ON THE CESÀRO SUMMABILITY OF FOURIER SERIES II

Masakiti Kinukawa

(Received March 20,1955)

1. Introduction Let $f(t)$ be an integrable function with period 2π and let $\phi(t)=\phi_{x}(t)=f(x+t)+f(x-t)-2 s$.
J. J. Gergen's Cesàro summability criterion of Fourier series reads as follows [1]:

Theorem A. Let $\varphi_{\beta}(t)$ be the β th integral of $\varphi(t)$. If

$$
\varphi_{\beta}(t)=o\left(t^{\beta}\right)
$$

$$
(t \rightarrow 0)
$$

and

$$
\lim _{k \rightarrow \infty} \limsup _{u \rightarrow 0} u^{\rho} \int_{k u}^{\pi} \frac{\left|\Delta_{u}^{(m)} \varphi(t)\right|}{t^{1+\rho}} d t=0,
$$

then the Fourier series of $f(t)$ is summable (C, ρ) to s at $t=x$, where $-1<\rho$ and

$$
\Delta_{u}^{(m)} \varphi(t)=\sum_{\nu=0}^{m}(-1)^{m+\nu}\binom{m}{\nu} \varphi(t+\nu u) .
$$

S. Izumi and G. Sunouchi [2], [7] proved the following theorems:

Theorem B. Let $\Delta=\gamma / \beta \geqq 1$. If $\varphi_{\beta}(t)=o\left(t^{\gamma}\right)(t \rightarrow 0)$,
and

$$
\int_{0}^{t}\left|d\left\{u^{\Delta} \varphi(u)\right\}\right|=O(t) \quad(0<t<\eta),
$$

then the Fourier series of $f(t)$ converges to s at $t=x$.
Theorem C. Let $\Delta=\gamma / \beta \geqq 1$. If $\varphi_{\beta}(t)=o\left(t^{\gamma}\right)(t \rightarrow 0)$
and

$$
\lim _{k \rightarrow \infty} \lim _{u \rightarrow 0} \sup _{(k u)^{1 / \Delta}} \int^{\pi} \frac{|\varphi(t)-\varphi(t+u)|}{t} d t=0
$$

then a Fourier series of $f(t)$ converges to s at $t=x$.
In the previous paper [5], we have proved the following:
Theorem D. Let $\Delta \geqq 1,-1<\rho<1$ and

$$
\gamma=\Delta-\rho(\Delta-1) .
$$

If $\varphi_{1}(t)=o\left(t^{\gamma}\right),(t \rightarrow 0)$ and

$$
\lim _{k \rightarrow \infty} \limsup _{u \rightarrow 0} u^{\rho} \int_{(k u)^{1 / / \Delta}}^{\pi} \frac{\left|\Delta_{u}^{(m)} \varphi(t)\right|}{t^{1+\rho}} d t=0,
$$

then the Fourier series of $f(t)$ is summable (C, ρ) to s at $t=x$.
Theorem E. Let $\Delta \geqq 1,-1<\rho<1$ and

$$
\gamma=\Delta-\frac{2 \rho(\Delta-1)}{1+\rho}
$$

If

$$
\varphi_{1}(u)=o\left(t^{\gamma}\right)
$$

and

$$
\begin{equation*}
\int_{0}^{t}\left|d\left\{u^{\Delta} \varphi(u)\right\}\right|=O(t) \tag{1.1}
\end{equation*}
$$

then the Fourier series of $f(t)$ is (C, ρ) summable to s at $t=x$.
Concerning Theorems B and E, recently K. Kanno [4] has proved the following theorem.

Theorem F. If $\varphi_{\beta}(t)=o\left(t^{\gamma}\right), \gamma>\beta>0$, and the condition (1.1) holds, then the Fourier series of $f(t)$ is (C, ρ) summable to s at $t=x$, where

$$
\Delta \geqq \gamma / \beta
$$

and

$$
\rho=\frac{\Delta \beta-\gamma}{\Delta+\gamma-\beta-1},
$$

that is,

$$
\gamma=\Delta \beta-\frac{\rho(\beta+1)(\Delta-1)}{1+\rho} \text { and } \rho \geqq 0 .
$$

In this paper we shall prove the following theorems.

$$
\begin{aligned}
& \text { ThEOREM 1. Let } \Delta \geqq 1,1>\rho \geqq 0, \gamma \geqq \beta>0 \text { and } \\
& \qquad \begin{array}{c}
\gamma=\Delta \beta-\rho(\Delta-1) . \\
\varphi_{\beta}(t)=o\left(t^{\gamma}\right)
\end{array} \quad(t \rightarrow 0)
\end{aligned}
$$

If
and

$$
\begin{equation*}
\lim _{u \rightarrow 0} u^{\rho} \int_{u^{1 / \Delta}}^{\pi} \frac{\left|\Delta_{u}^{(m)} \varphi(t)\right|}{t^{1+\rho}} d t=0, \tag{1.2}
\end{equation*}
$$

then the Fourier series of $f(t)$ is summable (C, ρ) to s at $t=x$.
If $\beta=\rho$ (i.e. $\gamma=\beta=\rho$), then we suppose $\Delta=1$.
Theorem 2. In Theorem 1, if $-1<\rho \leqq 0$, then (1.2) may be replaced by

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \lim _{u \rightarrow 0} \sup _{u} u^{\rho} \int_{(k u)^{1 / \Delta}}^{\tau} \frac{\left|\Delta_{u}^{(m)} \varphi(t)\right|}{t^{1+\rho}} d t=0 . \tag{1.2}
\end{equation*}
$$

Theorem 3. Let $\Delta \geqq 1, \rho>-1, \gamma \geqq \beta>0$ and

$$
\gamma=\Delta \beta-\frac{\rho(\beta+1)(\Delta-1)}{1+\rho} .
$$

If

$$
\varphi_{\beta}(t)=o\left(t^{\gamma}\right)
$$

and

$$
\int_{0}^{t}\left|d\left\{u^{\Delta} \varphi(u)\right\}\right|=O(t),
$$

then the Fourier series of $f(t)$ is summable (C, ρ) to s at $t=x$.
2. Proof of Theorem 1. In our theorem, if we put $\Delta=\gamma / \beta$, we have $\rho=0$. Hence, this case is Theorem C. The case $\Delta=1$ and the case $\gamma=\beta$ are Theorem A. Therefore it is sufficient to prove the theorem in case of $\gamma>\beta, \Delta>1,1>\rho>0$. The method of proof is analogous to those of Gergen [1] and Izumi and Sunouchi [3].

For the proof of our theorem, we need several lemmas.
Let us donote by $K_{n}^{\rho}(t)$ the n-th Cesàro mean of order ρ of the series $\frac{1}{2}+\sum_{k=1}^{\infty} \cos k t$. Then we have

Lemma 1 (cf. Gergen [1], Lemma 6). If we suppose $-1<\rho \leqq 1$, then

$$
\begin{equation*}
K_{n}^{\rho}(t)=S_{n}^{\rho}(t)+R_{n}^{\rho}(t), \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
S_{n}^{\rho}(t)=\frac{\cos \left(A_{n} t+A\right)}{A_{n}^{p}(2 \sin t / 2)^{1+\rho}}, \quad A_{n}=n+(\rho+1) / 2, \quad A=-(\rho+1) \pi 2 \tag{2.2}
\end{equation*}
$$

$$
\begin{equation*}
\left|R_{n}^{\rho}(t)\right| \leqq \frac{M}{n t^{2}}, \quad\left|\frac{d}{d t} R_{n}^{\gamma}(t)\right|<\frac{M}{n t^{3}}+\frac{M}{n^{2} t^{4}} \tag{2.3}
\end{equation*}
$$

and

$$
\left|\left(\frac{d}{d t}\right)^{h} K_{n}^{\rho}(t)\right| \begin{cases}\leqq n^{h+1}, & \text { for } h \geqq 0, \tag{2.4}\\ \leqq M n^{t-\rho} t^{-1-\rho}, & \text { for } n t \geqq 1, h \geqq 0 \quad \text { and } \quad 0<\rho \leqq 1 .\end{cases}
$$

Lemma 2 (cf. Gergen [1], Lemma 7). If $x^{1 / \Delta} \leqq v$, then

$$
\int_{x^{1 / \Delta}}^{v}\left|\Delta_{x}^{(r+m)} \varphi_{r}(t)\right| d t \leqq x^{r}(v+r x)^{1+\rho} \int_{x^{1 / \Delta}}^{v+r x} \frac{\left|\Delta_{x}^{(m)} \varphi(t)\right|}{t^{1+\rho}} d t
$$

for every pair of integers $r \geqq 0$ and $m \geqq 1$.
Lemma 3. Under the assumption of the theorem, we have

$$
\varphi_{r}(t)=o\left(t^{1+(r-1) \Delta-\rho(\Delta-1)}\right), \quad(t \rightarrow 0)
$$

where r is an integer such that $1 \leqq r \leqq[\beta]+1$.
Proof. Let β be non-integral and $\mu=[\beta]+1$. Then, by the assumption, we have

$$
\varphi_{\mu}(t)=o\left(t^{\gamma+(\mu-\beta)}\right),
$$

hence

$$
\varphi_{\mu}(t)=o\left(t^{1+(\mu-1) \Delta-\rho(\Delta-1)}\right),
$$

since

$$
\begin{gathered}
\gamma+(\mu-\beta)-\{1+(\mu-1) \Delta-\rho(\Delta-1)\} \\
=(\beta-[\beta])(\Delta-1)>0 .
\end{gathered}
$$

Therefore it is sufficient to prove that $\varphi_{r+1}(t)=o\left(t^{\xi}\right)$ imply $\varphi_{r}(t)=o\left(t^{\xi-\Delta}\right)$, where $r \geqq 1$ and $\xi=1+r \Delta-\rho(\Delta-1)$. Let us put $R=m+r-1, h=$ $1 /(R+1)^{\Delta}$, and $h_{1}=1 /\left\{(R+1)^{\Delta}+1\right\}$. We shall consider the integral

$$
\int_{h_{1} \Delta^{\Delta}}^{h x x^{\Delta}} d t \int_{t^{1 / \Delta}}^{\tau-R t} \Delta_{t}^{(R)} \varphi_{r-1}(u) d u=\eta
$$

By the definition, we have

$$
\begin{aligned}
\eta & =\int_{h_{1} x^{\Delta}}^{h v^{\Delta}} d t \int_{v^{\prime}, \Delta}^{x-R t}\left\{\sum_{\nu=0}^{R}(-1)^{\nu}\binom{R}{\nu} \varphi_{r-1}(u+\nu t)\right\} d u \\
& =(-1)^{R}\left(h-h_{1}\right) x^{\Delta} \varphi_{r}(x)+\eta^{*},
\end{aligned}
$$

where η^{*} is the linear combination of φ_{r+1}.
On the other hand, by Lemma 2, η is majorated by

$$
\begin{aligned}
& \int_{h_{1} x^{\Delta}}^{h x^{\Delta}} t^{r-1}(x-m t)^{1+\rho} d t \int_{t^{1 / \Delta}}^{r-m t} \frac{\left|\Delta_{t}^{(m)} \varphi(u)\right|}{u^{1+\rho}} d u \\
& \leqq \bar{\eta}_{\rho, \Delta}^{(m)} \cdot\left(h^{r-\rho}-h_{1}^{r-\rho}\right) x^{1+r \Delta-\rho(\Delta-1)},
\end{aligned}
$$

where

Hence we have

$$
\varphi_{r}(x)=o\left(x^{\xi-\Delta}\right),
$$

which is the required result.
In what follows, we put $y=\pi / A_{n}=\pi /\{n+(\rho+1) / 2\}$. Then
Lemma 4. Under the assumption of the theorem, we have

$$
I=\int_{0}^{y^{1 / \Delta}+v y} \varphi(t) K_{n}^{\rho}(t) d t=o(1), \quad(n \rightarrow \infty),
$$

where ν is a positive integer.
Proof. We may replace by $y^{1 / \Delta}$ the upper limit of the above integral. There is an integer μ such that $\mu-1<\beta \leqq \mu$. We may suppose that $\mu-1<\beta<\mu$, since the case $\mu=\beta$ can be easily deduced by the following argument. By μ times application of integration by parts, we get

$$
\begin{aligned}
I & =\sum_{n=1}^{\mu}(-1)^{h}\left[\varphi_{h}(t)\left(\frac{d}{d t}\right)^{h-1} K_{n}^{-}(t)\right]_{0}^{y^{1 / \Delta}}+(-1)^{\mu} \int_{0}^{y^{1 / \Delta}} \varphi_{\mu}(t)\left(\frac{d}{d t}\right)^{\mu} K_{n}^{\beta}(t) d t \\
& =\sum_{h=1}^{\mu}(-1)^{h} I_{h}+(-1)^{\mu} I_{\mu+1} .
\end{aligned}
$$

By Lemma 3 and (2.5),

$$
I_{h}=o\left\{n^{h-1-r}\left[t^{(h-1) \Delta-\rho \Delta}\right]_{i=y^{1} / \Delta}\right\}=o(1)
$$

On the other hand,

$$
\begin{aligned}
& \Gamma(\mu-\beta) I_{\mu+1}=\Gamma(\mu-\beta) \int_{0}^{y^{1 / \Delta}} \varphi_{\mu}(t)\left(\frac{d}{d t}\right)^{\mu} K_{n}^{\rho}(t) d t \\
&=\int_{0}^{y^{1 / \Delta}}\left(\frac{d}{d t}\right)^{\mu} K_{n}^{\rho}(t) d t \int_{0}^{t} \varphi_{\beta}(u)(t-u)^{\mu-\beta-1} d u \\
& \quad=\int_{0}^{y^{1 / \Delta}} \varphi_{\rho}(u) d u \int_{u}^{y^{1 / \Delta}}\left(\frac{d}{d t}\right)^{\mu} K_{n}^{3}(t)(t-u)^{\mu-\beta-1} d t \\
&= \int_{0}^{y} d u \int_{u}^{u+y} d t+\int_{y}^{y^{1 / \Delta}} d u \int_{u}^{u+y} d t+\int_{0}^{y^{1 / \Delta}-y} d u \int_{u+y}^{y^{1 / \Delta}} d t-\int_{y^{1 / \Delta}-y}^{y^{1 / \Delta}} d u \int_{y^{1 / \Delta}}^{u+y} d t \\
&= J_{1}+J_{2}+J_{3}-J_{1},
\end{aligned}
$$

say, where

$$
\begin{aligned}
J_{1} & =O\left\{n^{\mu+1} \int_{0}^{y}\left|\varphi_{\beta}(u)\right|\left[(t-u)^{\mu-\beta}\right]_{u}^{u+y} d u\right\}=o\left(n^{\beta-\gamma}\right)=o(1), \\
J_{2} & =\int_{y}^{y^{1 / \Delta}} \varphi_{\beta}(u) d u \int_{u}^{u+y}\left(\frac{d}{d t}\right)^{\mu} K_{n}^{\rho}(t)(t-u)^{\mu-\beta-1} d t \\
& =o\left\{n^{\mu-\rho} \int_{y}^{y^{1 / \Delta}} u^{\gamma-1-\rho} d u \int_{u}^{u+y}(t-u)^{\mu-\beta-1} d t\right\} \\
& =o\left(n^{\beta-\gamma}\right)+o\left(n^{\left.\beta-\rho-\frac{1}{\Delta}(\gamma-\rho)\right)=o(1), \text { since } \gamma=\Delta \beta-\rho(\Delta-1) .} .\right.
\end{aligned}
$$

Integrating by parts,

$$
\begin{aligned}
J_{3}= & \int_{0}^{y^{1 / \Delta}-y} \varphi_{\beta}(u) d u \int_{u+y}^{y^{1 / \Delta}}\left(\frac{d}{d t}\right)^{\mu} K_{n}^{\rho}(t)(t-u)^{\mu-\beta-1} d t \\
= & \int_{0}^{y^{1 / \Delta}-y} \varphi_{\beta}(u) d u\left\{\left[\left(\frac{d}{d t}\right)^{\mu-1} K_{n}^{\rho}(t)(t-u)^{\mu-\beta-1}\right]_{u+y}^{y^{1 / \Delta}}\right. \\
& \left.-(\mu-\beta-1) \int_{u+y}^{y^{1 / \Delta}}\left(\frac{d}{d t}\right)^{\mu-1} K_{n}^{p}(t)(t-u)^{\mu-\beta-2} d t\right\}=J_{3}^{1}-(\mu-\beta-1) J_{3}^{2},
\end{aligned}
$$

say. We have

$$
\begin{aligned}
J_{3}^{1} & =O\left\{\int_{0}^{y^{1 / \Delta}-y}\left|\varphi_{\beta}(u)\right| d u\left(n^{\mu-1-\rho}\left[t^{-1-\rho}\left(t-u^{\mu-\beta-1}\right]_{t=y^{1 / \Delta}}\right)\right\}\right. \\
& +O\left\{\int_{0}^{y^{1 / \Delta}-y}\left|\varphi_{\beta}(u)\right| d u\left[\left(\frac{d}{d t}\right)^{\mu-1} K_{n}^{\rho}(t)(t-u)^{\mu-\beta-1}\right]_{t=u+y}\right\} \\
& =J_{3}^{1_{3}^{1}}+J_{3}^{1,2} . \\
J_{3}^{1,1} & =o\left\{n^{\left.\mu-1-\rho+\frac{1}{\Delta}(1+\rho)\left(y^{1 / \Delta}-y^{1 / \Delta}+y\right)^{\mu-\beta-1} \int_{0}^{y^{1 / \Delta}} u^{\gamma} d u\right\}}\right. \\
& =o\left(n^{-\rho+\beta+\frac{1}{\Delta}(\rho-\gamma)}\right)=o(1) . \\
J_{3^{1,2}}^{1,2} & =\int_{0}^{1 / n}+\int_{1 / n}^{y^{1 / \Delta}-y}=J_{3^{1,2,1}}+J_{3^{1,2,2}}^{1 / n}
\end{aligned}
$$

say, where

$$
J_{3^{2,2,1}}^{1,}=O\left\{n^{\mu-(\mu-\beta-1)} \int_{0}^{1 / n}\left|\varphi_{\beta}(u)\right| d u\right\}=o\left(n^{\beta-\gamma}\right)=o(1)
$$

and

$$
\begin{aligned}
& J_{3}^{, 2,2}=O\left\{n^{\mu-1-\rho} \int_{1 / n}^{y^{1 / \Delta}-y}\left(\left|\varphi_{\beta}(u)\right|\left[t^{-1-\rho}(t-u)^{\mu-\beta-1}\right]_{t=u+y}\right) d u\right\} \\
& =o\left\{n^{\mu-1-\rho-(\mu-\beta-1)} \int_{1 / n}^{y^{1 / \Delta}} u^{\gamma-1-\rho} d u\right\}=o\left(n^{\beta-\gamma}\right)+o\left(n^{\beta-\rho-\frac{1}{\Delta}(\gamma-\rho)}\right)=o(1) .
\end{aligned}
$$

Thus we get $J_{3}{ }^{2}=o(1)$ and hence $J_{3}^{1}=o(1)$.
We shall now estimate J_{3}^{2}.

$$
\begin{aligned}
J_{3}^{2} & =\int_{0}^{y^{1 / \Delta}-y} \varphi_{\beta}(u) d u \int_{u+y}^{y^{1 / \Delta}}\left(\frac{d}{d t}\right)^{\mu-1} K_{n}^{\rho}(t)(t-u)^{\mu-\beta-2} d t \\
& =\int_{0}^{1 / n} d u+\int_{1 / n}^{y^{1 / \Delta}-y} d u=J_{3}^{2,1}+J_{3^{2,2}}^{2,}
\end{aligned}
$$

say, where

$$
\begin{aligned}
J_{3}^{2,2} & =O\left\{n^{\mu-1-\rho} \int_{1 / n}^{y^{1 / \Delta}-y}\left|\varphi_{\beta}(u)\right| d u \int_{u+y}^{y^{1 / \Delta}} t^{-1-\rho}\left(t-u^{\mu-\beta-2} d t\right\}\right. \\
& =o\left\{n^{\mu-1-\rho} \int_{1 / n}^{y^{1 / \Delta}-y} u^{\gamma-1-\rho}\left[(t-u)^{\mu-\beta-1}\right]_{u+y}^{y^{1 / \Delta}} d u\right\}
\end{aligned}
$$

$$
=o\left\{n^{\beta-\rho} \int_{1 / n}^{y^{1 / \Delta}-y} u^{\gamma-1-\rho} d u\right\}=o\left(n^{\beta-\gamma}\right)+o\left(n^{\beta-\rho-\frac{1}{\Delta}(\gamma-\rho)}\right)=o(1)
$$

and

$$
\begin{aligned}
J_{3}^{2,1} & =O\left\{n^{\mu} \int_{0}^{1 / n}\left|\varphi_{\beta}(u)\right|\left[(t-u)^{\mu-\beta-1}\right]_{u+y}^{y^{1 / \Delta}} d u\right\} \\
& =o\left\{n^{\mu}\left(y^{1 / \Delta}-1 / n\right)^{\mu-\beta-1} \int_{0}^{1 / n} u^{\gamma} d u\right\}+o\left(n^{\beta-\gamma}\right) \\
& =o\left\{n^{\mu-\frac{1}{\Delta}(\mu-\beta-1)-(\gamma+1)}\right\}+o\left(n^{\beta-\gamma}\right)=o(1),
\end{aligned}
$$

since the exponent of the first term is less than

$$
([\beta]-\beta)(\Delta-1) / \Delta \leqq 0 .
$$

Thus we get $J_{3}^{2}=o(1)$. Accordingly we have $J_{3}=o(1)$. By the similar way, we get $J_{4}=o(1)$.
Collecting above estimations, we get Lemma 4.
Lemma 5. Under the assumption of the theorem, we have

$$
\int_{y^{1 / \Delta}}^{\pi+\xi_{y}} \varphi(t) R_{n}^{p}(t) d t=o(1), \quad(n \rightarrow \infty)
$$

where ξ is an integer.
Proof. By Lemma 3, we have $\varphi_{1}(t)=o\left(t^{1-\rho(\Delta-1)}\right)$. Using this and integration by parts, we get

$$
\begin{aligned}
\int_{y^{1 / \Delta}}^{\pi+\xi_{y}} \varphi(t) R_{n}^{\rho}(t) d t & =\left[\varphi_{1}(t) R_{n}^{\rho}(t)\right]_{y^{1 / \Delta}}^{\pi+\xi_{y}}-\int_{y^{1 / \Delta}}^{\pi+\xi_{y}} \varphi_{1}(t) \frac{d}{d t} R_{n}^{\rho}(t) d t \\
& =R_{1}-R_{2},
\end{aligned}
$$

say, where by (2.3)

$$
R_{\mathrm{L}}=o(1)+o\left\{n^{-1}\left[t^{1-\rho(\Delta-1)-2}\right]_{t=y^{1 /}}\right\}=o\left(n^{-(\Delta-1)(1-\rho) / \Delta}\right)=o(1)
$$

and

$$
\begin{aligned}
& R_{2}=o\left\{\int_{y^{1 / \Delta}}^{\tau} t^{1-\rho(\Delta-1)}\left[n^{-1} t^{-3}+n^{-2} t^{-4}\right] d t\right\} \\
= & o\left\{n^{-1}\left[t^{-1-\rho(\Delta-1)}\right]_{t=y^{1 / \Delta}}\right\}+o\left\{n^{-2}\left[t^{-2-\rho(\Delta-1)}\right]_{t=y^{1 / \Delta}}\right\} \\
= & o\left(n^{-(\Delta-1)(1-\rho) / \Delta}\right)+o\left(n^{-(\Delta-1)(2-\rho) / \Delta}\right)=o(1) .
\end{aligned}
$$

Lemma 6. Under the assumption of the theorem, we have

$$
T=\frac{1}{A_{n}^{\rho}} \int_{y^{1 / \Delta}}^{\pi-m y} \varphi(t+\nu y) \omega(t, y) \cos \left(A_{n} t+A\right) d t=o(1),
$$

as $n \rightarrow \infty$, where m and ν are integers such that $1 \leqq \nu \leqq m$, and

$$
\omega(t, y)=\frac{2 m}{\{\sin (t+\nu y) / 2\}^{1+\rho}}-\frac{2 m-\nu}{(\sin t / 2)^{1+\rho}}-\frac{\nu}{\{\sin (t+2 m y) / 2\}^{1+\rho}} .
$$

Proof. We need the following inequalities

$$
\omega(t, y)=O\left(y^{y} t^{-3-\rho}\right), \quad \frac{\partial \omega}{\partial t}=O\left(y^{2} t^{-4-\rho}\right),
$$

which is Lemma 13 in Gergen [1].
Integrating by parts, we get

$$
\begin{aligned}
T= & \frac{1}{A_{n}^{\rho}}\left[\varphi_{1}(t+\nu y) \omega(t, y) \cos \left(A_{n} t+A\right)\right]_{y^{1 / \Delta}}^{\pi-m y} \\
& -\frac{1}{A_{n}^{\rho}} \int_{y^{1 / \Delta}}^{\pi-m y} \varphi_{1}(t+\nu y) \frac{\partial \omega}{\partial t} \cos \left(A_{n} t+A\right) d t \\
& +\frac{A_{n}}{A_{n}^{p}} \int_{y^{1 / \Delta}}^{\pi-m y} \varphi_{1}(t+\nu y) \omega(t, y) \sin \left(A_{n} t+A\right) d t \\
= & T_{1}-T_{2}+T_{3},
\end{aligned}
$$

say, where

$$
\begin{aligned}
& T_{1}=o\left\{n^{-\rho-2}\left[t^{1-\rho(\Delta-1)-3-\rho}\right]_{t=y^{1} / \Delta}\right\}=o\left\{n^{-2(\Delta-1) / \Delta}\right\}=o(1), \\
& T_{2}=o\left\{n^{-\rho-2} \int_{y^{1 / \Delta}}^{\pi} t^{1-\rho(\Delta-1)-4-\rho} d t\right\}=o\left\{n^{-\rho-2}\left[t^{-2-\rho \Delta}\right]_{t=y^{1 / \Delta}}\right\}=o(1)
\end{aligned}
$$

and

$$
T_{3}=o\left\{n^{1-\rho-2} \int_{y^{1 / \Delta}}^{\pi} t^{1-\rho(\Delta-1)-3-\rho} d t\right\}=o\left\{n^{-(\Delta-1) / \Delta}\right\}=o(1) .
$$

Thus we get the lemma.
Lemma 7. If (1.2) holds for an integer $m \geqq 1$, then the relation (1.2) is still valid when m is replaced by $m^{\prime}\left(m^{\prime} \geqq m\right)$.

Proof runs similarly as Lemma 14 in Gergen [1].
Using above lemmas, we shall now prove the Theorem 1.
We denote by $\sigma_{n}^{p}(x)$ the nth Cesàro mean of order ρ of the Fourier series of $f(t)$ at the point x. After Gergen, we have

$$
\begin{aligned}
& 2^{2 m-1} \pi\left[\sigma_{n}^{\rho}(x)-s\right] \\
& \quad=\sum_{\nu=0}^{2 m}\binom{2 m}{\nu}\left\{\int_{0}^{y^{1 / \Delta_{+}} \nu y}+\int_{y^{1 / \Delta_{+\nu y}}}^{\pi+(\nu-m) y}+\int_{\Delta+\pi(\nu-m) y}^{\pi}\right\}_{0} \varphi(t) K_{n}^{\rho}(t) d t \\
& =Q_{1}+Q_{2}+Q_{3},
\end{aligned}
$$

say, where $Q_{1}=\phi(1)$ by Lemma 4 and $Q_{3}=0$, since $\varphi(t) K_{l}^{\rho}(t)$ is an even periodic function. Accordingly it is sufficient for the proof to show that

$$
\begin{aligned}
Q_{2} & =o(1): \\
Q_{2} & =\sum_{\nu=0}^{2 m}\binom{2 m}{\nu} \int_{y^{1 / \Delta_{+\nu y}}}^{\tau+(\nu-m) y} \varphi(t) S_{n}^{\rho}(t) d t+\sum_{\nu=0}^{2 m}\binom{m}{\nu} \int_{y^{1 / \Delta_{+r y}}}^{\tau+(\nu-m) y} \varphi(t) R_{n}^{\rho}(t) d t \\
& =Q_{4}+Q_{5},
\end{aligned}
$$

say. By Lemma 5 , we have $Q_{5}=o(1)$. Concerning Q_{1}, we get

$$
\begin{aligned}
Q_{4} & =\frac{1}{2^{1+\rho} A_{n}^{\rho}}\left\{\int_{y^{1 / \Delta}}^{\pi-m y} \frac{\Delta_{y}^{(2 m-1)} \varphi(t+y)}{\{\sin (t+2 m y) / 2\}^{++\rho}} \cos \left(A_{n} t+A\right) d t\right. \\
& -\int_{y^{1 / \Delta}}^{\pi-m y} \frac{\Delta_{y}^{(2 m-1)} \varphi(t)}{(\sin t / 2)^{1+\rho}} \cos \left(A_{n} t+A\right) d t \\
& \left.+\sum_{\nu=1}^{2 m-1} \frac{(-1)^{\nu}}{2 m}\binom{2 m}{\nu} \int_{y^{1 / \Delta}}^{\pi-m y} \varphi(t+\nu y) \omega(t, y) \cos \left(A_{n} t+A\right) d t\right\} .
\end{aligned}
$$

Hence, by the assumption of the theorem and Lemmas 6 and 7, we get $Q_{4}=\boldsymbol{o}(1)$. Thus the theorem is completely proved.
3. Proof of Theorem 2. It is sufficient to consider the case $-1<\rho<0$. For this purpose we need some lemmas.

Lemma 8.

$$
\left.\left(\frac{d}{d t}\right)^{r} S_{n}^{\rho}(t)=O_{(}^{\prime} n^{r-\rho} t^{-1-\rho}\right), \quad \text { for } n t \geqq 1
$$

Proof is easy.
Lemma 9. If $(k x)^{1 / \Delta} \leqq v$, then

$$
\int_{(k x)^{1 / \Delta}}^{v}\left|\Delta_{x}^{(r+m)} \varphi_{r}(t)\right| d t \leqq x^{r}(v+r x)^{1+\rho} \int_{(k x)^{1 / \Delta}}^{v+r x} \frac{\left|\Delta_{c}^{(m)} \varphi(t)\right|}{t^{1+\rho}} d t
$$

for every pair of integers $r \geqq 0$ and $m \geqq 1$.
Lemma 10. If $\left.\varphi_{\beta}(t)=o o_{(} t^{\gamma}\right)$ and
$\lim _{k \rightarrow \infty} \lim _{x \rightarrow 0} \sup \eta_{\rho, \Delta}^{(m)}(x, k)=\lim _{k \rightarrow \infty} \lim _{x \rightarrow 0} \sup _{x} x^{\rho} \int_{(k v)^{1 / \Delta}}^{\pi} \frac{\left|\Delta_{x}^{(m)} \varphi(t)\right|}{t} d t=0$
for $0>\rho>-1$, then

$$
\varphi_{r}(t)=o\left(t^{1+(r-1) \Delta-\rho(\Delta-1)}\right),
$$

where $1 \leqq r \leqq[\beta]+1$.
Proof. It is sufficient to prove that if $\varphi_{r+1}(t)=o\left(t^{\xi}\right)$ for $r \geqq 1$, then $\phi_{r}(t)=o\left(t^{\xi-\Delta}\right)$, where $\xi=1+r \Delta-\rho(\Delta-1)$.

Let us put $R=m+r-1, h=1 /\left(R+k^{1 / \Delta}\right)^{\Delta}$ and $h_{1}=1 /\left\{\left(R+k^{1 / \Delta}\right)^{\Delta}+1\right\}$. By the method of the proof of Lemma 3, we have

$$
\begin{aligned}
\frac{\left|\varphi_{r}(x)\right|}{x^{\xi-\Delta}} & \leqq o(1)+\frac{h^{r-\rho}-h_{1}^{r-\rho}}{h-h_{1}}\left(\underset{h_{1} x^{\Delta} \leqq t \leqq h x^{\Delta}}{\text { least }} \text { upper bd. } \eta_{\rho, \Delta}^{(m)}(t, k)\right) \\
& =\bar{o}(1)
\end{aligned}
$$

Thus we have $\varphi_{r}(x)=o\left(x^{\xi-\Delta}\right)$.
Lemma 11. Under the assumption of the theorem, we have

$$
\int_{k, y}^{(k y)^{1 / \Delta_{+}}} \varphi(t) S_{n}^{p}(t) d t=o(1), \quad(n \rightarrow \infty)
$$

where $-1<\rho<0$.
By using Lemma 10 instead of Lemma 1, the proof runs similarly as in the proof of Lemma 4.

Lemma 12. If $\varphi_{1}(t)=o(t)$, then

$$
\lim _{n \rightarrow \infty} \int_{0}^{k y} \phi(t) K_{n}^{\rho}(t) d t=0
$$

for $-1<\rho \leqq 1$.
Lemma 13. If $\varphi_{1}(t)=o(t)$, then

$$
\lim _{n \rightarrow \infty} \int_{k y}^{\pi+\xi_{y} y} \varphi(t) R_{. .}^{\rho}(t) d t=0 .
$$

Lemma 14. If $\varphi_{1}(t)=o(t)$, then

$$
\lim _{n \rightarrow \infty} \frac{1}{A_{n}^{\rho}} \int_{(k y)^{1 / \Delta}}^{\pi-m y} \varphi(t+\nu y) \omega(t, y) \cos \left(A_{n} t+A\right) d t=0
$$

Lemma 15. If (1.2)* holds for an integer $m \geqq 1$, then the relation (1.2)* is still valid when m is replaced by $m^{\prime}\left(m^{\prime} \geqq m\right)$.

We shall now prove Theorem 2. We have

$$
\begin{aligned}
& 2^{2 m-1} \pi\left\{\sigma_{n}^{\rho}(x)-s\right\}=\sum_{\nu=0}^{2 m}\binom{2 m}{\nu} \int_{0}^{k y} \varphi(t) K_{n}^{\rho}(t) d t \\
& \quad+\sum_{\nu=0}^{2 m}\binom{2 m}{\nu} \int_{k y}^{\pi+(\nu-m) y} \varphi(t) R_{n}^{\rho}(t) d t+\sum_{\nu=0}^{2 m}\binom{2 m}{\nu} \int_{k y}^{(k y)^{1 / \Delta_{+\nu y}} \varphi(t) S_{n}^{\rho}(t) d t} \\
& \quad+\sum_{\nu=0}^{2 m}\binom{2 m}{\nu} \int_{(k y)^{1 / \Delta_{+\nu y}}}^{\pi-(\nu-m) y} \varphi(t) S_{i l}^{\rho}(t) d t+\sum_{\nu=0}^{2 m}\binom{2 m}{\nu} \int_{\pi+(\nu-m) y}^{\pi} \varphi(t) K_{n}^{\rho}(t) d t \\
& =Q_{1}+Q_{2}+Q_{3}+Q_{4}+Q_{5},
\end{aligned}
$$

say, where $Q_{1}=o(1)$ by Lemma 12, $Q_{2}=o(1)$ by Lemma 13, $Q_{3}=o(1)$ by Lemma 11 and $Q_{5}=0$. By the same method as in the proof of Theorem 1 , we get $Q_{4}=\bar{o}(1)$.
4. Proof of Theorem 3. It is sufficient to prove the theorem for the case $-1<\rho<0$, because the case $\rho \geqq 0$ is the Sunouchi-Kanno theorem.

Since $\varphi(t)=O\left(t^{1-\Delta}\right)$ by (1.1), we have by the convexity theorem due to Sunouchi [8],

$$
\begin{array}{ll}
\varphi_{l}(t)=o\left(t^{((\beta-h)(1-\Delta)+h \gamma\rangle / \beta}\right), & (h=1,2, \ldots, \mu-1) \tag{4.1}\\
\varphi_{\mu}(t)=o_{1}\left(t^{\gamma-\beta+\mu}\right), &
\end{array}
$$

where μ is an integer such that $\mu-1<\beta<\mu$. If $\Delta=1$, then we have $\varphi_{1}(t)=o\left(t^{\gamma / \beta}\right)=o(t)$. Hence the case $\Delta=1$ is the Hardy-Littlewood theorem. Therefore we may suppose $\Delta>1$. Under the these assumptions we shall now prove Theorem 3.

We have

$$
\begin{aligned}
\pi\left\{\sigma_{n}^{p}(x)-s\right\} & =\int_{0}^{\pi} \varphi(t) K_{n}^{p}(t) d t \\
& =\int_{0}^{k / n} \varphi(t) K_{n}^{p}(t) d t+\int_{k_{i} n}^{\pi} \varphi(t) R_{n}^{p}(t) d t+\int_{k / n}^{\pi} \varphi(t) S_{n}^{\rho}(t) d t \\
& =J_{1}+J_{2}+J_{3} .
\end{aligned}
$$

Since $\varphi_{1}(t)=o(t)$, by Lemmas 12 and 13 we get $J_{1}=o(1), J_{2}=o(1)$. Concerning J_{3}, we put

$$
J_{3}=\int_{k / n}^{\left(k / \mid n_{i}^{\delta}\right.} \varphi(t) S_{h i n}^{P}(t) d t+\int_{(k / n)^{\delta}}^{\pi} \varphi(t) S_{k i}^{\rho}(t) d t=J_{4}+J_{5}
$$

where

$$
\delta=\frac{1+\rho}{\Delta+\rho}=\frac{1+\beta}{\Delta+\gamma}=\frac{\beta-\rho^{\prime}}{\gamma-\rho}<1
$$

Similarly as in the proof of Theorem 2 in the author's paper [5], we have $J_{5}=o(1)$.
By μ times application of integration by parts,

$$
\begin{aligned}
J_{4} & =\sum_{n=1}^{\mu}(-1)^{n+1}\left[\varphi_{n}(t)\left(\frac{d}{d t}\right)^{h-1} S_{n}^{p}(t)\right]_{k / n}^{(k / n)^{\delta}}+(-1)^{\mu} \int_{k / n}^{(k / n)^{\delta}} \varphi_{\mu}(t)\left(\frac{d}{d t}\right)^{\mu} S_{n}^{p}(t) d t \\
& =\sum_{n=1}^{\mu}(-1)^{n+1} I_{h}+\left(-1 j^{\mu} I_{\mu+1},\right.
\end{aligned}
$$

say. By (4.1) and Lemma 8 , we get, for $h \leqq \mu-1$,

$$
\begin{aligned}
I_{h} & =o\left\{n^{h-1-\rho}\left[t^{((\beta-h)(1-\Delta)+h \gamma) / \beta-1-\rho}\right]_{k / n}^{(k / n)^{\delta}}\right\} \\
& =o\left(n^{h-1-\rho-\delta \delta[(\beta-h)(1-\Delta)+h \gamma) / \beta-1-\rho])}+o\left(n^{h-1-\rho-((\beta-h)(1-\Delta)+h \gamma) / \beta+2+\rho)} .\right.\right.
\end{aligned}
$$

where the exponent of the first term is

$$
-h(\gamma-\beta+\Delta-1) / \beta(\Delta+\gamma)<0
$$

and the exponent of the second term is

$$
-h(\gamma-\beta \Delta+\Delta-1) / \beta<0
$$

since $\gamma-\beta \Delta>0$. Hence we get $I_{h}=o(1)$ for $h \leqq \mu-1$. Concerning I_{μ}, we have

$$
\begin{aligned}
I_{\mu} & =\left[\varphi_{\mu}(t)\left(\frac{d}{d t}\right)^{\mu-1} S_{n}^{\rho}(t)\right]_{k / n}^{(k / n) \delta}=o\left\{n^{\mu-1-\rho}\left[t^{\gamma-\beta+\mu-1-\rho}\right]_{k / n}^{(k / n)^{\delta}}\right\} \\
& =o\left(n^{\mu-1-\rho-\delta[\gamma+\mu-\beta-1-\rho]}\right)
\end{aligned}
$$

where the exponent of n is

$$
(\Delta-1)(\mu-\beta-1) /(\Delta+\rho)<0
$$

since $1+\rho=(\beta+1)(\Delta-1) /(\gamma+\Delta-\beta-1)$. Thus we have $I_{\mu}=o(1)$.
Concerning $I_{\mu+1}$, we devide it in four parts;

$$
\begin{aligned}
I_{\mu+1}= & \int_{k / n}^{(k / n)^{\delta}}\left(\frac{d}{d t}\right)^{\mu} S_{n}^{\rho}(t) d t \int_{0}^{t} \varphi_{\beta}(t)(t-u)^{\mu-\beta-1} d u \\
= & \int_{0}^{k / n} \varphi_{\beta}(u) d u \int_{k / n}^{u+k / n}\left(\frac{d}{d t}\right)^{\mu} S_{n}^{\rho}(t)(t-u)^{\mu-\beta-1} d t+\int_{k / n}^{(k / n)^{\delta}} d u \int_{u}^{u+k / n} d t \\
& \quad+\int_{u}^{(k / n)^{\delta}-k / n} d u \int_{u+k / n}^{(k / n)^{\delta}} d t-\int_{(k / n)^{\delta}-k / n}^{(k / n)^{\delta}} d u \int_{(k / n)^{\delta}}^{u+k / n} d t \\
= & J_{1}+J_{2}+J_{3}-J_{4}
\end{aligned}
$$

The method of the estimation of J_{i} is similar to one of the proof of Theorem 1. For example, we shall show that $J_{2}=o(1)$;

$$
\begin{aligned}
& J_{2}=\int_{k / n}^{(k / n)^{\delta}} \varphi_{\beta}(u) d u \int_{u}^{u+k / n}\left(\frac{d}{d t}\right)^{\mu} S_{n}^{\rho}(t)(t-u)^{\mu-\beta-1} d t \\
= & o\left\{n^{\mu-\rho} \int_{k / n}^{(k / n)^{\delta}} u^{\gamma-1-\rho} d u \int_{u}^{u+k / n} \cdot(t-u)^{\mu-\beta-1} d t\right\}=o\left\{n^{\mu-\rho-(\mu-\beta)}\left[u^{\gamma-\rho}\right]_{k / n}^{(k / n)^{\delta}}\right\} \\
= & o\left(n^{\beta-\rho-\delta(\gamma-\rho)}\right),
\end{aligned}
$$

where the exponent of n is

$$
\beta-\rho-\delta(\gamma-\rho)=\beta-\rho-\frac{(\beta-\rho)}{(\gamma-\rho)}(\gamma-\rho)=0
$$

Thus we have $J_{2}=o(1)$.
5. Remark. As we remarked in our previous paper [5], Theorem 1 in case of $\rho>0$ has the meaning when

$$
0<\rho<1 /(\Delta-1)
$$

and Theorem 3, in case of $\rho,>0$ has the meaning when

$$
0<\rho<1 /(\Delta-2)
$$

References

[1] J. J. Gergen, Convergence and summability criteria for Fourier series, Quart. Journ. Math. 1(1930), 252-275.
[2] S. Izumi, Some trigonometrical series VIII, Tôhoku Math. Journ. (2), 5(1954), 296-301.
[3] S. Izumi and G. SunOuchi, Theorems concerning Cesàro summability, Tôhoku Math. Journ. (2), 1(1950), 313-326.
[4] K. Kanno, Cesàro summability of Fourier series, Tôhoku Math. Journ. (2), 7(1955), 110-118.
[5] M. Kinukawa, On the Cesàro summability of Fourier series, Tôhoku Math. Journ. (2), 6(1954), 109-120.
[6] G. Sunouchi, Cesàro summability of Fourier series, Tôhoku Math. Journ. (2), 5(1953), 198-210.
[7] G. Sunouchl, A new convergence criterion for Fourier serie, Tôhoku Math. Journ. (2), 5(1954), 238-242.
[8] G. Sunouchi, Convexity theorems and Cesàro summability of Fourier series, Journ of Math. 1(1953), 104-109.

Natural Science Division International Christian University.

