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1. Introduction Let f(t) be an integrable function with period 2π and

let φ(t) = φx(t) = f(x + /) -f f(x -t)- 2s.
J. J. Gergen's Cesaro summability criterion of Fourier series reads as

follows [1] :

THEOREM A. Let φp(t} be the βth integral of φ(t\ If

φ£t) = c(&) (f->0)
and

lim lim sup u* \ lΔamW)l dt = 0,
fc->oo w-X) J /1 + P

fcW

/*£ Fourier series of /(/) ί's summable (C, p) to s at t = Λ:, where — 1< p

" w

ΔS"W) = 2 ( - !r+" (̂ ) 9<ί + «*).
v=0

S. Izumi and G. Sunouchi [2], [7] proved the following theorems :

THEOREM B. Let Δ = γ//3 > 1. // w(/) = o(f*) (t ->0),

J |rf{«Vw)}l = OW (0 < f <
o

/^β Fourier series of f(t) converges to s at t = ΛΓ.

THEOREM C. Zβί Δ = γ/>S > 1. // ^(/) = o(̂ ) (/ -> 0)

Γ
J

l i m lim s u p - l r f y = 0,
fc->oo W-^0 J ί

(fctt)l/Δ

then a Fourier series of f(t) converges to s at t = x.

In the previous paper [5], we have proved the following :

THEOREM D. Let Δ>1, — 1< p < 1 and

7 = Δ - p(Δ - 1).

If φι(t) ^ O(ty\ (ί-^

lim lim sup IΔ?VW
J ^i+p
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then the Fourier series of f(t) is summάble (C. p) to s at t = x.

THEOREM E. Let Δ ̂  1, — 1< p < 1 and

Δ _2p(Δ-l)
1 + P

//

= o(fi)

and

(i.i) j |rf{«v«)}l = θ(t),
0

ί/tew the Fourier series of f(t) is (C, p) summάble to s at t = x.

Concerning Theorems B and E, recently K. Kanno f 4] has proved the
following theorem.

THEOREM F. If<pp(t) = o(P), 7 > β > 0, and the condition (1. 1) holds, then
the Fourier series of f(t) is (C, p) summable to s at t = x, where

and

P =
Δ + 7-β

that is,

Ί^Δβ- w T ±κ*^L±l and p > 0.
1 + P

In this paper we shall prove the following theorems.

THEOREM 1. <£#£ ΔS>1,I>p2^0, 7^>8>0 β/2ί/

7 = Δj5 — ρ(Δ — 1).

and

(1.2)

the Fourier series of f(t) is summable (C, p) to s at t = x.
If β = p (i.e. 7 = β = p), ^^^ ^^ suppose Δ = 1.

THEOREM 2. 7w Theorem I, if — 1 < p <ί 0, ί&ew (1. 2) #fcτy 6β replaced by

(1. 2)* lim lira sup «P f |Δ^)^)I cίί = 0.
fc->oo U->0 " J £1 + P

(fctt)l/Δ

THEOREM 3. Let Δ>1, p > — 1, 7 > / β > 0 and
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0

then the Fourier series of f(t) is summable (C, p) to s at t = x.

2. Proof of Theorem 1. In our theorem, if we put Δ = V/β, we have
p = 0. Hence, this case is Theorem C. The case Δ = 1 and the case 7 = β
are Theorem A. Therefore it is sufficient to prove the theorem in case of
7 > β, Δ > 1, 1 > p > 0. The method of proof is analogous to those of
Gergen [1] and Izumi and Sunouchi [3].

For the proof of our theorem, we need several lemmas.
Let us donote by K^(t) the n-th Cesaro mean of order p of the series

1
<2 4- 2 cos kt Then we have

LEMMA 1 (cf. GERGEN [1], LEMMA 6). If we suppose — 1< p <Ξ 1,
then

(2. 1) Kfίt) = Stff ) + Rp(t),

where

-, An = n + (ρ + l)/2, A = -(ρ + l)π 2,

It Λ *J \ 71 Λ*

(2.3) = nt* '
and

P/-1-^ for nt>l, h>Q and 0 < p ̂  1.

LEMMA 2 (c/. GERGEN [1], LEMMA 7). // Λ;I/Δ S ̂ ,
v

I \ dt ̂  xr(v + rx)1+f dt

fr Q/* integers r > 0 «wc? w > 1.

LEMMA 3. Under the assumption of the theorem, we have

φr(t) = otfU-O -DΔ-pCΔ-i)^ (jf -̂  0),

where r is an integer such that 1 g r ̂  [/3] 4-1.

PROOF. Let β be non-integral and ^ = [/?] + 1. Then, by the assumption,

we have

φμ(t) =
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hence

φιί(t) = oftl Kμ-OΔ-pCΔ-l)^

since

7 + (μ - β) - {1 + (μ ~ 1)Δ - p(Δ - 1)}

Therefore it is sufficient to prove that φr+ι(t) = o(t$) imply
where r > 1 and ξ = 1 + rΔ — p(Δ — 1). Let us put # = m + r — 1, &
1/Cff -f 1)Δ, and A! = 1/{(R + 1)Λ + 1}. We shall consider the integral

Γ
Δ Λτ~

1 Δ

By the definition, we have

/

hχΔ> ΓX~Et / R sβ . i

dt\ 12(-1)l/ U / ̂ r-ιίe/ + ̂ } k«Λ • ' - . J Λ ^ Π /

where η* is the linear combination of φr+\.
On the other hand, by Lemma 2, η is majorated by

Γ
Δ

where

= least upper bd. /P rf« .

ίι/Δ

Hence we have

bd. i /P '̂ ^^
Δ [ J ι Δ ^1+P

which is the required result.

In what follows, we put y = ?r/Λn = τr/{w + (p + l)/2>. Then

LEMMA 4. Under the assumption of the theorem, we have

/

y

0

where v is a positive integer.

PROOF. We may replace by y/ Δ the upper limit of the above integral.
There is an integer μ such that μ — 1 < β <; μ. We may suppose that
μ — 1< β < μ, since the case μ = β can be easily deduced by the following
argument. By μ times application of integration by parts, we get
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By Lemma 3 and (2. 5),

/Λ = O^-^Tί^-^-P^ί.yl/Δ} - 0(1).

On the other hand,

IV - β)I^ = IV - 0) J" ^(f) ( JrJ *£(*> Λ

dt φβ(u)(t-uy-e-ι du
0

1/Δ

= f *^duϊ (Hϊκ^
0 U

/

y »u+y /.y
1/Δ ΛH-V ~yll*-y /.2/

1/Δ

 Γ2/ 1/Δ ^ + 7^

rflί J * + J ^ J dt + J ^ / ^ " J ** J *
0 w y u 0 u+y y^^-y l/1/^

say, where

t ?'
/I = OJ»"« / |9»χ«)

I t/

h ryl/Δ rw+2/ ^/
= J w(«) Λ J (^

/»y1/Δ />w+2/

= o| ̂ -P I w^-i-p Jw / (ί - uY-ε~l dt\
y u

= ofr"-") + o(wP-p- -s- <γ-'))) = 0(1), since 7 = Δ/3 - ρ(Δ - 1).

Integrating by parts,

/*"*-, Γ/'Δ

 rf v

= J -MW) ̂  J ^ ) KSίt) (t - up-*-
1 dt

/ y1/Δ

- 0* - β - 1) J (-̂ r)1"1
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say. We have

U

, «"*-,
O j j \φβ(u)\du

0

/,1/
1

μ-β-ι Γ

+
o

say, where

^l/Δ.y

J =

Λ
/3. V = Q ί ^μ-(μ-β-l) /

<M =
I J

0

and

',. = 0|Λμ-ι-P J
1/n

Λir 1/*
*-ι-P-(μ_0-i) / uy-ι-p du j. = 0(^-7) + o^^-P-t^-^) = 0(1).

i/n

Thus we get j^»2 = 0(1) and hence /^ = 0(1).
We shall now estimate JL

ry^-y M1'* N μ_λ

Jl = J w(«) du J ( dγ ) KSKt) (t - uY-ϊ-* dt

0 i/n

say, where

^̂ -» Γ^= Oj w-i-p J \φβ(u)\du I ί-'-p(ί - w^-β-z <#-1
1/W U+2/

( p1'*-, Γ «"^
= θ| M^-l-f / «Ϋ-1-P (ί - wχ-^-1 rfM

ι/» it+y
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/ ί*u-"-/
I/Λ

and

ί r r y/Δ i
= Ol Λ* I 1̂ (̂ )1 (t - w)*-*-1 Aί

I J L Ju+ί/ J
0

i/n

(y/Δ - 1///)^-^-1 J «τ ί/

= o

since the exponent of the first term is less than

Thus we get /g = 0(1;. Accordingly we have /3 = 0(1). By the similar way,
we get Ji = 0(1).
Collecting above estimations, we get Lemma 4.

LEMMA 5. Under the assumption of the theorem, we have
-π+ξy

I φ(t) R?

n(t) dt - 0(1), (n -> oo),
%1/Δ

where ξ is an integer.

PROOF. By Lemma 3, we have φτ(t) = 0(ί1-p(Δ-1)). Using this and inte-
gration by parts, we get

dt =

say, where by (2. 3)

RL = 0(1) + oίw-i^-P^-^-ajί.yi/Δ} = oC^-(Δ-1)(1-ί))/Δ) = 0(1)

and

I J 1 / Λ ^ J

+

LEMMA 6. Under the assumption of the theorem, we have
,-my

T = ~~ I φ(t + z^) a>(t,y) cos (A»ί + A) dt = 0(1),
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as n-+oo3 where m and v are integers such that l<Lv<.m, and

,. v _ _ 2m _ __ 2m ~ v __ ___ v ^
'y) ~~ {sin(ί + z/y)/2}1+P ' (sin t/2)1+<>

Proof. We need the following inequalities

which is Lemma 13 in Gergen [1].

Integrating by parts, we get

T =

-, f -
- ~*~ I φAt 4- ιy) ̂  cos (Ant + A)

A« 1 Δ ^

Tc

-̂ I
An J l

φι(t + ^y)ω(Λ^) sin(Anί'+ A) dt

= Γι -

say, where

and

Tt

-P-2 I /ι-PCΔ-D-4-p ̂  1 =

J

-P-* Γ /l-pίΔ-D-3-p ̂  I = J W-(Δ-1)/ΔJ. =

J ' J

Thus we get the lemma.

LEMMA 7. If (1. 2) ft0/ds for an integer m^>l, then the relation (I. 2) is
still valid when m is replaced by m' (m' ;> m).

Proof runs similarly as Lemma 14 in Gergen [1J.
Using above lemmas, we shall now prove the Theorem 1.
We denote by σ?Λ(x) the n th Cesaro mean of order p of the Fourier

series of f(t) at the point x. After Gergen, we have

say, where ζ?j = o(l) by Lemma 4 and Q3 = 0, since φ(t)Kft(t) is an even
periodic function. Accordingly it is sufficient for the proof to show that
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Qi = 0(1) :
,t+(v-m)v , π+ίv-mϊv

Γ) J rt*) s^ dt + Σ( Γ) J φ(t) Rί>n(t} dt

= Qt + Q*,

say. By Lemma 5, we have Qb = o(l). Concerning ζ?4, we get

J1/Δ

p-my

dt

2W-1 ™"
I I \V / !ΛΛΛ\ I

t,y)cos(Ant

Hence, by the assumption of the theorem and Lemmas 6 and 7, we get
Q4 = o(l). Thus the theorem is completely proved.

3. Proof of Theorem 2. It is sufficient to consider the case — 1< p < 0.
For this purpose we need some lemmas.

LEMMA 8.

Proof is easy.

LEMMA 9. If (kx)11* S v,

dt S Λ^ίv +

υ

p /
•/ I

for every pair of integers r > 0 and m>I.

LEMMA 10. If φβ(t) = o(ty) and

/

. , »
J—x ^*yi dt = 0

for 0 > p > - I,

l^r^[β] + l.

PROOF. It is sufficient to prove that if φr+ι(t) = o(tξ) for r > 1, then
0(^-Δ), where ξ = 1 + rΔ - p(Δ - 1).

Let us put R = w + r - 1, A = !/(/? + yfe1/Δ)Δ and A, = !/{(/? + ^1/Δ)Δ + 1}.
By the method of the proof of Lemma 3, we have
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0(1) + -^f~ (least upper bd ηft(t,k) ).
Λ — Λi V hx^t^xΔ /

= 0(1).

Thus we have φr(x) = 0(#*-Δ).

LEMMA 11. Under the assumption of the theorem, we have

/

(fc2/)1/Δ + v

where — 1 < p < 0.

By using Lemma 10 instead of Lemma 1, the proof runs similarly as in
the proof of Lemma 4.

LEMMA 12. If φ\(t) = o(t), then

L) dt = 0,lim Γ
W->oo J

/br - 1< p S 1-

LEMMA 13. // φι(t) = o(t), then

fcy

LEMMA 14. T/* ^ι(ί) =

p Λ+ξy
lim / φ(t)R*(t) dt = Q.
n^co J

I Γ*
lim -ry I φ(t 4- ϊ{y)ω(ί,^)cos(Anί + A) dt = 0.

LEMMA 15. If (1. 2)* holds for an integer mϊ>l, then the relation (1. 2)* is
still valid when m is replaced by m' (mf > m).

We shall now prove Theorem 2. We have

2m p /»

-Mσ 5(*) - *} = 2 (Γ) /
""» o

Zm /9«,\ Γ**0"*" 2»> /9wN /.(W'/^+

+ 2 (Γ) J ^(ί) ̂ (/) Λ + 2 ( " ) J
"=0 fcy v"° Ίcy

/9 p*-tv-mto 2w 9 *9

Σί
= ^ ^

say, where ζ?i = 0(1) by Lemma 12, Q.2 = o(l) by Lemma 13, Q3 = o(l) by
Lemma 11 and Q5 = 0. By the same method as in the proof of Theorem

1, we get Qt = 0(1).
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4. Proof of Theorem 3. It is sufficient to prove the theorem for the
case — 1 < p < 0, because the case p > 0 is the Sunouchi-Kanno theorem.

Since φ(t) = O(ί1"Δ) by (1. Γ), we have by the convexity theorem due to
Sunouchi [8],

(fc = 1, 2, ..... μ ~

(4. 1)

where μ is an integer such that μ — 1< β < μ. If Δ = 1, then we have
φ\(t) = 0(^/β) = o(t). Hence the case Δ == 1 is the Hardy-Littlewood theorem.
Therefore we may suppose Δ > 1. Under the these assumptions we shall
now prove Theorem 3.

We have

π{σ?n(x) - s} = j φ(t)K%t)dt

ϋ

/

kin π 7t

φ(t) Kί(t) dt + / φ(t) RUt) dt + J φ(t)S%t) dt

k\n

Since φ\(f) = o(ί), by Lemmas 12 and 13 we get Jι = o(l), /2 = o(l). Concerning
/3, we put

/

Wn* »*

φ(t)S g(ί) dt 4- / φ(t) Sft(t) dt = Λ
•/ Λ

where

δ = ^ + ̂  - 1 + /β _ /8 — p*
Δ + p Δ H- .7 7 ~ ~ p

Similarly as in the proof of Theorem 2 in the author's paper [5], we have

By μ times application of integration by parts,

say. By (4 1) and Lemma 8, we get, for h <Ξ μ — 1,

7Λ = 0{ ^t-1-pΓ^(j3-Λ)(1-Δ)+/^)/j3"1-p](fc/w) ί
( L jfc/». ί

where the exponent of the first term is

- h(y - β + Δ - 1)//3(Δ + γ)< 0
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and the exponent of the second term is

- A(7 - £Δ 4- Δ - 1)1 β < 0,

since 7 — βΔ > 0. Hence we get Ih = o(l) for h<^μ — l. Concerning 7μj we
have

(fc/w )
-1 Ί ( f c / w / r Ί(fc/n) \

s&» - oj W-H fv-/^-ι-P
Jfc/n ( L Jfc/7i )

where the exponent of n is

since 1 4- p = (β 4- 1) (Δ - l)/(γ 4- Δ - β - 1). Thus we have Iμ = 0(1).

Concerning 7^+1, we devide it in four parts;

/

VJ '"J l

/ / t t \ CΦ/.*Λ Λ± I / > / i \ a - i i
\ ~~j I &"•(*' dt I φa(t)(t — u^'P'1 du
\dt / J

Jcln x ϋ

/

In tt+fc/n -Win)8 u+kjn

j \ dt J J J
0 Jcjn kin vo

4 - ι du I dt — I du I dt

U u+kln (fc/n) δ-fc/n (fc/w) δ

The method of the estimation of Jι is similar to one of the proof of Theorem
1. For example, we shall show that J2 = o(l)

(fc/H) 5

- uY-*~l dt

= o

_ V ' " / " / ft >

2 = / φβ(u) duj
Ίcln Uι

/

( fc/W) ^+fc/^ η(fc/w) δ )

»V-I-P ^ I '(ί — uγ-β~l dt [ = oJw^-P-^"^ wv"p h
J J ( L J f c / » ^

where the exponent of n is

β^p^S(7-P)^β~p- g-5-̂  (7 - P) = 0

Thus we have J2

5. Remark. As we remarked in our previous paper [5], Theorem 1 in
case of p > 0 has the meaning when

0 < p < 1/(Δ - 1)

and Theorem 3, in case of p, > 0 has the meaning when

0 < p < 1/(Δ - 2).
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