REMARKS AND ERRATA ON THE PAPER "UNIFORM CONVERGENCE OF SOME TRIGONOMETRICAL SERIES" THIS JOURNAL, VOL. 6(1954)162-173

HIROSHI HIROKAWA

(Received August 23, 1955)

Theorem 5 in this paper is trivial when $0 < \beta \leq 1$ and is true even. when the condition (1.1), is dropped. Further we may prove that the series $\sum_{\nu=1}^{\infty} a_{\nu}$ is summable (R, 1), (R_1) and (K, 1) respectively, provided that

$$t_n^{\beta} \equiv \sum_{\nu=1}^n A_{n-\nu}^{\beta-1} \nu a_{\nu} = O(n^{\beta} \lambda_n),$$

where $0 < \beta \leq 1$ and $\sum \lambda_n/n$, $\lambda_n > 0$, is convergent. Since this condition implies the summability |C, 1| of the series $\sum_{\nu=1}^{\infty} a_{\nu}$. For (R, 1) case, the proposition

is proved in Obreschkoff's paper: Math. Zeits., vol. 48(1942~1943), i.e. summability |C, 1| implies summability (R, 1). Further we may prove that summability |C, 1| implies summability (R_1) . Then, by Izumi's Theorem in this Journal, vol. 1(1950), we have the result for (K, 1) case. But the problem whether the above result is true for $\beta > 1$ remains unsolved. In this occasion, we give the table of errata on the paper.

page column

		/	
page	column	for	read
164	4	thus. from:	Thus, from
164	13 ↑	$(-1)^{k+1}$	$(-1)^{k}$
164	12 ↑	$(-1)^{k+1}$	$(-1)^{k}$
164	4 ↑	$M^{\{(1-\alpha)(\beta-\nu)+\alpha\beta\nu\}/\beta x \nu-1\}}$	$M^{((1-\alpha)(\beta-\nu)+\alpha\beta\nu)/\beta}x^{\nu-1}$
164	1↑	$(-1)^{\nu-n} {\beta-\gamma \choose \nu-n} t_n$	$(-1)^{\nu-n} \binom{\beta-\gamma}{\nu-n} t_n^{\beta}$
165	7	$(-1)^{\frac{\gamma}{2}+1}$	$(-1)^{\frac{\gamma}{2}}$
165	8	"	11
165	9	//	//
166	4 ↑	<i>o</i> (<i>o</i> ()
167	1↑	$\sum_{\nu=p-n-1}^{\infty}$	$\sum_{\nu=q-n-1}^{\infty}$
168	7	$\sum_{\nu=p/+1}^{\infty}$	$\sum_{\nu=p/2+1}^{\infty}$
168	11 ↑	n^{α}	$n^{eta lpha}$
169	4	$\sum_{\nu=1}^{\gamma} t_{p-\nu-1}^{\nu} \Delta_{p-\nu-1}^{\nu-1} -$	$\sum_{\nu=1}^{\gamma} t_{q-\nu-2}^{\nu} \Delta_{q-\nu-1}^{\nu-1}$

170	6 7	$2^{2^k} 2^{2^{k+1}}$
170 171	$\frac{7}{4}$	we have
171	9	ns^1
172	6	$\sum_{\nu=0}^{\infty}$
172	7	$\sum_{1}^{\nu} \frac{a_{\nu}}{\nu}$
172	17	to zero
172 172 173	$\begin{array}{c} 2 \uparrow \\ 1 \uparrow \\ 3 \end{array}$	(in the press). (in the press). Two thoerems

 $-\sum_{\nu=1}^{\gamma} t_{\eta-\nu-2}^{\nu} \Delta_{l-\nu-1}^{\nu-1} + \sum_{\nu=1}^{\gamma} t_{p-\nu-1}^{\nu} \Delta_{p-\nu-1}^{\nu-1}$ $(-1)^{k} 2^{2k}$ $(-1)^{k+1} 2^{2k+1}$ delected ns_{n}^{1} $\sum_{\nu=1}^{\infty}$ $\sum_{\nu=1}^{\nu} a_{\nu}$ to the sum $\sum_{1}^{\infty} a_{\nu}$ (unpublished)
(unpublished)
(unpublished)
Two theorems

CHIBA INSTITUE OF TECHNOLOGY.