ON THE THEORY OF UNIVALENT FUNCTIONS

Toshio Umezawa

(Received November 22,1954)

1. Introduction. It is the purpose of the present paper to obtain sufficient conditions that $f(z)$ regular or meromorphic in a given region be univalent or multivalent in the region. For this purpose the convexity and concavity of the image curves will be used efficiently.

A necessary and sufficient condition for the convexity of the function $f(z)=z+a_{2} z^{2}+\ldots$ regular for $|z|<r$ is known to be [1]

$$
\begin{equation*}
1+\Re \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}>0 \text { for }|z|<r . \tag{1}
\end{equation*}
$$

However, for the univalency of the above function $f(z)$, it is sufficient that $f(z)$ is convex in one direction [2] and we have the following result: [3, 4. 8].

Theorem A. Let $f(z)=z+a_{2} z^{2}+\ldots$ be regular for $|z| \leqq 1$ and $f^{\prime}(z) \neq 0$ on $|z|=1$. If there holds the relation

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|1+\Re \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| d \theta<4 \pi, \quad|z|=1 \tag{2}
\end{equation*}
$$

then $f(z)$ is convex in one direction and hence $f(z)$ is univalent in $|z| \leqq 1$.
Some of the conditions which will be given in this paper contain the above theorem as a special case and have the form analogous to the above one. But in our present case $f(z)$ is not necessarily convex in one direction. The univalency of $f(z)$ will be deduced from a geometrical fact, more general than the convexity in one direction. This geometrical fact (Lemma 1) will be stated in $\S 2$ which is fundamental in our investigation.

Making use of the same lemma, we shall also extend or make more precise the following well-known:

Theorem B. If $f(z)$ is regular in a convex region D and if $\Re f^{\prime}(z)>0$ in D, then $f(z)$ is univalent in D.

This is due to K. Noshiro [5] and J. Wolff [6], Their methods of proof were very elegant. However it seems to me that the methods are hardly useful for the purpose of extending Theorem B to the case of multiply connected domain. Our method is powerful enough to enable us to succeed in the work.

Furthermore we shall give a new generalization of Theorem B to the case of p-valence.
2. The fundamental lemma.

Lemma 1. Let $w=f(z)$ be regular in a simply connected closed region D_{z} whose boundary I_{z} consists of a regular curve and $f^{\prime}(z) \neq 0$ on Γ_{z}. If there holds one of the following conditions;
(i) For arbitrary arcs C_{z} on Γ_{z}

$$
\begin{equation*}
\int_{C z} d \arg d f(z)>-\pi \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\Gamma z} d \arg d f(z)=2 \pi \tag{2.2}
\end{equation*}
$$

(ii) For arbitrary arcs C_{z} on Γ_{z}

$$
\begin{equation*}
\int_{C z} d \arg d f(z)<3 \pi \tag{2.3}
\end{equation*}
$$

then $f(z)$ is univalent in D_{z}.
Proof. Let D_{w} and Γ_{w} be the images of D_{z} and Γ_{z} respectively.
(i) There exists no branch-point in D_{w} since we have (2.2) by MorseHeins' theorem [7].

Suppose that $f(z)$ is n-valent in D_{z} and that $n \geqq 2$, then D can be considered as a one-sheeted region on an at least n-sheeted Riemann surface S. It is evident that if D_{w} encircles no branch-point of S, namely if any curve connecting any two points in D_{w} encircles no branch-point of S, then D_{w} has no overlapping part. Hence D_{w} encircles at least one branch-point B of S without including it, since D has some overlapping parts and since D_{w} include no branch-point by our assumption. The inner boundary of this encircling part of D_{w} makes an arc (or a loop) \boldsymbol{C}_{w} for which

$$
\int_{C w} d \arg d w \leqq-\pi
$$

holds, since the positive direction on Γ_{v} coincides with the clockwise direction on \boldsymbol{C}_{w}. Namely, it is necessary that there exists at least an $\operatorname{arc} \boldsymbol{C}_{z}$ on $\boldsymbol{\Gamma}_{z}$ for which

$$
\int_{C_{z}} d \arg d f(z) \leqq-\pi
$$

if $f(z)$ is at least two valent and if we have (2.2). Hence $f(z)$ is univalent if we have the condition (i).
(ii) Since we havel(2.3) and since $\frac{1}{2 \pi} \int_{\Gamma_{z}} d \arg d f(z)$ is a positive integer, we obtain (2.2). Subtracting (2.3) from (2.2) we obtain (2.1) for arbitrary $\operatorname{arcs} C_{z}$ on Γ_{z}, which proves the case (ii) by using the condition (i).

3. The fundamental theorems.

'Theorem 1. Let $w=f(z)$ be regular for a closed domain D_{z} whose boundary Γ_{z} be a simple closed regular curve and $f^{\prime}(z) \neq 0$ on Γ_{z}. Let z_{i} and $z_{j}, i, j=$ $1,2, \ldots$ be the roots of the equation

$$
d \arg d f(z)=0 \text { on } \Gamma_{z} .
$$

If there holds one of the following conditions:

$$
\begin{gather*}
\operatorname{Max}_{i, j} \int_{z_{j}}^{z_{i}} d \arg d f(z)<3 \pi, \quad z \in \Gamma_{z}: \tag{i}\\
\int_{\Gamma_{z}} d \arg d f(z)=2 \pi \tag{ii}
\end{gather*}
$$

and

$$
\operatorname{Min}_{i,} \int_{z_{i}}^{z_{j}} d \arg d f(z)>-\pi,
$$

then $f(z)$ is univalent in D_{z}
Proof. By Lemma $1, f(z)$ is univalent, if we have

$$
\begin{equation*}
\int_{y}^{x} d \arg d f(z)<3 \pi \quad z \in \Gamma_{z} \tag{3.1}
\end{equation*}
$$

for arbitrary x and y belonging to Γ_{z}.
On the other hand, the maximum of the integral in (3.1) occurs only when $f(x)$ and $f(y)$ are points of inflexion on Γ_{w}, the image of Γ_{z}. Namely it occurs when x and y are the zeros of $d \arg d f(z)=0$ on Γ_{z}. Hence $f(z)$ is univalent if we have the condition (i).

Analogous reasoning with condition (i) of Lemma 1 yields the proof of the case (ii), which may be omitted here.

Theorem 2. Let $f(z)$ be regular and $f^{\prime}(z) \neq 0$ in a closed convex domain D whose boundary L be a regular curve. Further let $z_{i}, i=1,2, \ldots$. be the roots of the equation

$$
\begin{equation*}
\frac{d \arg d f(z)}{d \arg d z}=0 \text { on } L . \tag{3.2}
\end{equation*}
$$

If there hold the relations

$$
\begin{equation*}
\because e^{i \alpha} f^{\prime}\left(z_{i}\right)>0 \quad(\alpha: \text { a real constant }) \tag{3.3}
\end{equation*}
$$

for all z_{i}, then $f(z)$ is univalent in D.
$P_{\text {Roof }}$. Since D is a convex domain, $d, \arg d z \geqq 0$ on L. Hence the equation (3.2) is equivalent to the equation $d \arg d f(z)=0$ on L.

Now since $f^{\prime}(z) \neq 0$ in $D, \arg f^{\prime}(z)$ is one-valued in D. Accordingly arg $d f(z)$ is also one-valued on L if we take a suitable branch of arg $d z$ since $\arg d f(z)=\arg f^{\prime}(z)+\arg d z$.
By noticing this fact and by the assumption (3.3), we have

$$
\begin{equation*}
-\frac{\pi}{2}<\alpha+\arg d f\left(z_{i}\right)-\arg d z_{i}<\frac{\pi}{2} \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
-\frac{\pi}{2}<-\alpha-\arg d f\left(z_{j}\right)+\arg d z_{j}<\frac{\pi}{2} \tag{3.5}
\end{equation*}
$$

for every z_{i} and $z_{j}, i>j$ satisfying (3.3). Hence we have

$$
-\pi<\arg d f\left(z_{i}\right)-\arg d f\left(z_{j}\right)+\arg d z_{j}-\arg d z_{i}<\pi
$$

where $2 \pi \geqq \arg d z_{i}-\arg d z_{j} \geqq 0$ since D is a convex domain. Thus we have

$$
-\pi<\arg d f\left(z_{i}\right)-\arg d f\left(z_{j}\right)<3 \pi
$$

which is equivalent to

$$
-\pi<\int_{z_{j}}^{z_{i}} d \arg d f(z)<3 \pi
$$

This inequality shows that $f(z)$ is univalent in D by Theorem 1.
Corollary 1. Let $f(z)$ be regular for $|z| \leqq r$. Let θ_{i} and $\theta_{j}, i, j=1,2, \ldots$. be the roots of the equation

$$
\begin{equation*}
1+\mathfrak{H} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}=0, \quad|z|=r, \quad 0 \leqq \theta \leqq 2 \pi \tag{3.6}
\end{equation*}
$$

If there holds one of the following conditions;
(i) $\Pi^{i \alpha} f^{\prime}\left(r e^{i \theta_{j}}\right)>0\left(\alpha\right.$: a real constant) for all θ_{j} satisfying (3. 6),

$$
\begin{equation*}
\operatorname{Max}_{i, j} \int_{\theta_{j}}^{\theta_{i}}\left(1+\Re \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) d \theta<3 \pi, \quad|z|=r \tag{ii}
\end{equation*}
$$

(iii) $f^{\prime}(z) \neq 0$ in $|z| \leqq r$ and

$$
\operatorname{Min}_{i, j} \int_{\theta_{j}}^{\theta_{i}}\left(1+\Re \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) d \theta>-\pi, \quad|z|=r
$$

then $f(z)$ is univalent in $|z| \leqq r$.
Proof. By a simple calculation we see that

$$
1+\Re \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}=\frac{d \arg d f(z)}{d \arg d z} \quad \text { on }|z|=r
$$

which proves this corollary by Theorems 1 and 2 .
Remark. As an immediate result of Corollary 1 with condition (i) we obtain Theorem B stated in §1.

4. Special cases.

Theorem 3. Let $w=f(z)$ be regular for a simply connected closed domain D whose boundary Γ consists of a regular curve and $f^{\prime}(z) \neq 0$ on Γ. Further let C_{1} be the part of Γ on which d arg $d f>0$ and C_{2} be the part of Γ on which $d \arg d f \leqq 0$. If $f(z)$ satisfies for Γ one of the following conditions

$$
\begin{equation*}
\int_{c_{1}} d \arg d f(z)<3 \pi \tag{i}
\end{equation*}
$$

(ii) $f^{\prime}(z) \neq 0$ in D and

$$
\int_{c_{2}} d \arg d f(z)>-\pi
$$

(iii) $f^{\prime}(z) \neq 0$ in D and

$$
\int_{\Gamma}|d \arg d f(z)|<4 \pi
$$

then $f(z)$ is univalent in D.
Proof. Under our assumption and the conditions (i) and (ii) we obtain (2.3) and (2.2) with (2.1) in Lemma 1 for arbitrary arcs C_{ν} since

$$
\int_{C_{\nu}} d \arg d f<\int_{c_{1}} d \arg d f<3 \pi
$$

and since

$$
\int_{c_{\nu}} d \arg d f>\int_{c_{2}} d \arg d f>-\pi
$$

and

$$
\int_{\Gamma} d \arg d f=2 \pi
$$

in view of $f^{\prime}(z) \neq 0$ in D. Thus $f(z)$ is univalent by Lemma 1, if we have (i) and (ii).

The proof of the case (iii) is as follows:
We have

$$
\int_{\Gamma}|d \arg d f|=\int_{c_{1}} d \arg \mid d f-\int_{c_{2}} d \arg d f<4 \pi
$$

On the other hand we have

$$
\int_{\Gamma} d \arg d f=\int_{C_{1}} d \arg d f+\int_{C_{2}} d \arg d f=2 \pi
$$

Hence we have

$$
\int_{c_{1}} d \arg d f<3 \pi
$$

which completes our proof by the condition (i).
Remark. As a generalization of Theorem A, Theorem 3 imay not be so important. But it should be noted that the method of proof is quite
different from that of Theorem A.
As an application of Theorem A we can obtain the following
Theorem 4. Let $f(z)=z+a_{2} z^{2}+\ldots$ be regular for $|z| \leqq 1$ and let

$$
\begin{equation*}
\left|f^{\prime \prime}(z)\right|<\sqrt{6}\left|f^{\prime}(z)\right| \quad \text { in }|z| \leqq 1 \tag{4.1}
\end{equation*}
$$

then $f(z)$ is univalent in $|z| \leqq 1$.
Proof. By our hypothesis (4.1) we have $f^{\prime}(z) \neq 0$ in $|z| \leqq 1$ and

$$
\int_{0}^{2 \pi}\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right|^{2} d \theta<12 \pi \quad \text { for }|z|=1
$$

Hence we have

$$
\begin{equation*}
\frac{1}{4} \int_{0}^{2 \pi}\left[\left(\frac{z f^{\prime \prime}}{f^{\prime}}\right)^{2}+2\left|\frac{z f^{\prime \prime}}{f^{\prime}}\right|^{2}+\left(\frac{\overline{z f^{\prime \prime}}}{\overline{f^{\prime}}}\right)^{2}\right] d \theta<6 \pi \tag{4.2}
\end{equation*}
$$

since

$$
\int_{0}^{2 \pi}\left(\frac{z f^{\prime \prime}}{f^{\prime}}\right)^{2} d \theta=0
$$

(4.2) is equivalent to the following

$$
\begin{equation*}
\int_{0}^{2 \pi}\left(\mathfrak{R} \frac{z f^{\prime \prime \prime}}{f^{\prime}}\right)^{2} d \theta<6 \pi \tag{4.3}
\end{equation*}
$$

which is also equivalent to the following inequality

$$
\int_{0}^{2 \pi}\left(1+\Re \frac{z f^{\prime \prime}}{f^{\prime}}\right)^{2} d \theta<8 \pi
$$

since $\int_{0}^{2 \pi} \Re \frac{z f^{\prime \prime}}{f^{\prime}} d \theta=0$ in view of the fact that $f^{\prime}(z) \neq 0$ in $|z| \leqq 1$. By employing Schwarz' inequality we obtain

$$
\int_{0}^{2 \pi}\left|1+\Re \frac{z f^{\prime \prime}}{f^{\prime}}\right| d \theta \leqq \sqrt{2 \pi \int_{0}^{2 \pi}\left(1+\Re \frac{z f^{\prime \prime}}{f^{\prime}}\right)^{2}} d \theta<4 \pi
$$

which shows that $f(z)$ is univalent in $|z| \leqq 1$ by Theorem A.
5. On the case of meromorphic functions.

Theorem 5. Let f(z) be regular for a simply connected closed region D except for a simple pole. Let the boundary Γ of D consist of a regular curve and $f^{\prime}(z) \neq 0$ on Γ. If there hold the following relations

$$
\begin{equation*}
d \arg d f(z)<0 \quad \text { on } \Gamma \tag{5.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\Gamma} d \arg d f(z)=-2 \pi \tag{5.2}
\end{equation*}
$$

then $f(z)$ is univalent in D.
Proof. Since $f(z)$ has a simple pole in D and since we have (5.2), there exists no branch-point in the image domain D_{w} of D by Morse-Heins' theorem [7].

If $f(z)$ is n-valent and if $n \geqq 2$, then the image region D_{w} can be considered as a one-sheeted region on an at least n-sheeted Riemann surface S. Since $f(z)$ has onlyl one pole, only one sheet of S has the point at infinity which is an interior point of \boldsymbol{D}_{w}. Let us take up this sheet in particular. The point at infinity is not a branch-point on this sheet and hence there exist at least two branch-points which are exterior points of $D_{v v}$. So long as D_{w} does not encircle two branch-points in pairs, there exists no overlapping part in D_{v}. Hence D_{v} encircles these points respectively without including them since D_{w} has some overlapping parts. The inner boundary of these encircling parts make loops (or arcs) Γ_{1} and Γ_{2} for which

$$
\int_{\Gamma_{i}} d \arg d f \leqq-\pi, \quad i=1,2, \ldots
$$

hold as we see in Lemma 1. Hence

$$
\int_{\Gamma_{1}+\Gamma_{2}} d \arg d f \leqq-2 \pi
$$

Consequently for the complementary arcs C of $\Gamma_{1}+\Gamma_{2}$ we have

$$
\begin{equation*}
\int_{C} d \arg d f>0 \quad C \neq 0 \tag{5.3}
\end{equation*}
$$

since we have (5.2). Namely, if $f(z)$ is at least two valent, then there exist at least two arcs whose sum satisfies (5.3).

On the other hand we have (5.1) and hence there exists no arcs satisfying (5.3). Hence $f(z)$ is univalent in D.

Corollary 2. Let $f(z)=\frac{1}{z}+a_{0}+a_{1} z+\ldots$ be regular for $0<|z| \leqq 1$. If there holds the relation

$$
\begin{equation*}
-2<1+\Re \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}<0 \quad \text { on }|z|=1 \tag{5.4}
\end{equation*}
$$

then $f(z)$ is univalent in $|z| \leqq 1$.

6. On the case of regular functions defined in an annulus.

Lemma 2. Let $w=f(z)$ be regular and single-valued in a doubly connected closed domain D which does not contain the point at infinity and bounded by two simple closed regular curves C_{1} and $C_{2}\left(C_{2}\right.$ is inside $\left.C_{1}\right)$

$$
C_{i}: z=z_{i}(t)(0 \leqq t \leqq 1) \quad i=1,2 .
$$

Further let $f\left(z_{1}\right) \neq f\left(z_{2}\right)$ for arbitrary two points z_{1} and $z_{2}, z_{1} \neq z_{2}$ on $C_{i}, i=$ 1,2. Suppose that $f^{\prime}(z) \neq 0$ in D. Then the image region Δ of D mapped by $f(z)$
is bounded by two simple closed regular curves

$$
\Gamma_{i}: w=w\left(z_{i}(t)\right), \quad i=1,2
$$

and this function maps D univalently onto Δ.

Proof. By our hypothesis, $\Gamma_{i}, i=1,2$ are simple and closed and

$$
w^{\prime}(t)=f^{\prime}\left(z_{i}(t)\right) z_{i}^{\prime}(t) \neq 0, \quad i=1,2
$$

Hence $\Gamma_{i}, i=1,2$ are also regular.
By the assumption that $f^{\prime}(z) \neq 0$ in D, we obtain

$$
\begin{equation*}
\int_{C_{1}} d \arg d f(z)=\int_{C_{2}} d \arg d f(z)=2 \pi \text { or }-2 \pi \tag{6.1}
\end{equation*}
$$

by Morse-Heins' theorem [7], where the integrals are taken so that z moves round on C_{1} and C_{2} in the counter-clockwise direction.

First we consider the case where the integrals in (6.1) are equal to 2π. Then w moves round on Γ_{1} and Γ_{2} in the counter-clockwise direction when z moves round on C_{1} and C_{2} in the counter-clockwise direction. Now let ω be an arbitrary point which does not lie on $\Gamma_{i}, i=1,2$ and let $n(D, \omega)$ denote the number of ω-points of $f(z)$ in D. Then we have

$$
\begin{aligned}
n(D, \omega) & =\frac{1}{2 \pi} \int_{C_{1}} d \arg (f(z)-\omega)-\frac{1}{2 \pi} \int_{C_{2}} d \arg (f(z)-\omega) \\
& =\frac{1}{2 \pi_{i}} \int_{C_{1}} \frac{f^{\prime}(z)}{f(z)-\omega} d z-\frac{1}{2 \pi i} \int_{C_{2}} \frac{f(z)}{f(z)-\omega} d z \\
& =\frac{1}{2 \pi i} \int_{0}^{1} \frac{f^{\prime}\left(z_{1}(t)\right) z_{1}^{\prime}(t)}{f\left(z_{1}(t)\right)-\omega}-2 \pi i \int_{0}^{1} \frac{f^{\prime}\left(z_{2}(t)\right) t}{f\left(z_{2}(t)\right)-\omega} d t \\
& =\frac{1}{2 \pi i} \int_{\Gamma_{1}} \frac{d w}{w-\omega}-\frac{1}{2 \pi_{i}} \int_{\Gamma_{2}} \frac{d w}{w-\omega}
\end{aligned}
$$

where the integrals on Γ_{1} and Γ_{2} are also taken in the counter-clockwise direction by the above statement.

Thus we see that (i) $n(D, \omega)=0$ when ω is inside Γ_{1} and Γ_{\Perp} (ii) $n(D, \omega)=$ 1 when ω is inside Γ_{1} and outside Γ_{2} (iii) $n(D, \omega)=-1$ when ω is inside Γ_{1} and outside Γ_{2} (iv) $n(D, \omega)=0$ when ω is outside Γ_{1} and Γ_{2}.

Since $n(D, \omega) \geqq 0$, the case (iii) is a contradiction, unless there exists no point outside Γ_{1} and inside Γ_{2}.

Hence D is mapped by $f(z)$ univalently onto Δ bounded by Γ_{1} and Γ_{2} where Γ_{2} lies inside Γ_{1}.

In the case where the integrals in (6.1) are equal to -2π the proof is quite analogous to the above one and may be omitted. We merely note that in this case the image curves Γ_{1} and Γ_{2} change their position.

Theorem 6. Let $f(z)$ be regular, single-valued and $f^{\prime}(z) \neq 0$ for $r \leqq|z| \leqq R$. Suppose that

$$
\begin{equation*}
2>1+\Re \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}>0 \quad \text { on }|z|=r . \tag{6.2}
\end{equation*}
$$

Let θ_{i} and $\theta_{j}(i, j=1,2, \ldots)$ be the roots of the equation

$$
\begin{equation*}
1+\Re \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}=0, \quad|z|=R, 0 \leqq \theta \leqq 2 \pi \tag{6.3}
\end{equation*}
$$

If there holds one of the following conditions:
(A) For all θ_{j} satisfying (6.3)

$$
\begin{array}{cll}
\Re e^{i \alpha} f^{\prime}\left(R e^{i \theta_{j}}\right)>0 & (\alpha: \text { a real constant }) \\
\operatorname{Max}_{i, j} \int_{\theta_{j}}^{\theta_{i}}\left(1+\Re \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) d \theta<3 \pi, & |z|=R, \\
& \int_{0}^{2 \pi}\left(1+\Re \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) d \theta=2 \pi, & |z|=R \tag{C}
\end{array}
$$

and

$$
\operatorname{Min}_{i . j} \int_{\theta j}^{\theta_{i}}\left(1+\Re \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) d \theta>-\pi, \quad|z|=R
$$

then $f(z)$ is univalent in $r \leqq|z| \leqq R$.
Proof. Since $f^{\prime}(z) \neq 0$ for $r \leqq|z| \leqq R$, there exists no branch-point in the image region of $r \leqq|z| \leqq R$ and hence we have

$$
\begin{equation*}
\int_{|z|=R}\left(1+\Re \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) d \theta=\int_{|z|=r}\left(1+\Re \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) d \theta=2 \pi \tag{6.4}
\end{equation*}
$$

by making use of (6.2).
Let L_{1} and L_{2} be the image curves of $|z|=r$ and $|z|=R$, respectively. The positive direction on L_{1} and L_{2} are decided by (6.4). Let R be the image region of $\mathrm{r} \leqq|z| \leqq R$ which is of course bounded by L_{1} and L_{2}. Since we have (6.2) and (6.4), L_{1} is a simple closed regular curve and the image region of $r \leqq|z| \leqq r+\varepsilon$ exists outside L_{1}.

Now let us show that L_{2} is also a simple closed regular curve.
By (6.4), L_{2} encloses a simply connected region D on the Riemann surface S generated by $f(z)$ containing the image of $R-\varepsilon \leqq|z| \leqq R$ if we neglect the existence of L_{1}.

Suppose that D contains the point at infinity, then R also contains the point at infinity, since R is the common part of D and the outside of L_{1}. But this is a contradiction since $f(z)$ is regular for $r \leqq|z| \leqq R$. Hence D does not contain the point at infinity. Consequently we can apply the discussion in $\S 2$ and $\S 3$ to D. Then the conditions (A), (B) and (C) are the sufficient conditions for L_{2} not to have multiple points.

Thus all the hypotheses of Lemma 2 are satisfied and hence $f(z)$ is. univalent for $r \leqq|z| \leqq R$.

As an immediate result, making use of the condition (A), we obtain the following theorem which is again an extension of Theorem B.

Theorem 7. Let $f(z)$ be regular and single-valued for $r \leqq|z| \leqq R$. Suppose that

$$
2>1+\mathfrak{R} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}>0 \quad \text { on }|z|=r
$$

and that in $r \leqq|z| \leqq R$

$$
\operatorname{Re}^{t a} f^{\prime}(z)>0 \quad(\alpha: \text { a real constant })
$$

then $f(z)$ is univalent for $r \leqq|z| \leqq R$.
Corresponding to the case where the integral in (6.1) is equal to -2π we obtain theorems analogous to Theorem 6 and 7.

Theorem 8. Let $f(z)$ be regular, single-valued and $f^{\prime}(z) \neq 0$ in $r \leqq|z| \leqq R$. Suppose that

$$
\begin{equation*}
-2<1+\Re \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}<0 \text { on }|z|=R . \tag{6.5}
\end{equation*}
$$

Let θ_{i} and $\theta_{j}(i, j=1,2, \ldots)$ be the roots of the equation

$$
\begin{equation*}
1+\Re \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}=0, \quad|z|=r, \quad 0 \leqq \theta \leqq 2 \pi \tag{6.6}
\end{equation*}
$$

If there holds one of the following conditions:
(A^{\prime}) For all θ_{j} satisfying (6.6)

$$
\Re e^{i \alpha} f^{\prime}\left(r e^{i \theta_{j}}\right)>0 \quad(\alpha: \text { a real constant })
$$

$$
\begin{align*}
& \operatorname{Min}_{i, j} \int_{\theta_{j}}^{\theta_{i}}\left(1+\Re \frac{z f^{\prime \prime}(z)}{f(z)}\right) d \theta>-3 \pi, \quad|z|=r \\
& \int_{0}^{2 \pi}\left(1+\Re \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) d \theta=-2 \pi, \quad|z|=r
\end{align*}
$$

and

$$
\operatorname{Max}_{i, j} \int_{\theta j}^{\theta i}\left(1+\mathfrak{H} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) d \theta<\pi, \quad|z|=r
$$

then $f(z)$ is univalent in $r \leqq|z| \leqq R$.
The proof of this theorem is analogous to Theorem 6 and may be omitted.

As a direct consequence we have
Theorem 9. Let $f(z)$ be regular and single-valued for $r \leqq|z| \leqq R$. Suppose that

$$
-2<1+\mathfrak{\Re} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}<0 \quad \text { on }|z|=R
$$

and that for $r \leqq|z| \leqq R$

$$
\Re e^{i \alpha} f^{\prime}(z)>0 \quad(\alpha: \text { a real constant })
$$

then $f(z)$ is univalent for $r \leqq|z| \leqq R$.
By making use of the results obtained in $\S 4$ we have
Theorem 10. Let $f(z)$ be regular, single-valued and $f^{\prime}(z) \neq 0$ for $r \leqq|z|$ $\leqq R$. Suppose that

$$
\begin{equation*}
2>1+\Re \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}>0 \quad \text { on }|z|=r \tag{6.7}
\end{equation*}
$$

If there holds one of the following relations;
(a)

$$
\begin{align*}
& \int_{|z|=R}\left|1+\Re \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| d \theta<4 \pi \\
& \alpha>1+\mathfrak{\Re} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}>-\frac{\alpha}{2 \alpha-3} \quad \text { on }|z|=R \tag{b}
\end{align*}
$$

where α is a certain number not less than 3/2, then $f(z)$ is univalent for $r \leqq$ $|z| \leqq R$.

Proof. As in the proof of Theorem 6 we have (6.4). In particular we have

$$
\begin{equation*}
\int_{|z|=R}\left(1+\Re \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) d \theta=2 \pi \tag{6.8}
\end{equation*}
$$

It was proved in [4] that if we have (6.8) the condition (b) is a sufficient condition for the condition (a). As for (a) the proof is ohvious by Theorems 3 and 6.
7. Generalizations to the functions defined in an x-ply connected domain. If we apply the method of proof in Theorem 6 together with Morse-Heins' theorem to regular and single-valued functions defined in an n-ply connected domain which does not contain the point at infinity and bounded by n simple closed regular curves, then all the results in the preceding section can easily be extended. For example we obtain the following

Theorem 11. Let $f(z)$ be regular and single-valued in a closed convex domain D which has $n-1$ circular holes $\left|z-a_{i}\right|<r_{i}, i=1,2, \ldots, n-1$, in it. Suppose that

$$
\begin{array}{r}
2>1+\Re \frac{\left(z-a_{i}\right) f^{\prime \prime \prime}(z)}{f^{\prime}(z)}>0 \quad \text { on }\left|z-a_{i}\right|=r_{i} \\
i=1,2, \ldots, n-1
\end{array}
$$

and that in D

$$
\Re^{i \alpha} f^{\prime}(z)>0 \quad(\alpha: \text { a real constant })
$$

then $f(z)$ is univalent in D.
TheOrem 12. Let $f(z)$ be regular and single-valued in a closed domain D
consisting of a circle $|z| \leqq R$ with $n-1$ circular holes $\left|z-a_{i}\right|<r_{i}, i=1,2$, $\ldots ., n-1$, in it. Suppose that

$$
2>1+\Re \frac{\left(z-a_{i}\right) f^{\prime \prime}(z)}{f^{\prime}(z)}>0 \quad \text { on }\left|z-a_{i}\right|=r_{i}, \quad i=1,2, \ldots, n-1
$$

If $f(z)$ satisfies on $|z|=R$ one of the following conditions;
(i) $1+\Re \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}>-\frac{1}{2}$
(ii) $1+\Re \frac{z f^{\prime \prime \prime}(z)}{f^{\prime}(z)}<\frac{3}{2}$
(iii) $\left|1+\Re \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right|<2$
(iv) $\left|\Re \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right|<2$
then $f(z)$ is univalent in D.
In order to prove these theorems it will be sufficient to extend Lemma 2 to the following form.

Lemma 3. Let $w=f(z)$ be regular and single-valued for an n-ply connected closed domain D which does not contain the point at infinity and bounded by n simple closed regular curves $C_{i}, i=1,2, \ldots, n$,

$$
C_{i}: z=z_{i}(t) \quad(0 \leqq t \leqq 1), \quad i=1,2, \ldots, n .
$$

Further let $f\left(z_{1}\right) \neq f\left(z_{v}\right)$ for arbitrary two points z_{1} and $z_{2}, z_{1} \neq z_{2}$ on $C_{i} i=$ $1,2, \ldots, n$. Suppose that $f^{\prime}(z) \neq 0$ for D. Then the image region Δ of D under $f(z)$ is bounded by n simple closed regular curves

$$
\Gamma_{i}: w=w\left(z_{i}(t)\right), \quad i=1,2, \ldots, n
$$

and this function maps D univalently onto Δ.
Proof. We can easily see that $\Gamma_{i}, i=1,2, \ldots, n$ are simple closed regular curves. Let us suppose that $\mathrm{C}_{j}, j=1,2, \ldots, n-1$ are inside C_{n} without loss of generality. By the assumption that $f^{\prime}(z) \neq 0$ for D, we obtain

$$
\begin{equation*}
2(2-n) \pi=\int_{C_{n}} d \arg d f(z)-\sum_{j=1}^{n-1} \int_{C_{j}} d \arg d f(z) \tag{7.1}
\end{equation*}
$$

by Morse-Heins' theorem [7], where the integral is taken so that z moves round on $C_{i}, i=1,2, \ldots, n$ in the counter-clockwise direction. Since Γ_{i}, $i=1,2, \ldots, n$ are simple the integrals $\int_{c_{j}} d \arg d f(z), j=1,2, \ldots, n$ are equal to 2π or -2π. Thus we have n cases (i) $\int_{c_{j}} d \arg d f(z)=2 \pi, i=1$, $2, \ldots, n$, (ii) $\int_{C_{n}} d \arg d f(z)=-2 \pi$ and any one of the integrals $\int_{c_{j}} d \arg d f$, $j=1,2, \ldots, n-1$ is equal to -2π and the others are equal to 2π, which gives $n-1$ cases.

Analogously to Lemma 2 we consider the value $n(D, \omega)$ for every ω and in each case stated above. Then we have our conclusion by similar conside-
ration to that of Lemma 2. The detail may be omitted here.
We omit aiso the proofs of Theorems 11 and 12 noting only that the conditions (i)-(iv) can be obtained from (b) in Theorem 10 by choosing α suitably.
8. Sufficient conditions for the p-valency of regular functions. We shall generalize some of the results in $\S 3$ and $\S 4$ to the case of p-valency. For this purpose we need to extend Lemma 1 at first.

Lemma 4. Let $f(z)$ be regular for a simply connected closed domain D whose boundary Γ_{z} consists of a regular curve and $f^{\prime}(z) \neq 0$ on Γ_{z}. Suppose that

$$
\begin{equation*}
\int_{\Gamma_{z}} d \arg d f(z)=2 k \pi \tag{8.1}
\end{equation*}
$$

If we have for arbitrary $p-k+1$ arcs $C_{1}, C_{2}, \ldots, C_{p-k+1}$ on the boundary Γ_{z} of D which do not overlap one another

$$
\begin{equation*}
\int_{c_{1}+c_{2}++\ldots+c_{p-k+1}} d \arg d f(z)>-(p-k+1) \pi \tag{8.2}
\end{equation*}
$$

or

$$
\begin{equation*}
\int_{c_{1}+c_{2}+\ldots+c_{p-k+1}} d \arg d f(z)<(p+k+1) \pi \tag{8.3}
\end{equation*}
$$

then $f(z)$ is at most p-valent in D.
Proof. If $f(z)$ is n-valent where $n \geqq p+1$, then we can consider the image region D_{w} of D under $f(z)$ as a one-sheeted region on an at least n-sheeted Riemann surface S.

Since D_{w} has at least one n-valently overlapping part and since we must have a part of D_{w} encircling a branch-point of S in order to move from. one sheet of the n-valently overlapping part to another, there exist at least p branch-points of S encircled by parts of D_{v}. Here and what follows. the number of branch-points are counted in accordance with their multiplicities. Furthermore we say that a region R encircles a point P if there exists at least a curve in R connecting two points in R whose projection on the w-plane encircle the point P whether it is included in R or not.

On the other hand there exist $k-1$ branch-points in D, of course encircled by parts of D_{w}, by (8.1). Hence there exist at least $p-k+1$ branch-points of S exterior to D_{v} respectively. Let $B_{i}, i=1,2, \ldots, p-k+1$ be the projections on the w-plane of the branch-points stated above and let Q be a point on the w-plane overlapped by $D_{l y} n$-valently. Since the projections. of the inner boundaries of the encircling parts also encircles $B_{i}, i=1,2$, $\ldots, p-k+1$ respectively, we have $\operatorname{arcs} C_{i}, i=1,2, \ldots, p-k+1$ on $\mathrm{I}_{v v}$, the boundary of D_{w}, which begin from a point on $B_{i} Q, i=1,2, \ldots, p-k$ +1 and end also at a point on $B_{i} Q, i=1.2, \ldots, p-k+1$ encircling B_{i}, i $=1,2, \ldots, p-k+1$ once negatively, respectively.

Thus we have $p-k+1$ arcs on Γ_{w} which have no common parts except perhaps the ends of them and for which

$$
\int_{\Gamma_{i}} d \arg d w \leqq-\pi, \quad i=1,2, \ldots, p-k+1
$$

hold. Hence we have

$$
\int_{C_{1}+c_{2}+\ldots+c_{p-k+1}} d \arg d f(z) \leqq-(p-k+1) \pi
$$

if $f(z)$ is at least $p+1$ valent in D.
Accordingly $f(z)$ is at most p-valent in D if we have (8.7) for arbitrary $p-k+1$ arcs $C_{1}, C_{2}, \ldots, C_{p-k+1}$ on the boundary Γ_{z} of D which do not overlap one another. We note that (8.2) is equivalent to (8.3) since we have (8.1). Thus the proof is complete.

ThEOREM 13. Let $f(z)$ be regular for a closed convex domain D whose boundary L is a regular curve. Suppose that $f(z)$ has exactly $p-1$ critical points $\alpha_{i}, i=1,2, \ldots, p-1$ in D and no critical point on L. If there holds the inequality

$$
\begin{equation*}
\mathfrak{H}\left[e^{i \alpha} f^{\prime}(z) / \prod_{i=1}^{p-1}\left(z-\alpha_{i}\right)\right]>0 \quad(\alpha: \text { a real constant }) \tag{8.4}
\end{equation*}
$$

on L, then $f(z)$ is at most p-valent in D.
Proof. Now since $f^{\prime}(z) / \prod_{i=1}^{p-1}\left(z-\alpha_{i}\right) \neq 0$ in D by (8.4), $\arg \left[f^{\prime}(z) / \sum_{i=1}^{p-1}\left(z-\alpha_{i}\right)\right]$ is one-valued in D. Accordingly arg $d f(z)$ is also one-valued if we take suitable branches of $\arg \left(z-\alpha_{i}\right), i=1,2, \ldots, p-1$ and $\arg d z$ since

$$
\begin{aligned}
\arg d f(z)=\arg & {\left[f^{\prime}(z) / \sum_{i=1}^{p-1}\left(z-\alpha_{i}\right)\right] } \\
& +\sum_{i=1}^{. p-1} \arg \left(z-\alpha_{i}\right)+\arg d z
\end{aligned}
$$

By noticing this fact and by the assumption (8.4), we have

$$
-\frac{\pi}{2}<\alpha+\arg d f\left(z_{i}\right)-\arg d z_{i}-\sum_{k=1}^{p-1} \arg \left(z_{i}-\alpha_{k}\right)<\frac{\pi}{2}
$$

and

$$
-\frac{\pi}{2}<-\alpha-\arg d f\left(z_{j}\right)+\arg d z_{j}+\sum_{k=1}^{p-1} \arg \left(z_{j}-\alpha_{k}\right)<\frac{\pi}{2}
$$

for any z_{i} and $z_{j}, \quad i>j$. Hence we have $-\pi<\arg d f\left(z_{i}\right)-\arg d f\left(z_{j}\right)+\arg d z_{j}-\arg d z_{i}$

$$
+\sum_{k=1}^{p-1} \arg \left(z_{j}-\alpha_{k}\right)-\sum_{k=1}^{p-1} \arg \left(z_{i}-\alpha_{3}\right)<\pi
$$

where $2 \pi \geqq \arg d z_{i}-\arg d z_{j} \geqq 0$ and $2 \pi \geqq \arg \left(z_{i}-\alpha_{k}\right)-\arg \left(z_{j}-\alpha_{k}\right) \geqq 0$, $k=1,2, \ldots, p-1$, since D is a convex region. Thus we have

$$
-\pi<\arg f\left(z_{i}\right)-\arg f\left(z_{j}\right)<(2 p+1) \pi
$$

which is equivalent to

$$
-\pi<\int_{z_{j}}^{z_{i}} d \arg d f(z)<(2 p+1) \pi
$$

This inequality shows that $f(z)$ is at most p-valent in D, by Lemma 4.
As an immediate result we obtain the following
Theorem 14. If $f(z)=z^{p}+a_{p+1} z^{p+1}+\ldots$ is regular for $|z| \leqq r$ and if we have

$$
\begin{equation*}
R\left[e^{i \alpha} f^{\prime}(z) / z^{p-1}\right]>0 \quad(\alpha: \text { a real constant }) \tag{8.5}
\end{equation*}
$$

for $|z| \leqq r$, then $f(z)$ is p valent for $|z| \leqq r$,
Remark. The condition (8.5) in Theorem 14 can be replaced by

$$
\begin{equation*}
p>\sum_{n=p+1}^{\infty} n\left|a_{n}\right| r^{n-p} \tag{8.6}
\end{equation*}
$$

which is seen as in the case $p=1$.
Making use of Theorem 14 we can extend many theorems on univalent functions to the case of p-valency. But we shall here enunciate only a generalization of Noshiro's theorem concerning the radius of univalence and the radius of convexity [9].

Theorem 15. Let $f(z)=z^{p}+a_{p+1} z^{p+1}+\ldots$ be regular for $|z| \leqq 1$ and let $\left|\frac{f(z)}{p z^{p-1}}\right|<M$ for $|z| \leqq 1$. Then $f(z)$ is p-valent in $|z|<\frac{1}{M}$ and $f(z)$ maps $|z|<M_{2}-\sqrt{M_{2}^{2}-1}$ where $M_{2}=\frac{1}{2}\left\{M\left(1+\frac{1}{p}\right)+\frac{1}{M}\left(1-\frac{1}{p}\right)\right\}$ onto a p valently convex domain.

Proof. Let us put $\mathrm{g}(z)=\frac{f^{\prime}(z)}{p z^{p-1}}$. Then $g^{\prime}(0)=1$ and $|g(z)|<M$ for $|z|$ $\leqq 1$. Hence we obtain

$$
\begin{gathered}
\left|\frac{g(z)-1}{M^{2}-g(z)}\right| \leqq \frac{r}{M}, \quad(|z| \leqq r) \\
M \frac{1-M r}{M-r} \leqq \Re \frac{f^{\prime}(z)}{p z^{p-1}} \leqq M \frac{1+M r}{M+r}, \quad(|z| \leqq r)
\end{gathered}
$$

by Schwarz' lemma. Hence we have (8.5) if $|z|<\frac{1}{M}$.
As for the convexity the proof is quite analogous to the case of univalence and may be omitted here.

Theorem 16. Let $f(z)$ be regular for a simply connected closed domain D whose boundary Γ consists of a regular curve and $f^{\prime}(z) \neq 0$ on Γ. Suppose that

$$
\int_{\mathrm{V}} d \arg d f(z)=2 k \pi
$$

Further lei C_{1} be the part of Γ on which d atg $d f>0$ and C_{2} be the part of $\boldsymbol{\Gamma}$ on which $d \arg d f \leqq 0$. If $f(z)$ satisfies one of the following conditions:

$$
\begin{equation*}
\int_{c_{1}} d \arg d f(z)<(p+k+1) \pi \tag{A}
\end{equation*}
$$

$$
\begin{equation*}
\int_{c_{2}} d \arg d f(z)>-(p-k+1) \pi \tag{B}
\end{equation*}
$$

$$
\begin{equation*}
\int_{\Gamma}|d \arg d f(z)|<2(p+1) \pi \tag{C}
\end{equation*}
$$

then $f(z)$ is at most p-valent in D.
We can prove this Theorem 16 analogously to Theorem 3 by making use of Lemma 4 and the proof may be omitted here.

Corollary 3. Let $f(z)$ be regular for $|z| \leqq 1$. Suppose that $f(z)$ has $k-1$ critical points in $|z|<1$ and no critical point on $|z|=1$. Further let C_{1} be the part of $|z|=1$ on which

$$
1+\Re \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}>0 \text { and put } x=\int_{c_{1}} d \arg z
$$

and C_{2} be the part of $|z|=1$ on which

$$
1+\Re \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \leqq 0 \quad \text { and hence } \quad 2 \pi-x=\int_{c_{2}} d \arg z
$$

If $f(z)$ satisfies for $|z|=1$ one of the following conditions:
(a) $\quad \int_{c_{1}}\left(1+\Re \frac{z f^{\prime}(z)}{f^{\prime}(z)}\right) d \theta<(p+k+1) \pi$,
(a) $1+\mathfrak{R} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}<\frac{p+k+1}{x} \pi$,

$$
\begin{equation*}
\int_{c_{2}}\left(1+\Re \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) d \theta>-(p-k+1) \pi \tag{b}
\end{equation*}
$$

(b) $1+\mathfrak{R} \frac{z f^{\prime}(z)}{f^{\prime}(z)}>\frac{p-k+1}{2 \pi-x} \pi$,
(c) $\quad \int_{c_{1}+c_{2}}\left|1+\mathfrak{R} \frac{z f^{\prime}(z)}{f(z)}\right| d \theta<2(p+1) \pi$,
(c') $\left|1+\Re \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right|<p+1$,
then $f(z)$ is at most f-valent in $|z| \leqq 1$.
This is an extension of a result given in [4,3].

References

[1] A. Kobori, Über die notwendige und hinreichende Bedingung dafür, dass eine Potenzreihe den Kreisbereich auf den schlichten sternigen bzw. konvexen Bereich abbildet, Mem. Coll. Kyoto Imp. Univ., (A) 15(1932), 279-291.
[2] M.S. Robertson, Analytic functions star-like in one direction, Amer. Journ. of Math., 58(1936), 465-472.
A representation of all analytic functions in term of functions with positive real parts, Ann. of Math., 38(1937), 770-783.
[3] S. OzAKI, On the theory of multivalent functions, II, Sci. Rep. Tokyo Bunrika Daigaku 4(1941), 45-86.
[4] T. Umezawa, Analytic functions convex in one direction, Journ. Math. Soc. Japan 4(1952), pp. 194-202.
[5] K. Noshiro, On the theory of schlicht functions, Journ. of the Faculty of Science, Hokkaido Imp. Univ., 2(1934), 129-155.
[6] J. WOLFF, L'intégrale d'une fonction holomorphe et a partie réelle positive dans un demi-plan lest univalente, Comptes Rendus de l'Académie des Sciences, 198(1934), 1209-1210.
[7] M. MORSE, Topological methods in the theory of functions of a complex variable, Princeton Univ. Press(1947).
[8] T. Umezawa, Star-like theorems and convex-like theorems in an annulus, Journ. Math. Soc. Japan 6(1954), 68-75.
[9] K. Noshiro, On the starshaped mapping by an analytic function, Proc. Acad. Tokyo 8(1932), $275-277$.

Gumma University.

