CESÀRO SUMMABILITY OF FOURIER SERIES

Kôsi Kanno
(Received October 10,1954)

Let $\varphi(t)$ be an even periodic function with Fourier series

$$
\begin{equation*}
\varphi(t) \sim \sum_{n=0}^{\infty} a_{n} \cos n t, \quad a_{0}=0 \tag{1}
\end{equation*}
$$

The α-th integral of $\varphi(t)$ is defined by

$$
\begin{equation*}
\varphi_{\alpha}(t)=\frac{1}{\Gamma(\alpha)} \int_{0}^{t} \varphi(u)(t-u)^{\alpha-1} d u \quad(\alpha>0) . \tag{2}
\end{equation*}
$$

G. Sunouchi [1] has proved the following theorem ${ }^{1)}$;

Theorem 1. Let $\Delta=\gamma / \beta \geqq 1$. If
(3)

$$
\varphi_{3}(t)=o\left(t^{\gamma}\right) \quad(t \rightarrow 0)
$$

and further if

$$
\begin{equation*}
\int_{0}^{t}\left|d\left(u^{\lrcorner} \varphi(u)\right)\right|=O(t), \quad 0<t<\eta, \tag{4}
\end{equation*}
$$

then the Fourier series of $\phi(t)$ converges to zero at $t=0$.
Concerning this theorem M. Kinukawa [4] has proved the following theorem;

Theorem 2. Let $\Delta \geqq 1,-1<\alpha<1$. If

$$
\begin{equation*}
\gamma=\Delta-\frac{2 \alpha(\Delta-1)}{1+\alpha} \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\int_{0}^{0} \varphi(u) d u=o\left(t^{\prime}\right) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{t}\left|d\left(u^{\perp} \varphi(u)\right)\right|=O(t), \quad 0<t<\eta \tag{4}
\end{equation*}
$$

then the Fourier series of $\varphi(t)$ is summable (C, α) to zero at $t=0$.
The object of this paper is to generalize the above theorems.
Theorem ${ }^{2}$. If

$$
\begin{equation*}
\left.\varphi_{3}(t)=o_{<}^{\prime} t^{\gamma}\right), \quad \gamma>\beta>0, \tag{7}
\end{equation*}
$$

and

1) An Alternative proof was given by Prof. S. Izumi [5].
2) This theorem was proposed by Prof. G. Sunouchi.

$$
\begin{equation*}
\int_{0}^{t}\left|d\left(u^{\perp} \varphi(u)\right)\right|=O(t), \quad 0<t<\eta \tag{4}
\end{equation*}
$$

then the Fourier series of $\varphi(t)$ is summable (C, α) to zero at $t=0$, where $\alpha=\frac{\Delta \beta-\gamma}{\Delta+\gamma-\beta-1}$ and $\Delta \geqq \frac{\gamma}{\beta}$.

If we put $\Delta=\frac{\gamma}{\beta}$, we have Theorem 1. And if we put $\beta=1$, then $\alpha=\frac{\Delta-\gamma}{\Delta+\gamma-2}$, that is, $\gamma=\Delta-\frac{2 \alpha(\Delta-1)}{1+\alpha}$. This is Theorem 2 in the case $0<\alpha<1$.

Proof. We use Bessel summability instead of Cesàro summability: Accordingly, the proof is due to Sunouchi's method [2].

Let $J_{\mu}(t)$ denote the Bessel function of order μ, and put

$$
\begin{align*}
\alpha_{\mu}(t) & =J_{\mu} / t^{\mu} \tag{8}\\
V_{1+\mu}(t) & =\alpha_{\mu+1 / 2}(t) \tag{9}
\end{align*}
$$

then

$$
\begin{gather*}
V_{1+\mu}^{(k)}(t)=O(1) \quad \text { as } t \rightarrow 0 \quad \text { and } \\
V_{1+\mu}^{(k)}(t)=O\left(t^{-(\mu+1)}\right) \tag{10}
\end{gather*} \quad \text { as } t \rightarrow \infty, \text { for } k=0,1,2, \ldots \ldots .
$$

We denote by σ_{ω}^{α} the α-th Bessel mean of the Fourier series (1). Since the case $\alpha=0$ is Theorem 1, we may suppose that $\alpha>0$. Neglecting the constant factor,

$$
\begin{equation*}
\sigma_{\omega}^{\alpha}=\int_{0}^{\infty} \omega \varphi(t) V_{1+\alpha}(\omega t) d t=\left(\int_{0}^{\sigma_{\omega}-\rho}+\int_{C_{\omega}-\rho}^{\infty}\right) \omega \varphi(t) V_{1+\alpha}(\omega t) d t=I+J \tag{11}
\end{equation*}
$$

say, where C is a fixed large constant and $\rho=\frac{\alpha+1}{\alpha+\Delta}<1$.
If we put

$$
\theta(t)=t^{\lrcorner} \varphi(t), \quad \Theta(t)=\int_{0}^{t}|d \theta(t)|,
$$

then we have, by (4)

$$
\begin{equation*}
\Theta(t)=O(t), \quad \theta(t)=O(t) . \tag{12}
\end{equation*}
$$

Next we consider the formula [6]

$$
\int_{0}^{\infty} \frac{J_{\nu}\left(a \sqrt{t^{2}+z^{2}}\right)}{\left(t^{2}+z^{2}\right)^{\nu / 2}} t^{2 \mu+1} d t=2^{\mu} \Gamma(\mu+1) \frac{J_{\nu-\mu+1}(a z)}{a^{\nu+1} z^{\nu-\mu+1}}
$$

where $a>0$, $\because\left(\frac{\nu}{2}-\frac{1}{4}\right)>\Re(\mu)>-1$.
In the above formula, if we put $t^{2}+z^{2}=\tau^{2}, \mu=\lambda$, then

$$
\int_{z}^{\infty} \frac{J_{\nu}(a \tau)\left(\tau^{\nu}-z^{\nu}\right)^{\lambda}}{\tau^{\nu-1}} d \tau=2^{\lambda} \Gamma(\lambda+1) J_{\nu-\lambda-1}(a z) /\left(a^{\lambda+1} z^{\nu-\lambda-1}\right)
$$

where $a>0, \mathfrak{H}\left(\frac{\nu}{2}-\frac{1}{4}\right) \quad \Re(\lambda)>-1$.
This formula is valid when $\lambda=0, \nu>1 / 2$. Therefore

$$
\begin{equation*}
\int_{z}^{\infty} \frac{J_{\nu}(a \tau)}{\tau^{\nu-1}} d \tau=J_{\nu-1}(a z) / a z^{\nu-1} \tag{13}
\end{equation*}
$$

Now, by (8) and (9)

$$
\begin{aligned}
\Lambda(t)=\int_{t}^{\infty} \frac{V_{1+\alpha}(\omega t)}{u^{\Delta}} d u & =\int_{t}^{\infty} \frac{J_{\alpha+1 / 2}(\omega u)}{u^{\Delta}(\omega u)^{\alpha+1 / 2}} d u \\
& =\omega^{-(\alpha+1 / 2)} \int_{t}^{\infty} \frac{J_{\alpha+1 / 2}(\omega u)}{u_{\alpha-1 / 2} u^{\Delta+1}} d u .
\end{aligned}
$$

By (10) and (13), integrating by parts we get

$$
\begin{aligned}
& \omega^{(\alpha+1 / 2)} \Lambda(t)= {\left[-\int_{u}^{\infty} \frac{J_{\alpha+1 / 2}(\omega v)}{v^{\alpha-1 / 2}} d v \cdot u^{-(\Delta+1)}\right]_{t}^{\infty} } \\
&-(\Delta+1) \int_{t}^{\infty}\left\{\int_{u}^{\infty} \frac{J_{\alpha+1 / 2}(\omega v)}{v^{\alpha-1 / 2}} d v\right\}^{-(\Delta+2)} d u \\
&=\left[J_{\alpha-1 / 2}(\omega u) \omega^{-1} u^{-(\alpha-1 / 2)} u^{-(\Delta+1))}\right]_{t}^{\infty} \\
&-(\Delta+1) \omega^{-1} \int_{t}^{\infty} J_{\alpha-1 / 2}(\omega u) u^{-(\alpha-1 / 2)} u^{-(\Delta+2)} d u \\
&= O\left\{\left[\omega^{-1}(\omega u)^{-1 / 2} u^{-(\alpha+\Delta+1 / 2)}\right]_{t}^{\infty}\right\}+O\left\{\int_{t}^{\infty} \omega^{-3 / 2} u^{-1 / 2} u^{-(\Delta+\alpha+3 / 2)} d u\right\} \\
&= O\left(\omega^{-3 / 2} t-(\Delta+\alpha+1)\right)+\left(O \omega^{-3 / 2} t^{-(\Delta+\alpha+1)}\right),
\end{aligned}
$$

for $\omega t>1$. Thus if $\omega t>1$, then we have

$$
\begin{equation*}
\Lambda(t)=O\left(\omega^{-(\alpha+2)} t^{-(\Delta+\alpha+1)}\right) \tag{14}
\end{equation*}
$$

We first estimate J. By integration by parts, we have

$$
\begin{aligned}
J & =\int_{c_{\omega}-\rho}^{\infty} \omega \varphi(t) V_{1+\alpha}(\omega t) d t=\int_{c_{\omega}-\rho}^{\infty} \omega \theta(t) \frac{V_{1+\alpha}(\omega t)}{t^{\Delta}} d t \\
& =-\int_{c_{\omega}-\rho}^{\infty} \omega \theta(t) d \Lambda(t)=-[\theta(t) \omega \Lambda(t)]_{C_{\omega}-\rho}^{\infty}+\omega \int_{c_{\omega}-\rho}^{\infty} \Lambda(t) d \theta(t) \\
& =J_{1}+J_{2},
\end{aligned}
$$

say. Then, by (12) and (14)

$$
\begin{aligned}
J_{1} & =O\left[\omega t \omega^{-(\alpha+\alpha)} t^{-(\Delta+\alpha+1)}\right]_{C_{\omega}-\rho}^{\infty}=O\left(\omega^{-(\alpha+1)} C^{-(\Delta+\alpha)} \omega^{\rho(\Delta+\alpha)}\right) \\
& =O\left(C^{-(\Delta+\alpha)} \leqq \leqq\right.
\end{aligned}
$$

for large C, since $\rho=\frac{1+\alpha}{\Delta+\alpha}$.

$$
\begin{aligned}
J_{2} & =O\left\{\int_{C_{\omega}-\rho}^{\infty} \omega^{-(\alpha+1)} t^{-(\Delta+\alpha+1)}|d \theta(t)|\right\} \\
& =O\left\{\omega^{-(\alpha+1)}\left[\Theta(t) t^{-(\Delta+\alpha+1)}\right]_{C_{\omega}-\rho}^{\infty}+\int_{C_{\omega}-\rho}^{\infty} \omega^{-(\alpha+1)} \Theta(t) t^{-(\Delta+\alpha+2)} d t\right\} \\
& =O\left\{\omega ^ { - (\alpha + 1) } \left(C \omega^{\left.-\rho)^{-(\Delta+\alpha)}+\omega^{-(\alpha+1)}\left[t^{-(\Delta+\alpha)}\right]_{\omega_{\omega}-\rho}^{\infty}\right\}}\right.\right. \\
& =O\left\{\omega^{-(\alpha+1)} C^{-(\Delta+\alpha)} \omega^{\rho(\Delta+\alpha)}\right\} \\
& =O\left(C^{-(\Delta+\alpha)} \leqq \varepsilon .\right.
\end{aligned}
$$

Thus

$$
\begin{equation*}
J=J_{1}+J_{2} \leqq \varepsilon . \tag{15}
\end{equation*}
$$

Now there is an integer $k>1$ such that $k-1<\beta \leqq k$. We suppose that $k-1<\beta<k$, for the case $\beta=k$ can be easily deduced by the following argument. By integration by parts k-times, we have

$$
\begin{aligned}
I= & \sum_{h=1}^{k}(-1)^{h-1}\left[\omega^{h} \varphi_{h}(t) V_{1+\alpha}^{(h-1)}(\omega t)\right]_{0}^{\omega_{\omega}{ }^{-\rho}}+(-1)^{k} \omega^{k+1} \int_{0}^{c_{\omega}-\rho} \varphi_{k}(t) V_{1+\alpha}^{(k)}(\omega t) d t \\
& =\sum_{n=1}^{k}(-1)^{h-1} I_{h}+(-1)^{k} I_{k+1}, \text { say. } \\
& \text { Since } \varphi(t)=O\left(t^{1-\Delta}\right) \text { by (12) and } \varphi_{\beta}(t)=o\left(t^{\gamma}\right), \text { we have, by convexity }
\end{aligned}
$$ theorem due to G. Sunouchi [3],

$$
\begin{align*}
& \varphi_{l}(t)=o\left(t^{((\beta-h)(1-\Delta)+h \gamma\rangle / \beta)}, \text { for } h=1,2, \ldots k-1,\right. \\
& \phi_{k}(t)=o\left(t^{\gamma-\beta+k}\right) . \tag{16}
\end{align*}
$$

Therefore, if $\beta>1$

$$
\begin{aligned}
& \boldsymbol{I}_{h}=\left[\omega^{h} \mathcal{O}_{h}(t) V_{1+\alpha}^{(h-1)}(\omega t)\right]_{0}^{c_{\omega}-\rho} \\
&\left.=\boldsymbol{o} \omega^{h-(1+\alpha)} \boldsymbol{\omega}^{-\kappa(\beta-h)(1-\Delta)+h \gamma \gamma / \beta} \omega^{\rho(1+\alpha)} C^{((\beta-h)(1-\Delta)+h \gamma) / \beta} C^{-(1+\alpha)}\right\} \\
&+\omega^{h} \lim _{t \rightarrow 0} V_{1+\alpha}^{h-1}(\omega t) t^{((\beta-h)(1-\Delta)+h \gamma) / \beta} .
\end{aligned}
$$

Now, if the condition (7) holds then the Fourier series of $\varphi(t)$ is summable ($C, \frac{\beta}{1+\gamma-\beta}$) to zero at $t=0$. Therefore if $\frac{\beta}{1+\gamma-\beta}>\frac{\Delta \beta-\gamma}{\Delta+\gamma-\beta-1}$, that is $\frac{\gamma+\beta+1}{\beta}>\Delta$, then our theorem has the meaning. Hence we may suppose $\frac{\ddot{\gamma+\beta+1}}{\beta}>\Delta$.

If $\beta>1$ we have $\frac{\gamma+\beta-1}{\beta-1}>\frac{\gamma+\beta+1}{\beta}$. Thus we have $(\beta-1)(1-\Delta)$ $+\gamma>0$.

Since $(\beta-h)(1-\Delta)+h \gamma>(\beta-1)(1-\Delta)+\gamma>0$ and $V_{1+\alpha}^{(h-1)}(\omega t)=O(1)$ as $t \rightarrow 0$ the second term is zero. Since $\rho=(1+\alpha) /(\Delta+\alpha)=(\beta+1) /(\Delta+\gamma)$ the ω 's exponent of the first term is

$$
\begin{aligned}
& h-(1+\alpha)-\frac{\rho}{\beta}\{(\beta-h)(1-\Delta)+h \gamma-\beta(1+\alpha)\} \\
= & h-(1+\alpha)-\frac{\rho}{\beta}\{-\beta(\alpha+\Delta)-h(1-\Delta-\gamma)\} \\
= & h-(1+\alpha)+\frac{\rho}{\beta} \frac{\beta(1+\alpha)}{\rho}-\frac{\rho}{\beta} h(\Delta+\gamma-1) \\
= & \frac{h}{\beta}\left\{\beta-\frac{(\beta+1)(\Delta+\gamma-1)}{\Delta+\gamma}\right\}=\frac{h}{\beta(\Delta+\gamma)}(\beta+1-\Delta-\gamma)<0, \\
(h= & 1,2,3, \ldots k-1) \text { If } \beta<1 \\
I_{1}= & {\left[\omega \varphi_{1}(t) V_{1+\alpha}(\omega t)\right]_{0}^{c_{\omega}-\rho}=O\left\{\omega^{1-(1+\alpha)} \omega^{-\rho((\beta-1)(1-\Delta)+\gamma) / \beta} \omega^{\rho(1+\alpha)}\right\} } \\
& \quad \cdot C^{((\beta-1)(1-\Delta)+\gamma) \beta} C^{-(1+\alpha)}-\lim _{t \rightarrow 0} \omega t^{t(\beta-1)(1-\Delta)+\gamma) / \beta} V_{1}^{+\alpha}(\omega t) .
\end{aligned}
$$

Since $(\beta-1)(1-\Delta)+\gamma>0$ and $V_{1+\alpha}(\omega t)=O(1)$ as $t \rightarrow 0$, the second term is zero. About the ω 's expont of the first term we have

$$
(\beta+1-\Delta-\gamma) / \beta(\Delta+\gamma)<0
$$

by similar calculation. In this case another terms of I_{k} disappear for $h=$ $2,3, \ldots . k-1$. Thus we have
(17)

$$
I_{h}=o(1), \text { as } \omega \rightarrow \infty \quad \text { for } h=1,2, \ldots k-1 .
$$

Concerning I_{k},

$$
\begin{aligned}
\boldsymbol{I}_{k} & =\left[\boldsymbol{\omega}^{k} \varphi_{k}(t) V_{1+\alpha}^{(k-1)}(\omega t)\right]_{-0}^{\omega_{\omega}-\rho} \\
& =\boldsymbol{o}\left\{\omega^{k} \omega^{-\rho(t+\gamma-\beta)} \omega^{-(1+\alpha)} \omega^{\partial(1+\alpha)}\right\}-\lim _{t \rightarrow 0} \omega^{k} t^{(k+\gamma-\beta)} V_{1+\alpha}^{(k-1)}(\omega t) \\
& =\boldsymbol{o}\left\{\omega^{k(1-\rho)-\rho(\gamma-\beta)-(1-\rho)(1+\alpha)}\right\}
\end{aligned}
$$

The exponent of ω is

$$
\begin{aligned}
& \frac{k(\Delta-1)}{\Delta+\alpha}-\frac{1+\alpha}{\Delta+\alpha}(\gamma-\beta)-\frac{\Delta-1}{\Delta+\alpha}(1+\alpha) \\
= & \frac{k(\Delta-1)}{\Delta+\alpha}-\frac{1+\alpha}{\Delta+\alpha}(\gamma+\Delta-\beta-1) \\
= & \frac{\Delta-1}{\Delta+\alpha}(k-\beta-1)=(1-\rho)(k-\beta-1)<0,
\end{aligned}
$$

for $1+\alpha=(\Delta-1)(\beta+1) /(\gamma+\Delta-\beta-1)$. Therefore
(18)

$$
I_{k}=o(1), \quad \text { as } \omega \rightarrow \infty
$$

Concerning I_{k+1}, we split it up into four parts,

$$
I_{k+1}=\omega^{k+1} \int_{0}^{\omega_{\omega}-\rho} \varphi_{k}(t) V_{1+\alpha}^{(k)}(\omega t) d t=\omega^{k+1} \int_{0}^{c_{\omega}-\rho} V_{1+\alpha}^{(k)}(\omega t) d t
$$

$$
\begin{array}{rl}
& \cdot \int_{0}^{t} \varphi_{\beta}(u)(t-u)^{r_{0}-\beta-1} d u \\
= & \int_{0}^{C_{\omega}-\rho} \omega^{k+1} \varphi_{\beta}(u) d u \int_{u}^{C_{\omega}-\rho} V_{1+\alpha}^{(k)}(\omega t)(t-u)^{x-\beta-1} d t \\
=\int_{0}^{\omega-1} d u \int_{u}^{u+\omega^{-1}} d t+\int_{\omega-1}^{C_{\omega}-\rho} d u \int_{u}^{u+\omega^{-1}} d t+\int_{0}^{C_{\omega}-\rho}-\omega^{-1} & d u \int_{u+\omega^{-1}}^{C_{\omega}-\rho} d t-\int_{0}^{C_{\omega}-\rho} d u \int_{C_{\omega}-\rho}^{u+\omega^{-1}} d t \\
=K_{1}+K_{2}+K_{3}-K_{4},
\end{array}
$$

say. Since $V_{1+\alpha}^{(k)}(t)=O(1)$ for $0 \leqq t \leqq 1$,

$$
\begin{aligned}
K_{1} & =\omega^{k+1} \int_{0}^{\omega^{-1}} \varphi_{\beta}(u) d u \int_{u}^{u+\omega^{-1}} V_{1+\infty}^{(k)}(\omega t)(t-u)^{k-\beta-1} d t \\
& =O\left\{\omega^{k+1} \int_{0}^{\omega^{-1}} \varphi_{\beta}(u) d u \int_{u}^{u+\omega^{-1}}(t-u)^{k-\beta-1} d t\right\} \\
& =o\left\{\omega^{k+1} \int_{0}^{\omega^{-1}} u^{\gamma}\left[(t-u)^{k-\beta}\right]_{u}^{u+\omega^{-1}} d u\right\} \\
& =o\left\{\omega^{k+1} \int_{0}^{\omega^{-1}} u^{\nu} \omega^{-(k-\beta)} d u\right\}=o\left\{\omega^{\beta+1}\left[u^{\gamma+1}\right]_{0}^{\omega^{-1}}\right\}
\end{aligned}
$$

(19) $\quad=o\left(\omega^{\beta-\gamma}\right)=o(1)$, for $\gamma>\beta$.

$$
\begin{aligned}
K_{2} & =\omega^{k+1} \int_{\omega^{-1}}^{C_{\omega}^{-\rho}} \varphi_{\beta}(u) d u \int_{u}^{u+\omega^{-1}} V_{1+\alpha}^{(k)}(\omega t)(t-u)^{k-\beta-1} d t \\
& =o\left\{\omega^{k+1} \int_{\omega^{-1}}^{C_{\omega}-\rho} u^{\gamma} d u \int_{u}^{u+\omega^{-1}}(\omega t)^{-(1+\alpha)}(t-u)^{k-\beta-1} d t\right\} \\
& =o\left\{\omega^{k-\alpha} \int_{\omega^{-1}}^{\omega_{\omega}-\rho} u^{\gamma} u^{-(1+\alpha)} \int_{u}^{u+\omega^{-1}}(t-u)^{k-\beta-1} d t\right\} \\
& =o\left\{\omega^{k-\alpha} \int_{\omega^{-1}}^{C_{\omega}-\rho} u^{\gamma-(1+\alpha)} d u\left[(t-u)^{k-\beta}\right]_{u}^{u+\omega^{-1}}\right\} \\
& =o\left\{\omega^{k-\alpha} \omega^{-(k-\beta)}\left[u^{\gamma-\alpha}\right]_{\omega^{-1}}^{\sigma_{\omega}^{-\rho}}\right\}=o\left(\omega^{\beta-\alpha} \omega^{-\rho(\gamma-\alpha)}\right),
\end{aligned}
$$

for $\gamma-\alpha=\gamma-\frac{\Delta \beta-\gamma}{\Delta+\gamma-\beta-1}=\frac{(\gamma-\beta)(\Delta+\gamma)}{\Delta+\gamma-\beta-1}>0$.
Since

$$
\beta-\alpha-\rho(\gamma-\alpha)=\frac{1}{\alpha+\Delta}\{\beta \Delta-\gamma-\alpha(\Delta+\gamma-\beta-1)\}=0
$$

we have
(20)

$$
K_{2}=o(1) \quad \text { as } \omega \rightarrow \infty
$$

Concerning K_{3}, if we use integration by parts in the inner integral, then

$$
K_{3}=\omega^{k+1} \int_{C}^{\gamma_{\omega} \omega^{\rho}-\omega^{-1}} \varphi_{\beta}(u) d u \int_{u+\omega^{-1}}^{c_{\omega}^{-\rho}} V_{1+\alpha}^{(k)}(\omega t)(t-u)^{k-\beta-1} d t
$$

(21)

$$
\begin{aligned}
& =\omega^{k+1} \int_{0}^{\omega_{\omega}-\rho_{-\omega}-1} \varphi_{\beta}(u) d u\left\{\left[\omega^{-1} V_{1+\alpha}^{(k-1)}(\omega t)(t-u)^{k-\beta-1}\right]_{u+\omega^{-1}}^{\omega_{\omega}-\rho}\right. \\
& \left.\quad-(k-\beta-1) \int_{u+\omega^{-1}}^{\sigma_{\omega}-\rho} V_{1+\alpha}^{(k-1)}(\omega t) \cdot(t-u)^{k-\beta-2} d t\right\} \\
& =M_{1}-(k-\beta-1) M_{2},
\end{aligned}
$$

say. Then

$$
\begin{gathered}
M_{1}=\omega^{k+1} \int_{0}^{\sigma_{\omega} \rho^{\rho}-\omega^{-1}} \varphi_{\beta}(u) d u\left\{\omega^{-1} \omega^{-(1+\alpha)} \omega^{\rho(1+\alpha)}\left(C \omega^{-\rho}-u\right)^{k-\beta-1}\right. \\
\left.-\omega^{-1} \omega^{-(1+\alpha)}\left(u+\omega^{-1}\right)^{-(1+\alpha)} \omega^{-(\varepsilon-\beta-1)}\right\}
\end{gathered}
$$

(22) $\quad=N_{1}+N_{2}$.

$$
\begin{aligned}
N_{1} & =o\left\{\omega^{k+(\rho-1)(1+\alpha)} \int_{0}^{c_{\omega}-\rho} u^{\gamma}\left(C \omega^{-\rho}-u^{k-\beta-1} d u\right\}\right. \\
& =o\left\{\omega^{k+(\rho-1)(1+\alpha)}\left[u^{\gamma+k-\beta}\right]_{0}^{c_{\omega}-\rho}\right\}=o\left(\omega^{k+(\rho-1)(1+\alpha)-\rho(\gamma+k-\beta)}\right) .
\end{aligned}
$$

Since the exponent of ω is

$$
\begin{align*}
& k-\frac{(\Delta-1)(\alpha+1)}{\Delta+\alpha}-\frac{\alpha+1}{\Delta+\alpha}(\gamma+k-\beta) \\
& =\frac{1}{\Delta+\alpha}\{k(\Delta-1)-\alpha(\gamma+\Delta-\beta-1)-\gamma-\Delta+\beta+1\} \\
& =\frac{1}{\Delta+\alpha}\{k(\Delta-1)-(\beta \Delta-\gamma)-\gamma-\Delta+\beta+1\} \\
& =\frac{\Delta-1}{\Delta+\alpha}(k-\beta-1)=(1-\rho)(k-\beta-1)<0, \\
& \quad N_{\mathrm{t}}=o(1) \quad \text { as } \omega \rightarrow \infty \tag{23}
\end{align*}
$$

$$
\begin{gathered}
N_{\mathrm{L}}=o(1) \quad \text { as } \omega \rightarrow \infty \\
N_{\Sigma}=o\left\{\omega^{k-(1+\alpha)-(b-\beta-1)} \int_{0}^{c_{\omega}-\rho_{-} \omega^{-1}} \cdot u^{\gamma}\left(u+\omega^{-1}\right)^{-(1+\alpha)} d u\right\}
\end{gathered}
$$

$$
=o\left\{\omega^{\beta-\alpha} \int_{0}^{\sigma_{\omega}-\rho} u^{\nu-(1+\alpha)} d u\right\}
$$

(24)

$$
=o\left(\omega^{\rho-\alpha} \omega^{-(\gamma-\alpha) \rho}\right)=o(1) \quad \text { as } \omega \rightarrow \infty
$$

From (23) and (24) we have
(26)

$$
M_{1}=o(1)
$$

as $\omega \rightarrow \infty$

$$
\begin{align*}
& M_{2}=\omega^{v} \int_{0}^{\sigma_{\omega}-\rho-\omega^{-1}} \varphi_{\rho}(u) d u \int_{u+\omega^{-1}}^{c_{\omega}-\rho} V_{1+\alpha}^{(k-1)}(\omega t)(t-u)^{k-\beta-2} d t \\
& =o\left\{\omega^{w} \int_{0}^{C_{\omega}-\rho-\omega^{-1}} u^{\gamma} d u \int_{u+\omega^{-1}}^{c_{\omega}-\rho} \omega^{-(1+\alpha)} t^{-(1+\alpha)}(t-u)^{c-\beta-2} d t\right\} \\
& =o\left\{\omega^{k-(1+\alpha)} \int_{0}^{\sigma_{\omega}-\rho-\omega^{-1}} u^{\gamma} u^{-(1+\alpha)} d u \int_{u+\omega^{-1}}^{\omega_{\omega}-\rho}(t-u)^{k-\beta-2} d t\right\} \\
& =o\left\{\omega^{k-(1+\alpha)} \int_{0}^{\alpha_{\omega}-\rho-\omega^{-1}} u^{\gamma-(1+\alpha)}\left[(t-u)^{\mathrm{k}-\beta-1}\right]_{u+\omega^{-1}}^{\alpha_{\omega}-\rho} d u\right\} \\
& =o\left\{\omega^{k-(1+\alpha)} \int_{0}^{c_{\omega}-\rho} u^{\gamma-(1+\alpha)} \omega^{-(k-\beta-1)} d u\right\} \\
& =o\left\{\omega^{k-(1+\alpha)-(k-\beta-1)}\left[u^{\gamma-\alpha}\right]_{0}^{\omega_{\omega}-\rho}\right\} \\
& =o\left(\omega^{\beta-\alpha} \omega^{-\rho(\gamma-\alpha)}\right)=o(1) \quad \text { as } \omega \rightarrow \infty \text {. } \tag{27}
\end{align*}
$$

1), (26) and (27) we have

$$
\begin{equation*}
K_{3}=o(1) \quad \text { as } \omega \rightarrow \infty . \tag{28}
\end{equation*}
$$

$$
\begin{aligned}
& K_{4}=\omega^{k+1} \int_{\epsilon_{\omega}-\rho-\omega^{-1}}^{C_{\omega}-\rho} \phi_{\beta}(u) d u \int_{C_{\omega}-\rho}^{u+\omega^{-1}} V_{1+\alpha}^{(k)}(\omega t)(t-u)^{\bar{c}-\beta-1} d t \\
& =O\left\{\omega^{k+1} \int_{C_{\omega}-\rho_{-\omega}-1}^{\omega_{\omega}-\rho} \varphi_{\beta}(u) d u \int_{C_{\omega}-\rho}^{u+\omega^{-1}}(\omega t)^{-(1+\alpha)}(t-u)^{k-\beta-1} d t\right\} \\
& =O\left\{\omega^{k+1-(1+\alpha)} \int_{\omega_{\omega}-\rho-\omega^{-1}}^{\omega_{\omega}-\rho} \phi_{\beta}(u) \omega^{\rho(1+\alpha)} d u \int_{c_{\omega} \omega^{\rho}}^{u+\omega^{-1}}(t-u)^{\alpha-\beta-1} d t\right\} \\
& =o\left\{\omega^{k-\alpha+\rho(1+\alpha)} \int_{c_{\omega}-\rho-\omega^{-1}}^{\omega_{\omega}-\rho} u^{\nu}\left[(t-u)^{)^{\alpha-\beta}}\right]_{\omega_{\omega}-\rho}^{u+\omega^{-1}} d u\right\} \\
& =o\left\{\omega^{k-\alpha+\rho(1+\alpha)} \omega^{-(k-\beta)}\left[u^{\gamma+1}\right]_{C_{\omega}-\rho_{-\omega}-1}^{\omega_{\omega}-\rho}\right\} \\
& =O\left(\omega^{k-\alpha+\rho(1+\alpha)-(k-\beta)} \omega^{-\rho(\gamma+1)}\right)=o\left(\omega^{\beta-\alpha-\rho(\gamma-\alpha)}\right) .
\end{aligned}
$$

Since the exponent of ω is

$$
\begin{aligned}
\beta & -\alpha-\rho(\gamma-\alpha) \\
& =\frac{1}{\Delta+\alpha}\{\beta(\Delta+\alpha)-\alpha(\Delta+\alpha)-(\alpha+1)(\gamma-\alpha)\} \\
& =\frac{1}{\Delta+\alpha}\{\beta \Delta-\gamma-\alpha(\gamma+\Delta-\beta-1)\}=0,
\end{aligned}
$$

(29)

Summing up (19), (20), (28) and (29) we have
(30)

$$
I_{k+1}=o(1) \quad \text { as } \omega \rightarrow \infty
$$

From (11), (15), (17), (18) and (30) we have

$$
\sigma_{\omega}^{\alpha}=o(1) \quad \text { as } \omega \rightarrow \infty
$$

which is required.

References

[1] G. SunOUCHI, A new convergence criterion for Fourier series, Tôhoku Math. Journ., 5(1954).
[2] G. Sunouchi, Cesàro summability of Fourier series, Tôhoku Math. Journ., 5(1953).
[3] G. Sunouchr, Convexity theorems and Cesàro summability of Fourier series, Journ. of Math., 1(1953).
[4] M. Kinukawa, On the Cesàro summability of Fourier series, Tôhoku Math. Journ., 6(1954).
[5] S. IzUMI, Some trigonometrical series VIII, Tôhoku Math. Journ., 5(1954).
[6] G. N. WAtson, Theory of Bessel functions, 2nd edition, Cambridge, 1944.

Department of Mathematics, Faculty of Liberal Arts and Science, Yamagata Unjversity

