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Introduction. Let A be a C*-algebra having the identity. A mapping
θ(x) = xε will be called an expectation of A if it satisfies

(0.1) (ocx + βy)ε = ocxε + βyεf

(0.2) x*ε = ***,

(0. 3) * > 0 implies xε > 0,

(0. 4) (#£jy)ε = ΛΓ̂ yf = (ΛΓy^), ε

(0. 5) 1* = 1

and will be called abelian if it satisfies moreover

(0.6) (xy)£ = (jy#)£.

Many known operations on C*-algebras can be considered as expections:

EXAMPLE 1. If σ is a state (in the sense of I. E. Segal), i. e., a linear
functional on A which is positive and normalized, then σ can be considered
as an expectation of A which maps A into the field of scalar multiples of
the identity: For, (0. l)-(0. 3) and (0. 5) are obvious and (0. 4) follows from
σ(xσ(y)) = σ(x)σ(y). The trace of A is a scalar valued expectation which is
abelian on A.

EXAMPLE 2. J. Dixmier's centering fc[ can be generalized in a C*-algebra

as an expectation of A into the center Z, which is abelian and

(0. 7) x € Z implies x* = x.

A (bounded) trace r on a finite TF*-algebra can be considered the expectation
of A which is the combination of a state and the centering, since

(0.8) τ(x) = τ(x*)

for any x. (Cf. also [5]).

For spaces of functions, the following examples exist:

EXAMPLE 3. Let A be the space of all continuous functions defined on
S x T where S and T are compact spaces. Put

(0.9) χε(s,t)= \ x(s',t)ds'.

Then it is not hard to show that xe is an expectation of A, since

x εy/ε = ly(sf t) I x(s', t)ds'ds = / x(sf, fids' I y(s, t)ds.

EXAMPLE 4. Let A be the space of bounded random variables on a
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probability space (S, F, μ), and let

(0.10) χe = E{x\F'}

be the conditional expectation of x conditioned by a certain fixed subfield Fr

of F. As in Shuh-Teh Chen Moy [1 Introduction], £ is an expectation of A,
considering A as a ffi^-algebra on L\S, μ), and moreover £ is sequentially
order-continuous. Shuh-Teh Chen Moy proved conversely, that a sequentially
order-continuous expectation of A is the conditional expectation under a
certain additional condition [1 Thm. 2. 2]. Furthermore, she proved, relaxing
(0.5), a sequentially order-continuous quasi-expectation £ allows the exp-
ression xε = E{xg | F'} where g > 0 is an integrable function on S [1 Thm.
1.1].

Thus, it may be expected that the theory of expectation conform several
notions of operator algebras. Moreover, recently J. Dixmier [2; Thm. 8]
proved the following important theorem: In a finite W*-algebra A having a
faithful normal trace T, for a given W*-subalgebra B there exists an expe-
ctation £ of A onto B such that τ(χεy) = τ{xy) for all y Q B. Inspired by
Shuh-Teh Chen Moy's results, H. Umegaki [7] found that Dixmier's Theorem
is a non-commutative extension of conditional expectations, and he developed
his non-commutative probability theory on the basis of this fact. Therefore,
the importance of the study of expectations is not only the conformization
but also to cut open a wide field for the theory of operator algebras.

In the present note, analogously to Shuh-Teh Chen Moy and contrary to
J. Dixmier and H. Umegaki, we shall consider an expectation as a given
operation of an operator algebra (whence we do not concern with the ex-
istence problem of such operation). In §§1-2, some fundamental properties
of an expectation of a C*-algebra are discussed, among them the notion of
the associated subalgebra of an expectation, originally due to Shuh-Teh Chen
Moy, is central. In § 3, the effect of the weak closedness of the algebra is
observed and as its consequence a generalization of theorems of Chen Moy
and Umegaki is obtained. In § 4, dropping (0. 5), quasi-expectations will be
observed, and a non-commutative version of a theorem of Chen Moy is
proved.

1. Associate subalgebra. Let £ be an expectation of a C*-algebra A.
For £, we shall firstly introduce the right {left) associate modul by

(1.1) Όr = {a; (ax)£ = aχ£ for any x e A},

(1.2) Dι = {a (xa)£ = x*a for and x € A}.

It is not hard to see that Dr and Dt are vector spaces of A, and algebraical
(non-self-adjoint) subalgebras of A since ((ab)x)£ = a(bx)£ = (ab)χ£ for any pair
a and b of Dr. By (0.2), Dr and Dt are mutually adjointed, since (ax)ε* =
(x*a*)ε = x*£a* = (aχε)*if a*^Dι shows that a € Dr implies a*^ Dh and converse-
ly. Moreover, 1 belongs to both of Dr and DL because (lx)ε = (1«#)£ = l^xε = lxe

and dually. Hence D = Dr Π A is a self-adjoint subalgebra of A, which
will be called the associate subalgebra of the given expectation.
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PROPOSITION 1. The associate subalgebra of an expectation of a C*-algebra
is a C*-subalgebra containing the identity, which is the totality of fix points
under the expectation.

PROOF. By the uniform continuity of the expectation, it suffices to show
that D = A£ where A8 means the range of the expectation : Aε = {xε x € A},
since xεε = l£χε = xε implies the invariance of elements of D under the ex-
pectation by D = A8.

To see this, if a € D then cfi = (aΐfi = cfe = tf shows D £ Af and if αε 6
Aε then aβxβ - (<3£#)£ shows Aβ Q Zλ Therefore the Proposition is proved.

The following corollary is immediate by (0. 4) and (0. 6).

COROLLARY 1.1. If an expectation is abelian, then the associate subalgebra
is commutative.

Let A0 be the set of all elements x such that χ£ = 0. A0 will be called
dispersive subspace. It is obvious that A0 is a closed linear subspace of A
and A is the direct sum (as Banach space) of A and A0, therefore the ex-
pectation is determined on A and A0. This observation implies obviously the
following

COROLLARY 1. 2. // a Cλ -subalgebra B of A becomes associate algebra of
an expectation then B has the complementary closed subspace in A.

The converse implication follows if there exists a projection of A (as
a Banach space) onto B which commutes with multiplication by elements of B.

COROLLARY 1.3. The commutor D', the set of all elements which commute
with D in elementwise, is invariant under the expectation, i. e.,

(1, 3) a e U implies as € D f] &.

PROOF. If x e D and a€ D7, then xas = (xdp = (axε) = aβx implies aβ € E/}

whence Proposition 1 implies the corollary.
By Corollary 1. 3, it is obvious that the expectations of central elements

is in the center of the associated algebra whereas the converse is not true
in general.

2. The conjugate expectation. Since an expectation of a C*-algebra A
is a linear transformation of the Banach space A into itself, there exists
the conjugate of the expectation which maps A*, the conjugate space of A,
into itself. The conjugate transformation, which is defined

(2.1) ps(χ) - p(χs)

will be called the conjugate expectation of A. It is not hard to see that the
conjugate expectation is positive and idempotent in the sense that

(2.2) pε(x)>0 if ΛΓ>0,

(2. 3) pεε = pε.

Since pε(l) = p{\) by the definition, the property that p is a state is preserved



EXPECTATIONS IN AN OPERATOR ALGEBRA 185

by the conjugate expectation, whereas the trace property is not preserved.
Since the conjugate expectation is linear, positive and idempotent, naturally

A* is decomposed into the direct sum of A*8 and A*0 where

(2.4) A*£ = ipε; pe A*},

(2. 5) A*0 - {p pε - 0}.

Clearly A*ε is the set of all invariant functionals defined on A under the
conjugate expectation, whence the existerxe of such functionals is obvious.
Moreover, we shall show that A* contains at least one state:

PROPOSITION 2. For any expectation of a C*-algebra, there exists at least

one state which is invariant under the conjugate expectation, i. e.,

(2. 6) σ(χε) = σ(x)

for all x of the algebra.

PROOF. Let cr0 be a state on D. Clearly by the representation theory for
C*-algebras σ0 exists. By a theorem of extensions of states due to I. E. Segal
<ro has an extension σ, which is a state of A, whence σ ε is a state of A
which.is invariant under the conjugate expectation by (2.3). This proves the
Proposition.

As a consequence of Proposition 2 and Corollary 1.1, we have easily

COROLLARY 2.1. For an abelian expectation of a C*-algebra, there exists a
trace which is invariant under the conjugate expectation.

One of the central problem of the theory of expectations, is to find the
conditions for the invariance of the given state under the conjugate ex-
pectation. As an answer for this problem, we shall show the following
corollary which is a O-algebra extension of theorem of Shuh-Teh Chen Moy
[1; Thm.2..2j and H. Umegaki [7].

COROLLARY 2.2. / / σ is a state and

(2.7) σ(χε) ^ σ(x)

for any x > 0, then the state σ is invariant.

PROOF. Since σ and σ-ε are states on the C*-algebra A, the hypothesis
<rε :< σ can not be true unless σε = σ. This proves the Corollary.

REMARK. For an abelian expectation, a Bochner type integral represe-
ntation of the value of expectation is possible. Let X be the spectrum of
the associate algebra D, and let dτ be the induced measure on X by a trace
T on A, where r is invariant. Then

(2.8) τ(s)= ίx(x)dτ(X).

This generalizes an integral representation of trace by the centering given

in [5].
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3. Application to JF*-algebras. In this section we shall assume that A
is a TF*-algebra acting on a Hubert space H. An expectation of A will be
called normal provided that

(3.1) xΛ φ x implies x £ φ χεt

where Xa, ^ x means that (xa) is a directed set of non-decreasing elements of
A having x as supremum. The normality of expectations is essential by the
following

PROPOSITION 3. The associate algebra of a normal expectation of W*-
algebra is a W*-subalgebra.

PROOF. By a theorem of J. Dixmier [2 Cor. 1] the normality implies the
σ-weak continuity of the expectation, where the cr-weak topology of A is
defined by the semi-norms | 2 < ξtX, m > | for 2 !] ξι ||2 < oo and 21! Vι;2 < °°
Hence its β.κ points forms a σ -weakly closed set which is nothing but the
associate algebra by Proposition 1, and so it is a W*-subalgebra.

COROLLARY 3.1. The conjugate of a normal expectation of a W*-algebra
preserves the σ-weak continuity of linear functionals, whence σe is a normal
state if σ is a normal state.

PROOF. By Proposition 3, the normality of the expectation preserves the
normality of a state because xΛ φ x implies #ε \- xε and the latter implies
σ(xξ) ̂ σ(εx). Since any σ-weakly continuous linear functional is the linear
combination of normal states and conversely by a theorem of J. Dixmier [2
Thm. 3], the above argument implies our Corollary.

After J. Dixmier, let A* be the set of all σ-weakly continuous linear
functionals of a FT*-algebra A. By a theorem due to him, A is the conjugate
space of A* as a Banach space. Proposition 3 shows that the conjugate
expectation maps A* into itself. This fact shows the following .

COROLLARY 3.2. An normal expectation of a W*-algebra is the conjugate
transformation of the restriction of the conjugate expectation on the space of
all σ-weak continuous linear functionals.

Basing on Corollary 3.2, we can decompose the space A* into the fix
point subspace and the "dispersive" subspace, and analogously to §2 the
existence of normal states under the expectation. We do not enter this point.

COROLLARY 3.3. // a W*-algebra A acting on a Hilbert space H has a
separating vector, then for any φ in H there exists a vector ψ such that

(3.2) < φxs, φ > = < ψx, ψ>.

PROOF. The hypothesis implies by virtue of J. Dixmier's Theorem [3
Prop. 6] that

(3. 3) σ(x) = < φxε, φ >

is expressible in (3. 2) because σ is normal by Corollary 3.1.

REMARK. An appropriate application of the Radon-Nikodym Theorem of
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Dye [4 Thm. 4] in Corollary 3. 3 implies Umegaki's theorem [7 Thm 3]. For an
example, if A is a finite I^*-algebra with a faithful (bounded) normal trace
T, and if A is standard in the sense of I. E. Segal [6] on a Hubert space H,
then for any expectation of A there exists a non-negative "integrable"
operator h with the dense domain such that
(3. 4) τ(χε) = τ(xh)

for all x € A. The h is the Radon-Nikodym derivative of τ£ with respect to
T. The space and algebra restrictions are used to enjure the Radon-Nikodym
Theorem.

Corollary 2. 2 and Proposition 3 implies at once the following theorem,
which is a slight generalization of the corresponding theorems of Shuh-Teh
Chen Moy [1 Thm. 2. 2] and H. Umegaki [7j.

THEOREM. If an normal expectation 8 of a W*-algebra, and if σ is a
normal state with

(3.4) σ(χ£) < σ(x) for x > 0,
then σ is invariant.

For the deduction to Theorems of Chen-Moy and Umegaki, the following
equality will be used:

(3.5) σiex) = σz{ex) = σ((ex)t) = σ(eχε) for e €D = Aε

if σ is invariant.

4. Quasi-expeetation. To cover Shuh-Teh Chen Moy's theorem [1 Thm
1.1], our hypothesis on expectations is too restrictive. For this purpose we
need to relax as follows : A mapping x->χε on a C*-algebra A will be called
a quasi-expectation if it satisfies (0. l)-(0.4). In this section we shall study the
properties of quasi-expectations. Although the notion of quasi-expectation
can be introducing the algebra without the identity, we shall assume the
existence of the identity in the algebra for the conveniences.

In the case of a quasi-expectation, the associate subalgebra D can be
defined as in §1. As in §1 (§3), the associated subalgebra of a (normal)
quasi-expectation of a O-(W*~) algebra is a C M ^ ) subalgebra, by a
suitable change of the proof of Proposition 1(3). It is not difficult to see
that A8 £ D.

LEMMA 1. For a quasi-expectation of a C*-algebra A, the following
statements are equivalent:

(4.1) D - A,

(4. 2) yxε = (yχ)ε = yεXj

(4. 3) there exists a central element c such that χ£ = xc = ex.

PROOF. Clearly (4.1) implies (4. 2) by the definition (2. l)-(2.2). If (4. 2) is
true, then the quasi-expectation becomes an A-endomorphism of the A-modul
A, whence l£ = c is required in (4. 3). It is to be noticed that lε belongs to
the center of the associate algebra, which follows from a similar argument
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to Corollary 1.3. Finally, if (4.3) is true, then yxβ = y{xc) = (yx)c = (yx)e
implies (4.1). This proves the Lemma.

LEMMA 2. // a quasi-expectation is idBrnpotent, then 1« is a central
projection.

PROOF. It remains only to show the idempotency of Is since (0.2) implies
that lε is hsrmitean 1« = l«e = M^ = 1«2 implies the desired conclusion.

The existence of a nDn-idemp3tent quasi-expectation is obviously follows
from Lemma 1, if c1 Φ c. Also an example of Aε Φ D for quasi-expectations
can be given if c is not regular in Lemma 1. It is not hard to see that A£

= D if and only if 1 e Aε.

The following proposition can be seen as a generalization of Chen Moy's
Theorem [1, Thm. 1.1] :

PROPOSITION 4. // A is a Wγ-algεbra acting on a Hubert space having
separating vector and if 6 is normal quaήexpzctation on A, then there exists
a vector ψ such that

(4. 4) <Φ&, Φ > = < Ψ%, Ψ >
where φ is an arbitrary given vector in H.

PROOF. Pat σ{x) = < φxs, φ >. Since the quasi-expectation is positive
and linear, it is easily seen that σ is a positive linear functional which is
normal by the normality of the quasi-expectation. Therefore again by J.
Dixmier's theorem [3 Prop. 6], there exists a vector ψ with σ(x) = < ψx, ψ>.
This proves the Proposition.
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