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1. Introduction. On the uniform convergence of some trigonometrical
series, G.Sunouchi [6] proved the following theorem.

THEOREM A. Let 0< a < 1. If
11 > Aa,| = Ox~),
where Aa, = a, — Qv+, and

(1.2) > va, = o(n%),

then the series

(1.3) > a,sinvx
1
converges uniformly in 0 < x < 7.
Concerning this theorem, we shall prove the following

THEOREM 1. Let 0 < @ < 1. If (1.1) holds and
1.4) th = o(nf*), (B> 0),
where t is (C, B)-sum of the sequence {va,}, then the sine series (1.3) converges
uniformly in 0 < x < .

Recently M.Satd [5] considered the cosine analogue of Theorem A.
Concerning the cosine series we shall prove the following

THEOREM 2. Under the assumptions of Theorem 1, the series

1.5) > a,cos vx
1

converges uniformly in 0 < x < .

In this Theorem, if we put @=1, we get Theorem of Saté [5].
Now, the following theorems are known.

THEOREM B. (I.Oyama [4]) Zet 0 < a < 1, and 3 a, be convergent.
Then, if (1.1) holds and
7n= 2, a, = o(n*")
n

the series (1.3) and (1.5) converge uniformly in 0 < x < .

THEOREM C. (S.Izumi and N. Matsuyama [3], I. Oyama[4])
Let 0 < a < 1 and 3, a, be convergent. Then, if (1.1) holds and
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n
27, = o(nY),
]

where v, = 2 a,, then the series (1. 3) and (1. 5) converge uniformly in0) < x < .
n
Concerning these Theorems, we have

THEOREM 3. Let 0 < @ < 1 and Sa, be convergent. Then, if (1.1) holds and
(1.6) Th1 = o(nf*-1), .
where 8 is (C, B)-sum of the sequence {r,} and 3 is a positive number, then
the series (1.3) and (1.5) converge uniformly in 0 < x =< =.

In this Theorem, if we put B8 =1, then we get Theorem B, and if we
put B = 2, then we get Theorem C. This Theorem was suggested by Prof.
G. Sunouchi.

Furthermore we have following

THEOREM 4. Let 0 < « < 1. If (1.1) holds and
1.7 sh = o(nf*-1),
where st is (C, B)-sum of the sequence {a,} and (3 is a positive number, then
the series (1.3) and (1.5) converge uniformly in 0 < x < =.

In this paper, the main theorems are Theorems 1 and 2. These Theorems
are proved in §2 and §3, respectively, Theorems 3 and 4 are corollaries of
Theorems 1 and 2. The proof of these are in §4.

I. Oyama [4] proved that, under the assumption (1.1), (1.4) and (1.6)
are equivalent for @ = 1. Also, we can easily see that (1.7) implies (1.6)
for @ = 1. But these facts are not valid for general @ > 0. Finally, in §5,
we apply these Theorems to summability methods of Riemann and Zygmund.

2. Proof of Theorem 1. We can easily see that the series (1. 3) converges
uniformly in 0 < € £ x < = by (1. 1) and Abel’slemma, ® where & is a positive
number. Therefore, for the proof it is sufficient to show the uniform
convergence of (1.3) at x = 0.

Let us put

n oo

Za,sinvx= Za,sinvx-i— 2 a, sinvx
1

v=1 v=M+1
= Ux) + V(x),
say, where M will be determined later. Using Abel’s transformation and
(1.1), we get

@1

il

> a,sinpx
v=M+1

V(%)

= 2 Aa,,-f)v(x) +T)M(x)au+1,

v=M+1

where D,(x) is conjugate Dirichlet kernel.

*) We remark that (1.1) and (1.4) implies a,=0(1).
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We can easily see that D,(x) = O(*~!) uniformly. Further, since @, = o(1),
we have

2.2) an= > Aa, =0 (2 [Aa,,[) = O(n-%)

v=n

by (1.1). Thus. from (1.1) and (2.2), we get

V(x) = 0( 5} lAaqu“1> + O(M-*x~1)

v=M+1
= O(M-%x~1). .
Putting [B] = vy, by repeated use of Abel’s transformation «-times, we
have

(2.3)

M-y

Ux) = 2 tLAN%) + th_yyy %L (%) + ...
v=1
2.4) e B AN (1) F 2 AY()
y
= Wi(x)+ 2 U(x),
v=1
say, where
AY%) = sinnx/n, AYx) = AL~ x) — AL7i(x)
and
Uv(x) = tfll—v+1 A'.;l——lv-l-l(x)'
Since

(2.52)  AF(x) = (—T1)r2e f (Sin % *cos (n + kit at,
0

(2.5b)  A¥*(x) = (— 1Y”“22"+1f (sin é—)%“ sin (n + &+ %) t dt
0

for 2=10,1,2,...., we have
2.6) Al(x) = O(n~1x%)
by the second mean value theorem. From (1.4) and ) = na, = O(n!~%)
(by (2.2)), using Dixson-Ferrar’s convexity theorem [1], we have
2.7 = O{(nl"“)l‘T: (n5%) F,L} = O(nl0-)B-N+apn/8)
rv=123...., 7).
Hence, by (2.6), (2.7)

Uv(x) = O(M((l-w)(B-vaBV)/BZv—1/1‘4’)
= O(xv—1M(aﬁy+uv—wB-v)/p)‘

By the well-known formula

2.9) = (- 1y (ff S0t =0,

n=0 ’

(2.8)
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where <Zz) = mm—1). - ;(m —7+ 1D and (8) =1, we have

M-y
Wx) = > A%

v=1
M-y v

> {nZEO(—Dv-"(f:Z) 2 A1)
M-y M-y

=3 23~ (827) mw.
n=0 v=n

Here, we consider the two cases, the first is, v is even and the second, is
odd. For the first, from (2.5a), we have

W(x) = E:yt"%( — 1y B A f (=D~ FAe 97<sm—g—) COS(v+ z)t dt
2.10) = ,,20 t3( — 1)’7_7+1 f 2 (—1yp— (V _ n)cos (v + %) t(sin%)ydt
M-y M-y-n
= E:)( NER tef 1) B 7>cos(v +n+ —) sin—- )dt
Since

2(—1)"(’8 'y>cos<v+n+ )t
= R{g(—- 1)"('3;7>exp(z‘ux)expz'(n+ %)t}
=2ﬁ—7<sin-?2—)5‘-7cos{ g +n)t+ B;'y 7:},

we write W(x) in the form

W(x) = "2( —1)%27tg’[fz(sin%>ﬁ cos{<[2i + n)t + ‘iz‘—'ln}dt
_f 2 (—1)"('3 7>cos<y+n+ g) (sm z)ya't]

v=M-y-n+l

= W](x) Wz(x)y

say. By the second mean value theorem

fm (Sin%)g cos{<~'(;L + n)t — 182;77;}(11 = O(xPn-1),
0

and then
M-y

2.12) Wi(x) = 0(2 n"‘”xf‘/n)

n=1

= o(MP*xP).

(2.11)
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Now we have

M-y oo

W) = ( ST s

n=0 v=M—y+n+1

i
S

n=(

p=B=Y* VY (y + n))

Il

(2.13)

M-yl
( XY MB-1 2 n-—ﬂ+v)
= o(x VMBN—B+‘/)
Thus, from (2.3), (2.8), (2.12) and (2.13)

ll

> a,sinv x = O1/xM®) + o(x* MP*)
(2.14) v=t y
+ o(xYMPBE-8+Y) 2 o(xv—1 M(@v+av-ap-v)p)

v=1
We note that (2.14) holds also when the summation is extended on
1=<v < N, N being a function of x such that N> < as x> 0.
We can now prove the uniform convergence of (1.3) at x= 0. For this
purpose, it is sufficient to prove the convergence of
N

> a,sinvxy
y=1

as N> « for any sequence {x»} tending to zero. Now we have, by (2.14)
and its remark,
¥

S a,siny 2y = O/ xud¥) + (i, MP) + o(xyMPa-5+7)

v=1

v
+ 2 o(x‘l'\-‘l M (@Bv+av-aBy-n)ig)

ve=l
When we put M = [(Exzv)'gl J, where € is an arbitrary positive number,

we have

O/ xxM®) = OE) S &, o(FEMP) = ofL),
oy MP=-8+7) = o(x1=5+ &% ) = o{ap~V -1) = o(D),

and
o(xx“lM(WﬂV"'m"“B"V)/ﬁ = 0(xl;\;-1+(dﬁv+dv—wﬂ—v)/“ﬂ) = O(x}’él"“’ = 0(1)
for v=1,2,...., 7.
Therefore, we get
N

> a,sinvay = o(l).

v=1
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For the second case, that is, v is odd, we can prove similarly so that we
omitt its proof. Thus, the Theorem is proved, ®

3. Proof of Theorem 2. Firstly we prove the following lemma.

This lemma was proved by M. Saté{5] for B = 1.

LEMMA. Under the assumptions of Theorem 1, the series 3, a, is convergent.
Proor. We shall consider the case that 0 < @< 1. Let s, be the zn-th
partial sum of 3 @, Then, by the well-known formula (2.9), we have

p — Sg = 2 ay,

ve=q+l
»
1

= Xvay,

v= q+1

2 2(_1)vn< IS >

v= q+1

(Z-2) 22

n=0
= P—-Q,

3.1)

I

1l

say. Then
P= ﬁ—}ﬁ(—w-“(v‘f,,) 3
->axc-v(,2,),
-Zez-v{)ds

v=()

Since ,
(—=1y (B = | a1 —xpdx
@)=/ ,
(3.2) =TI+ 1D/T(n+B+1)
= O(n-8-1), (See Titchmarsh [9, p.56])

we write P and @ in the form

P= S BTG+ DT+ B+D— 3 8 ) (=154

n=0 n=0 v=p-n+l
= Pl - .Pz,
say, and
Q= 2 #BTMD(B + 1)/T(n + B+ 1) — Z 28 Z (- 1)"(3 ) i -
n=0 n=0 v=g-n+l :
= Ql QZ: B

*) The method of the proof was used in Hirokawa and Sunouchi [7].
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say. Then, from (1.4) and ‘(3.2)

P—@Q= X #I'mlB+1)/In+RB+1)

n=q+1

= o( 21’: nﬁ"‘/n-““)

n=q+1

= o(1).
On the other hand

r=3n > )2

n=0 v=p-n+l v+n

/2 "2 )tﬁ é (_l)v(e) 1

= +
<n§=(:) N=p|+1 yv=p-n+l v + n
= P3 =+ Pg,

say. Then

»/2

P, = o( S S U+ n))

n=0 v=p-n+1l
/2

:0(2|t§|/(p+ 1xp—n+1)ﬂ)

n=0

= o ke S 1021

= o(pﬁu-o-l/pp:l)
= o(phe~F)
= o(1)

and

P,:o( ﬁ nBw i 1/vﬂ'*1(v+n))

n=p/2+1 v=p-n+l

:o(pﬁc—l 2’ 1/(p —n+ 1)5)

n=p/2+1

= 0(1)""“'1 % l/nﬁ)

n=1
= o( pBa-B)
= o(1).
Similar method shows that @, = o(1). Thus we get
Sp— 8= (P + P;) — (@1 + @)
= (P “Q1)+(Pz—‘02)
= o(1).
Therefore Ja, converges for 0 < B < 1. %)
Next, we shall consider the case that 3 = 1. Putting [8] = vy, by repeated

*) Tne method of the proof was suggested by Prof.G. Sunouchi.
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use of Abel’s transformations v-times, we have

4
sl’—sq—l:Eav
v=q
> 1
— va,e—
2vae,
v=q

-y ¥ Y
—_ YAY v v-1 — v v=1
- 2 t"Afl + E tﬂ—v—lAll—v—l 2 tll—v—2A£1—v—1
v=1 v=1

v=q

Y Y
-k~ 3R+ 2K,
v=1

v=1

say, where Al = 1/n, and A} = A% — A¥-L
Since AY = O(1/n*+!), from (2.7)

=Y
R, = 0(2 Pli—a)B-y)+aBv} By —y-1 )
v=q

= o(gl-®B-N+apY}E-a)
= o(q(l—'m)(ﬂ—v—sw/ﬂ)

= o(1),
and
R, = o(g-v+1-a)B-»)/B)
= o(q(w—l)(ﬁv—ﬂ-Fv)/S)
= o(1)
Y Y
for v=1,2,...., v. Hence > R, = o(1). Similarly > R, = o(1).

v=1 v=1

Therefore, we have

Sp — Sq—1 = 0(1).
Thus, the proof of Lemma is complete.
ProOF OoF THEOREM. The method is similar as in former section.

We shall prove that the uniform convergence of (1.5) at x=0. Let us
write

o M o
Dacosvx= (2+ > )a,,coswc
v=1 v=1

v=M+1"
= Ux) + V(x),
say, where M will be determined later. Then we have
3.3) V(%) = O1/xM*)
by the analogous method to the one which we obtain (2.3). Asin §2, putting
[B] = v, by repeated use of Abel’s transformation r-times, we get

P4
Ux) = > acosvx
v=1
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M

M z
—«Zva.,f sinvxdx+ > a,
v=1 0

v=1

i

M-y Y M
= =3 80—t LA W+ Sa
v=1 v=1 v=1

Y M
= —WE— 2 th LA B+ D a,
' v=1

y=l
i

say, where AJx) = f sin nx dx, and A%(x) = AE-Y(x) — AELi(x).

0
Since

i 2k
ate =2« [ ((sin )" sinon+ Brar,
0

z 2k+
A.]_,zw(x):zzwf (sin ‘2) ‘cos(n+ k+ %)tdt
0

for £=0,1,2,...., we can proceed the proof asin §2. Since 3 a, convergent
by Lemma, we have

> a,cosvx — > a, = O(1/ xM®) + o(xBMP*) + o(x?MPa-F+)
v=1 v=1

v
+ 2 € M@Bv-av-ag-v) ),

v=1

Hence we can prove Theorem 2 as in §2.

4. Proof of Theorems 3-4. For our purpose, it is sufficient to prove
that each of the conditions (1.6) and (1.7) implies the condition (1.4). First,
we shall prove the former.

By definition of 7,,

n n
Eva., = 2”(7'.;— 7v+1)
v=1

v=1
n
= 2 7y — NV p+1,

v=1

that is,
f=h—nrh.
Further, for a positive integer B, we have, using Abel’s lemma,
= Bl — nafil

But, an easy calculation shows that this expression holds for any positive
number 8. Then, using (1.6),

n
$8=R> 81— nrbl

n=1
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=0 (én"“'l) + o(nf*)

= o(nf%).
Thus, it was prove that the condition (1. 6) implies the condition (1.4). Next
we consider the latter case. we have Using Abel’s lemma and putting

n
Sp = za,,( = sb),
1

n n=1
Sva,= — 25+ nsa,
1 1

we have

that is,
n-1
t= — > s+ ns.
1

Further we have
n-1

= —B > B+ nsb.
1

‘Therefore, from (1.7), we have

#=0 (zvﬂa—l) + o(nPe)
1

= 0(nk®),
“Thus, using Theorems 1-2, Theorems 3-4 follow.
Concluding this section, we note that (1.4) does not imply (1.7) in
general. For an example, we put @ = 1. Then, since na, = #} — 2}

n=1r °
n

n
si= >a = 2 —#_)v
1

1
n-1

= 2 t/Mw+ 1)+ 8/n
1
Further, putting ¢!/n* = 7,,

n-1
v* n
1 —c —
slb'—'gv(”_*_l)nv’" n .
Hence

n-1

s} 1 v

et T gl Ev(wl)
= ch,v"]v,

7, + 7y

v=1
say, where
Cn,p = V[ (v + 1)n®"! w=n—-1),
=1 v = n),

=0 (v > n).
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Since a& —1< 0,

lim cn,, = oo,
N-yoo

for an arbitrarily fixed ». Thus | ca,.|| is not Toeplitz Matrix. Therefore,
(1.4) does not implies (1.7).

5. The series 3 a, is said (R,)-summable to zero when

S .

2: sSinvXx,
v

v=0

v

a,
where s, = 2 -, converges for 0 < x < % and tends to zero as x-» 0.
1

The series 3a, is said (R, 1)-summable (or Lebesgue summable) to zero
when

2 a, (sin vx)/v x

y=1
converges for 0 < x< x;, and tends to zero as x> 0. Further, the series
3a, is said (K, 1)-summable to zero when

oo 7T
Sa |
v=1 z

converges for 0 < x < %, and tends to zero as x-> 0.

sinvi
1. dt
tg -z—t

THEOREM 5. Let 0 < a L 1. Suppose that (1.1) and one of the conditions
(1.4), (1.6) and (1.7) are satisfied. Then, the series 3 a, is (R)~, (R,1)-,
and (K, 1)-summable to zero, respectively.

Proor. Under the assumptions of Theorem, the series (1.3) and (1.5) are
uniformly convergent in 0 < x < ». Hence each series is a Fourier series of
some continuous function. For (R,)-method, O.Sz4isz [8] proved that Fourier
series is summable (R;) at continuity point of function.

This fact holds for (R, 1)-method. Thus, Sa, is summable (R;)and (R, 1).
On the other hand, S.Izumi [2] proved that (R,)-method and (K, 1)-method
are equivalent for Fourier series. Thus we have our Theorem for (X,1)-
method.
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