces JQU ξ)2 respectively. By Theorem 1, it is sufficient to consider M! ®
M 2 on ΐ)x ® $2. By Theorem 2,

Mi ® M 2 = L(3IX) ® L(3ί2) - L(a t © 3ί2).

It is clear that L(31L 0 3ί2) is isomorphic to the maximal extension of the
Hubert algebra 3ίi 0 %2, since the unit is contained in 3ίt 0 3Γ2. Therefore
ML ® M 2 is finite.

According to I. E. Segal [14], we shall introduce the following notion r.
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A W*-algebra. is called hyper-reducible if its commutor is commutative.
Then the following lemma is obvious.

LEMMA 13. // Mτ, M 2 are hyper-reducible W*-algebras, then M] ® M 2 is
so.

Now we shall consider the type of the direct product.

THEOREM 5. Let M be the direct product of semi-finite W*-algebras Mi
and M2. // both MΊ and M 2 are of type I, then M is of type I. // one of
Mτ, M 2 is of type II then M is of type II.

PROOF. Suppose that M x and M 2 are of type I, then they can be decom-
posed as following :

Mx = 2 M i « a n d M * = Σ Ma>jB,

where Mi ) β and M3jiβ are of type IΛ and Iβ respectively. By Lemma 2,

If every Mi,« ® M 2 J 3 is of type I, then M is so, hence we assume without
loss of generality that ML and M 2 are of type la and 1̂  respectively. Then
MJ and M2' are a and /3-fold copies of hyper-reducible algebras where a
and β are suitable cardinals (cf. [9, Theorem 2]). Therefore, by Lemma 4,
and the preceding lemma, M^ ® Mi is an aβ-ίold copy of a hyper-reducible
algebra. Hence, by Theorem 3, (Mi ® M2)' is so, that is, Mi ® M 2 is of
type I.

• Next, we shall show that M is semi-finite. As we noticed, Mi and M 2

are isomorphic to left W*-algebras of some Hubert algebras, say Six and 3ί2

respectively. Then Mi ® M 3 is isomorphic to L(2Ii) ® L(3ί2) = L(3It © 3l2).
This shows that M τ ® ML> is semi-finite.

Finally we suppose that Mi is of type II. It is known that M x and M a

can be represented as W*-algebras faithfully on some Hubert spaces such
that MJ and are finite on these spaces. It is sufficient to show that (Mi ®
M 2 / = MJ ® Mg is of type II. If Mj ® MJ is of type I, then we can choose
a central projection φ in Mi ® Mg and an integer p so large that the
contraction of Mi ® M^ is of type Ip, since M' ® M.'2 is finite. Therefore
any family of mutually orthogonal equivalent projections contains at most p
elements. On the other hand, it is clear that there exists in this contraction
a family of mutually orthogonal equivalent projections which contains more
than p elements. This is a contradiction, that is, ΊS/L[ ® M2' is of type II.

Analogously, we can prove the remainder part of the theorem.

REMARK. In the above theorem, we assume that M x and M 2 are semi-
finite. We can not indicate the status of Theorem 5 when we pass from
semi-finite case to general one.

By Theorem 4, M = M 2 ® M 2 is finite if M! and M 2 is finite. Hence
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there exist fc[-operations in M, Mx and M 2 in the sense of J. Dixmier [2]. We
shall show the following :

THEOREM 6. Let Mi, M 2 be finite W*-algebms and Φ be an element in T/Lτ

0 M2 and let Φ ~ 2 A« x B* Then Φ' — 2 A! x Bt
i ί

PROOF. It is sufficient to prove in the case Φ ̂  A x B. Let Φo ~ A* x
•B* and Z be the center of M = Mx ® M 2 and MM be the unitary group of
M. Let Kφ be the smallest uniformly closed convex set which contains {Ψ
φψ-ι\ψ ^ M W } . Then, J. Dixmier [2] proved that Kφ f] Z is not empty and
contains only the element φ*. On the other hand, for every £ > 0 there exist
unitary elements Uι,

= 1) such that

where ẑ  = max (|! A ί

Φi - 2

, £/» in M 1 ? F Ί

[|). Let

F m in M 2 and λ? > 0, ̂  > 0

2v

Then

tΦo -

A*

x B)(Ut x

x Vj) (A x 5) (£/t x F,)"1 (

- 2

S l! A^ - 2 λιUIAUT1 ,| lί B (I + ϋ || \\B* - 2

That is, Φo can be approximated by the elements in Kφ uniformly. This
proves Φo = Φ^ since Φo is in Z.

In the following, we shall study the direct product of factors.

LEMMA 14. Let Mx and M 3 are factors on Hilbert spaces JQi and ξ>2

respectively, then Mi ® M 2 is a factor.

PROOF. It is clear that M t ® M 2 is generated by Mι ® IΛ and 7X ® M 3

where 7i and 72 are units of MΊ and M2. Let B1? B2 be the full operator
algebras on |>i, & respectively and put P = Bx ® 72. Then

Mx ® 72 c P and 7T ® M 2 c: F'.

By Theorem 5, P and P' are of type I and so they are normal. Hence, by
a lemma due to F. J. Murray and J. von Neumann [9, Lemma 11.1.3], Mτ ®
M 2 is a factor.

By Theorem 6 and Lemma 14, we have the following:
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C3ROLLARY. Let MΊ and M 2 be finite factors, then M = Mt®M 2 is a
Jinite factor. Let τ,τi,τ2 be the traces of M, Mi, M 2 respectively. Then

2 TKA
4

where Φ € M τ © M 2 αrcd Φ — 2 A i x

i

In the following we shall consider only direct product of finite factors.
The really interesting is the direct product of factors of type Hi. We shall
use terminologies algebraical type, approximate finiteness and fundamental
group which are introduced by F. J. Murray and J. von NeumannflO].

THEOREM 7. Let M1? M 2 be two approximately finite factors, then Mi ®
M 2 is an approximately finite factor.

PROOF. Let T, n, τ* be traces of M = MT®M2, M,, M 2 and [[•, •]], [[•, ]]i,
f[ , ]]a be norms of the pre-hilbert spaces which are generated by M, T M l y

n;M2, τ2 respectively. Then for any φlt . . . . , φm ^ M and 8 > 0, there exist
Ψι, .. , Ψ,Λ € M t © M2 such that

[[Φ» - Ψ»]J < Y for w = 1, . . . . , m.

Let φn ^ 2 An>i x Bw,i and put
t = l

μ = m a x (i'| ΛM ) l , |j .Bw,i ) and p = m a x (p(ri)).
n

•Since Mx is approximately finite, for A?7)ί (w = 1, ,w;ί = l, (pn)) and
£/4:μp, there exists a subring N! of Mi with following properties:

(i) N x is of finite order,
(ii) there exist A'ni such that

for w=

We choose an analogous subring N 2 of M 2 and its elements

Let

P(n)

i = l

i:hen

S [[ 2 A«.« x β»,* - 2 AM x B«,«]] + [[ 2 A'n,ι x B*,* - 2 -AM X β ή , 11
ί ί < c

s 2 lAίA*,* ~ A- iΆx + 2

Accordingly

J / / = 6.

I t is obvious that N = N τ ® N 2 is of finite order and Ψ'n € N. This proves
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the theorem.

Since all approximately finite factors are isomorphic [10], we have the
following:

COROLLARY. Let Mi, M 2 be two approximately finite factors, then Mi ® M 2

and Mi, M 2 have the same algebraical type.

Finally we shall consider the fundamental groups of direct products.

THEOREM 8. Let M be the direct product of finite factors Mi, M2. Then
the fundamental group of M contains the fundamental groups of Mi, M 2 as
its subgroups.

PROOF. Let (3, (Si, (S2 be the fundamental groups of M, Nτ, M 2 respectively.
It is sufficient to prove that if θ € (Si then θ is contained in (S.

Let T, n, τa be traces of M, Mi, M 3 respectively. By the assumption,
there exists a projection P in Mi such that τι(P) = θ and M l P is isomorphic
to Mτ. Let φ ~ P x /a where /2 is the unit of M2. Then

Hence it is sufficient to show that M φ is isomorphic to M. By an analogous
way to the proof of Theorem 1, we can show that M T P ® M 2 and M τ ® M 2

have same algebraical type. By Lemma 11, M I P ® M 2 is isomorphic to MJ.
That is, M is isomorphic to MΦ. This proves the theorem.

It is known that the fundamental group of an approximately finite factor
contains all θ in 0 < θ < oo [10]. Hence we have the following:

COROLLARY. Let M x, M 2 be finite factors and suppose that one of them is
•approximately finite, then the fundamental group of Mi (x) M 2 contains all θ in
0 < θ < oo.
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