ON THE RIEMANN SUMMABILITY

Kôsi Kanno

(Received August 8, 1954)
The series $\sum_{\nu=1}^{\infty} a_{\nu}$ is said (R, p)-summable to s if the series
(1)

$$
\sum_{\nu=1}^{\infty} a_{\nu}\left(\frac{\sin \nu t}{\nu t}\right)^{\nu}
$$

converges in some interval $0<t<t_{0}$, and if

$$
\begin{equation*}
\lim _{t \rightarrow 0} \sum_{\nu=1}^{\infty} a_{\nu}\left(\frac{\sin \nu t}{\nu t}\right)^{p}=s \tag{2}
\end{equation*}
$$

where p is a positive integer.
This method of summability has been considered by S. Verblunsky [3], who has shown that, if a series is summable $(C, p-\delta)$ to s, where $\delta>0$, then it is summable $(R, p+1)$ to s.

For the case $p=1$, many results are known. In particular, G. Sunouchi [1] proved the following theorem;

Theorem 1. Suppose that

$$
\begin{aligned}
\sum_{\nu=1}^{n} s_{\nu} & =o\left(n^{\alpha}\right), \\
\sum_{\nu=n}^{\infty} \frac{\left|a_{\nu}\right|}{\nu} & =O\left(n^{-\alpha}\right),
\end{aligned}
$$

where $0<\alpha<1$. Then the series $\sum_{\nu=1}^{\infty} a_{\nu}$ is $(R, 1)$-summable to zero.
As the generalization of the above theorem, H. Hirokawa and G. Sunouchi [2] proved the following theorem;

Theorem 2. Let s_{n}^{β} be the (C, β)-sum of $\sum_{n=1}^{\infty} a_{n}$.
Then, if

$$
s_{n}^{\beta}=o\left(n^{\beta \alpha}\right)
$$

and

$$
\sum_{\nu=n}^{\infty} \frac{\left|a_{\nu}\right|}{\nu}=O\left(n^{-\alpha}\right)
$$

where $0<\alpha<1,0 \leqq \beta$, the series $\sum_{n=1}^{\infty} a_{n}$ is summable $(R, 1)$ to zero.
The object of this paper is to generalize the above theorems.

Theorem. Let s_{n}^{β} be the (C, β)-sum of $\sum_{n=1}^{\infty} a_{n}$.
If

$$
\begin{equation*}
s_{n}^{\beta}=o\left(n^{\gamma}\right) \tag{3}
\end{equation*}
$$

$$
(n \rightarrow \infty)
$$

for $\beta>\gamma>0, \gamma+1>p$, where p is a positive integer, and

$$
\begin{equation*}
\sum_{\nu=n}^{\infty} \frac{\left|a_{\nu}\right|}{\nu}=O\left(n^{-(1-\delta)}\right), \quad(n \rightarrow \infty) \tag{4}
\end{equation*}
$$

for $\delta=p(\beta-\gamma) /(\beta+1-p), 0<\delta<1$, then the series $\sum_{n=1}^{\infty} a_{n}$ is (R, p)-summable to zero.

If we put $p=1, \beta=1$, we have Theorem 1 and if we put $p=1$, then $\delta=\beta-\gamma / \beta$, that is $\gamma=\beta(1-\delta)$. This is Theorem 2.

Proof. If we put

$$
\varphi(t)=\left(\frac{\sin t}{t}\right)^{p}
$$

we have
(5)

$$
\phi^{(k)}(t)=O(1)
$$

$$
(t \rightarrow 0)
$$

and
(6)

$$
\phi^{(k)}(t)=o\left(t^{-p}\right)^{*}
$$

$$
(t \rightarrow \infty)
$$

for $k=0,1,2, \ldots$.
Firstly, we shall that the series (1) is convergent for all t.
Now

$$
\sum_{\nu=0}^{\infty} a_{\nu} \varphi(\nu t)=\left(\sum_{\nu=0}^{n}+\sum_{\nu=n+1}^{\infty}\right) a_{\nu} \varphi(\nu t)=\varphi_{1}+\varphi_{\nu \nu}, \quad\left(a_{0}=0\right)
$$

say, where n is to be chosen presently.
By (6) and (4)

$$
\begin{equation*}
\varphi_{2}=O\left(\sum_{\nu=n+1}^{\infty} \frac{\left|a_{\nu}\right|}{\nu} \nu^{-p+1} t^{-p}\right)=O\left(t^{-p} n^{-p+\delta}\right) . \tag{7}
\end{equation*}
$$

This shows that for fixed $t>0$, the series $\sum_{\nu=0}^{\infty} a_{\nu} \varphi(\nu t)$ converges.
Given a positive integer ε, put

$$
\begin{equation*}
n=\left[(\varepsilon t)^{-\rho}\right], \tag{8}
\end{equation*}
$$

where $\rho=\frac{p}{p-\delta}=\frac{\beta+1-p}{\gamma+1-p}$. Then from (7) it follows that

$$
\begin{equation*}
\phi_{2}=O\left\{t^{-p}(\varepsilon t)^{\rho(p-\delta)}\right\}=O\left(\varepsilon^{p}\right) . \tag{9}
\end{equation*}
$$

Next, if we put $r_{n}=\sum_{\nu=n}^{\infty} \frac{\left|a_{\nu}\right|}{\nu}$, then $\left|a_{n}\right|=n\left(r_{n}-r_{n+1}\right)$.

* Cf. M. Obreṣchkoff [4], Hilfssatz 3.

Since, by (4),

$$
\sum_{\nu=1}^{n}\left|a_{\nu}\right|=\sum_{\nu=1}^{n} r_{\nu}-n r_{n+1}=O\left(\sum_{\nu=1}^{n} \nu^{-(1-\delta)}\right)+O\left(n^{\delta}\right)=O\left(n^{\delta}\right)
$$

we have

$$
\begin{equation*}
s_{n}=O\left(n^{\delta}\right) \tag{10}
\end{equation*}
$$

Now there is an integer $k \geqq 1$ such that $k-1<\beta \leqq k$. We suppose that $k-1<\beta<k$, for the case $\beta=k$ can be easily deduced by the following argument. From (3), (10), using Riesz's convexity theorem, we have

$$
\begin{align*}
& s_{n}^{\nu}=o\left(n^{\delta(\beta-\nu) / \beta+\gamma \nu / \beta}\right), \tag{11}\\
& s_{n}^{k}=o\left(n^{k+\gamma-\beta}\right) .
\end{align*} \quad \nu=1,2, \ldots, k-1
$$

Let $s^{0}(x)=s(x)=\sum_{\nu=0}^{n} a_{\nu}$, where $n \leqq x<n+1$, and

$$
s^{p}(x)=\frac{1}{\Gamma(p)} \int_{0}^{x}(x-) t^{p-1} s(t) d t, \quad \quad p>0
$$

Then, by Abel's lemma on partial summation, we have

$$
\begin{aligned}
\varphi_{1}=\sum_{\nu=0}^{n} a_{\nu} \varphi(\nu t) & =\sum_{\nu=0}^{n-1} s_{\nu}\{\varphi(\nu t)-\phi(\overline{\nu+1} t)\}+s_{n} \varphi(n t) \\
& =-\sum_{\nu=0}^{n-1} \int_{\nu}^{\nu+1} s^{0}(x) \frac{d}{d x} \varphi(x t) d x+s_{n} \varphi(n t) \\
& =-\int_{0}^{a} s^{0}(x) \frac{d}{d x} \varphi(x t) d x+s_{n} \varphi(n t)
\end{aligned}
$$

Integrating the first term in the last expression by parts k times, and writing $D_{n}^{\nu}=\left[\frac{d^{\nu}}{d x_{\nu}}\right]_{x=n,}$ we get

$$
\begin{align*}
\varphi_{1}= & s_{n} \varphi(n t)+\sum_{\nu=1}^{k-1}(-1)^{v} s^{\nu}(n) D_{n}^{\nu} \varphi(x t)+(-1)^{k} s^{k}(n) D_{n}^{k} \varphi(x t) \\
& +(-1)^{k+1} \int_{0}^{n} s^{k}(x) \frac{d^{k+1}}{d x^{k+1}} \varphi(x t) d x=\varphi_{3}+\varphi_{4}+\varphi_{s}+\varphi_{6}, \text { say } . \tag{12}
\end{align*}
$$

Then, by (10)

$$
\begin{equation*}
\varphi_{3}=s_{n} \phi(n t)=O\left(n^{\delta}(n t)^{-p}\right)=O^{\left(t^{-p_{n}-(p-\delta)}\right)}=O\left(\varepsilon^{p}\right) \tag{13}
\end{equation*}
$$

Concerning φ_{4},

$$
\begin{aligned}
& s_{\nu}(n) D_{n}^{\nu} \varphi(x t)=s^{\nu}(n) t^{\nu}\left[\frac{d^{\nu}}{d(x t)^{\nu}} \varphi(x t)\right]_{x=n} \\
& =o\left(n^{\delta(\beta-\nu) / \beta+\gamma \nu / \beta} \dot{t^{\nu}}(n t)^{-p}\right)=o\left\{t^{\nu-p} t^{-\rho\{\delta(\beta-\nu)+\gamma \nu-p \beta) / \beta}\right\} .
\end{aligned}
$$

Using (8) and (11), the exponent of t is

$$
\left[(\nu-p) \beta-\frac{p}{p-\delta}\{\beta(\delta-p)+\nu(\gamma-\delta)\}\right] / \beta
$$

$$
\begin{aligned}
& =\frac{1}{\beta}\left\{\beta \nu-\frac{p}{p-\delta} \nu(\gamma-\delta)\right\}=\frac{\nu}{\beta}\left(\beta-\frac{\beta+1-p}{\beta-1-p} \cdot \frac{\gamma \beta+\gamma-p \beta}{\beta+1-p}\right) \\
& =\frac{\nu}{\beta(\gamma+1-p)}(\beta-\gamma)>0,
\end{aligned}
$$

for $\nu=1,2, \ldots, k-1$, and these terms appear for $\beta>1$. Thus we have (14)

$$
\varphi_{4}=o(1), \text { as } t \rightarrow 0 .
$$

Next, we obtain
by (8) and (1.1).
The exponent of t is

$$
\begin{aligned}
& k-p-\rho(k+\gamma-\beta-p)=\frac{1}{p-\delta}\{(p-\delta)(k-p)-p(k+\gamma-\beta-p)\} \\
& =\frac{1}{p-\delta}\{-k \delta+p(\beta-\gamma+\delta)\}=\frac{1}{p-\delta}\{-k \delta+\delta(\beta+1)\} \\
& =\frac{\delta}{p-\delta}(\beta+1-k)>0
\end{aligned}
$$

for $\delta=p(\beta-\gamma) /(\beta+1-p)$.
Therefore
(15)

$$
\varphi_{5}=o(1), \text { as } t \rightarrow 0 .
$$

We next take up φ_{6}. Omitting constant factors, we split up four parts,

$$
\begin{aligned}
\varphi_{0} & =\int_{0}^{n} s^{k}(x) \frac{d^{k+1}}{d x^{k+1}} \varphi(x t) d x=\int_{0}^{n} \frac{d^{k+1}}{d x^{k+1}} \varphi(x t) d x \int_{0}^{x}(x-u)^{k-\beta-1} s^{\beta}(u) d u \\
& =\int_{0}^{n} s^{\beta}(u) d u \int_{u}^{n}(x-u)^{k-\beta-1} \frac{d^{k+1}}{d x^{k+1}} \varphi(x t) d x \\
& =\int_{0}^{t^{-1}} d u \int_{u}^{u+t^{-1}} d x+\int_{t^{-1}}^{\left(t(t)^{-\rho}\right.} d u \int_{u}^{u+t^{-1}} d x+\int_{0}^{(\epsilon t)^{-\rho}-t^{-1}} d u \int_{u+t^{-1}}^{\left((t)^{-\rho}\right.} d x \\
& -\int_{(t t)^{-\rho} t_{-} t^{-1}}^{(t)^{-\rho}} d u \int_{((t))^{-\rho}}^{u+t-1} d x=\psi_{1}+\psi_{2}+\psi_{3}-\psi_{4}
\end{aligned}
$$

say. Since $\phi^{(k)}(t)=O(1)$ for $0<t \leqq 1$,

$$
\begin{align*}
\psi_{1} & =\int_{0}^{t^{-1}} s^{\beta}(u) d u \int_{u}^{u+t^{-1}}(x-u)^{)^{k-\beta-1}} \frac{d^{k+1}}{d x^{k+1}} \varphi(x t) d x \\
& =O\left\{\int_{0}^{t^{-1}} s^{\beta}(u) d u \int_{u}^{u+t^{-1}} t^{k+1}(x-u)^{b-\beta-1} d x\right. \tag{17}\\
& =o\left\{t^{t^{k+1}} \int_{0}^{t^{-1}} u^{\gamma}\left[(x-u)^{k-\beta}\right]_{u}^{u+t^{-1}} d u\right\} \\
& =o\left\{t^{t+1} \int_{0}^{t^{-1}} u^{\nu} t^{-(k-\beta)} d u\right\}=o\left(t^{k+1-k+\beta-\gamma-1}\right)
\end{align*}
$$

$$
=o\left(t^{\beta-\gamma}\right)=o(1), \text { for } \beta>\gamma .
$$

Since $1+\gamma>(\beta+1) / \beta \gamma>p$,

$$
\begin{aligned}
\psi_{: 2} & =\int_{t-1}^{(e t)^{-\rho}} s^{\beta}(u) d u \int_{u}^{n_{+} t^{-1}}(x-u)^{k-\beta-1} \frac{d^{k+1}}{d x^{k+1}} \varphi(x t) d x \\
& =O\left\{t^{k+1} \int_{t_{-1}}^{\left((t)^{-\rho}\right.} s^{\beta}(u) d u \int_{u}^{u+t^{-1}}(x-u)^{k-\beta-1}(x t)^{-p} d x\right\} \\
& =o\left\{t^{(k+t-p} \int_{t^{-1}}^{(e t)^{-\rho}} u^{\gamma} u^{-p}\left[(x-u)^{k-\beta}\right]_{u}^{u+t^{-1}} d u\right\} \\
& =o\left(t^{k+1-p} t^{(k-\beta)}\left[u^{\gamma+1-p}\right]_{t^{-1}}^{(c t)^{-\rho}}\right) \\
& =o\left(t^{\beta+1-p-\rho(\gamma+1-p)}\right)=o(1),
\end{aligned}
$$

as $t \rightarrow 0$, by (8). Therefore

$$
\begin{equation*}
\psi_{2}=o(1) . \tag{18}
\end{equation*}
$$

Concerning ψ_{3}, if we use integration by parts in the inner integral, then

$$
\begin{aligned}
\psi_{3}= & \int_{0}^{(\epsilon t)^{-\rho}-t^{-1}} s^{\beta}(u) d u \int_{u+t^{-1}}^{(\epsilon t)^{-\rho}}(x-u)^{k-\beta-1} \frac{d^{k+1}}{d x^{k+1}} \boldsymbol{\varphi}(x t) d x \\
= & \int_{0}^{(\epsilon t)-\rho-t^{-1}} s^{\beta}(u) d u\left\{\left[(x-u)^{k-\beta-1} \frac{d^{k}}{d x^{6}} \boldsymbol{\varphi}(x t)\right]_{k+t^{-1}}^{(t)^{-\rho}}\right. \\
= & \left.-(k-\beta-1) \int_{u+t^{-1}}^{(t)^{-\rho}}(x-u)^{k-\beta-2} \frac{d^{k}}{d x^{k}} \varphi(x t) d x\right\} \\
& \chi_{1}-(k-\beta-1) \chi_{2,}
\end{aligned}
$$

say. Then

$$
\begin{aligned}
\chi_{1} & =O\left(t ^ { k } \int _ { 0 } ^ { (\epsilon t) ^ { - \rho } - t ^ { - 1 } } s ^ { \beta } (u) d u \left\{t^{-p} t^{\rho p}\left((\varepsilon t)^{-p}-u\right)^{k-\beta-1}\right.\right. \\
& \left.\left.-\left(u+t^{-1}\right)^{-p t-p t-(k-\beta-1)}\right\}\right) \\
& =\chi_{3}+X_{4} . \\
\chi_{3} & =o\left(t^{k-p+\rho p} \int_{0}^{(\epsilon t)^{-\gamma}} u^{\gamma}\left((\delta t)^{-\rho}-u\right)^{k-\beta-1} d u\right)=o\left(t^{k-p+\rho p-\rho(\gamma+k-\beta)}\right) .
\end{aligned}
$$

Since the exponent of t is

$$
\left.\begin{array}{rl}
k-p & +\rho(p-k+\beta-\gamma)=\frac{1}{\gamma+1-p}\{(k-p)(\gamma+1-p)+(\beta+1-p) \\
(p-k+\beta-\gamma)\}
\end{array}\right) \quad \begin{aligned}
& =\frac{(\beta-\gamma)(\beta+1-k)}{\gamma+1-p}>0, \\
\chi_{3} & =o(1) \text { as } t \rightarrow 0 .
\end{aligned}
$$

$$
\begin{aligned}
\chi_{4} & =o\left\{t^{k-p-(k-\beta-1)} \int_{0}^{(\epsilon t)^{-\rho}-t^{-1}} u^{\gamma}\left(u+t^{-1}\right)^{-p} d u\right\} \\
& =o\left\{t^{\beta+1-p} \int_{0}^{(\epsilon t)^{-\rho}} u^{\gamma-p} d u\right\}=o\left(t^{\beta+1-p-\rho(\gamma+1-p)}\right)=o(1),
\end{aligned}
$$

as $t \rightarrow 0$. Therefore
(20)

$$
\chi_{1}=o(1), \text { as } t \rightarrow 0
$$

Similar estimation gives

$$
\begin{aligned}
\chi_{2} & =O\left\{t^{k} \int_{0}^{(\epsilon t)^{-\rho-t^{-1}}} s^{\beta}(u) d u \int_{u+t^{-1}}^{(\epsilon t)^{-\rho}}(x t)^{-p}(x-u)^{t-\beta-2} d x\right. \\
& =o\left\{t^{t-p} \int_{0}^{(\epsilon t)^{-\rho}-t^{-1}} u^{\gamma-p}\left[(x-u)^{x-\beta-1}\right]_{u+t^{-1}}^{(t))^{-\rho}} d u\right\} \\
& =o\left\{t^{k-p} \int_{0}^{(\epsilon t)^{-\rho}-t^{-1}} u^{\gamma-p} t^{-(t-\beta-1)} d u\right\} \\
& =o\left(t^{\beta+1-p-\rho(\gamma+1-p)}\right)=o(1), \text { as } t \rightarrow 0 .
\end{aligned}
$$

From (20), (21) and (19), we have
(22)

$$
\psi_{3}=o(1)
$$

We have easily

$$
\begin{aligned}
& \psi_{4}=\int_{(t t)^{-\rho}-_{-}^{-1}}^{(t)^{-\rho}} s^{\beta}(u) d u \int_{(t t)-\rho}^{u+t^{-1}}(x-u)^{b-\beta-1} \frac{d^{k+1}}{d x^{k+1}} \varphi(x t) d x \\
& =O\left\{\int_{(t)^{-\rho} t^{-1}}^{(\epsilon t)^{-\rho}} s^{\beta}(u) d u \int_{(\epsilon t)^{-\rho}}^{(t t)^{-\rho} t^{-1}}(x-u)^{k-\beta-1} t^{t+1}(x t)^{-p} d x\right\} \\
& =o\left\{t^{k+1-p} \int_{(t)^{-\rho_{-t}-1}}^{(\epsilon t)^{-\rho}} u^{\gamma} t^{p}\left[(x-u)^{v o-\beta}\right]_{(t)^{-\rho}}^{u+t^{-1}} d u\right\} \\
& =o\left(t^{k+1-p+\rho p-(k-\beta)}\left[u^{\gamma+1}\right]_{(t)^{-\rho}-t^{-1}}^{(t t)^{-\rho}}\right) \\
& =o\left(t^{b+1-p-(c-\beta)+\rho(p-\gamma-1)}\right) \\
& =o\left(t^{\beta+1-p-\rho(\gamma+1-p)}\right)=o(1) \text {, as } t \rightarrow 0 .
\end{aligned}
$$

Summing up (17), (18), (22) and (23) we have
(24)

$$
\varphi_{6}=o(1), \text { as } t \rightarrow 0 .
$$

From (13), (14), (15) and (24) we have

$$
\begin{equation*}
\varphi_{1}=o(1), \text { as } t \rightarrow 0 \tag{25}
\end{equation*}
$$

Therefore, from (19) and (25), we obtain

$$
\lim _{t \rightarrow 0} \sum_{\nu=0}^{\infty} a_{\imath} \varphi(\nu t)=0 .
$$

References

[1] G. SunOUCHI, Tauberian Theorem for Riemann summability, Tôhoku Math. Jour., (2), 5(1953).
[2] H. Hirokawa and G. Sunouchi, Two theorems on the Riemann summability, Tôhoku Math. Jour., (2), 5(1953).
[3] S. Verblunsky, The relation between Riemann's method of summation and Cesaro's, Proc. Camb. Phil. Soc., 26(1930).
[4] M. Obreschkoff, Über das Riemannsche Summierungsverfahren, Math. Zeit., 48 (1942).

