POSITIVE DEFINITE FUNCTION AND DIRECT

PRODUCT HILBERT SPACE

HISAHARU UMEGAKI

(Received October 5, 1955)

1. Introduction. A function $V(\omega, \omega')$ defined on a product set $\Omega \times \Omega$ with range in the ring B(H) of all bounded operators on a Hilbert space H is called positive definite provided that $V(\omega, \omega')$ is a bounded operator on H for any ω , ω' in Ω and satisfies the conditions that $V(\omega, \omega') = V(\omega', \omega)^*$ and

(1)
$$\sum_{j,k=1}^{n} (\xi_j, V(\omega_j, \omega_k) \xi_k) \geq 0,$$

for any finite sets of $\omega_j \in \Omega$, $\xi_j \in H$ (j = 1, 2, ..., n).

Now let $F(\Omega)$ be the vector space of all finite-valued numerical functions on Ω and $F(\Omega) \otimes H$ the algebraic direct product of $F(\Omega)$ and H. Putting $\delta_{\omega_0}(\omega) = 1$ for $\omega = \omega_0$, = 0 for $\omega \pm \omega_0$, and denoting $\delta_{\omega_0}(\omega) \otimes \xi$ as $\omega_0 \times \xi$ conveniently, all elements $\omega \times \xi$, $\omega \in \Omega$, $\xi \in H$, generate a vector subspace of $F(\Omega) \otimes H$. We shall denote this subspace as $\Omega \odot H$ throughout this paper.

For a given positive definite operator-valued function $V(\omega, \omega')$ we introduce an inner product in $\Omega \odot H$ such that, for any element $\sum \omega_j \times \xi_j$ and $\sum \omega'_k \times \xi'_k$,

(2)
$$<\sum \omega_j \times \xi_j, \ \ \sum \omega_k \times \xi'_k > = \ \ \sum_{i,k} (\xi_j, V(\omega_j, \omega'_k) \xi'_k).$$

It is clear that it satisfies the properties of an inner product except that

$$< \sum \omega_j imes \xi_j, \ \sum \omega_j imes \xi_j > = 0 ext{ implies } \sum \omega_j imes \xi_j = 0.$$

Let N_V be the set of all expressions $\sum \omega_j \times \xi_j$ with this condition, then the quotient vector space $(\Omega \odot H)/N_V$ is a prehilbert space. The completion of this space we shall call the direct product Hilbert space of Ω and H with respect to V, and denote it by $\Omega \otimes_V H$. It is obvious that we have

(3)
$$\langle \omega \times \xi, \omega' \times \xi' \rangle = (\xi, V(\omega, \omega')\xi')$$

for any ω , $\omega' \in \Omega$ and ξ , $\xi' \in H^{(1)}$

Sometimes when we want to treat a positive definite operator-valued functions, the above consideration may be useful and convenient, which we shall show in the following for the case that Ω is a group.

¹⁾ When $V(\omega, \omega')=1$ for $\omega=\omega'$ and =0 for $\omega=\omega'$, then $\Omega \otimes \nu H$ is isometrically isomorphic to $l^2(\Omega) \otimes H$ in the sense of Murray-von Neumann [3].

2. Neumark-Sz. Nagy's Theorem. Let V_s be a positive definite operator-valued function on a group G into B(H), that is, when we put $V(s, t) = V_{s^{-1}t}$ for each s, $t \in G$, V(s, t) satisfies the condition (1) for $G \times G$ and H. Such a function V_s satisfies always the equality $V_{s^{-1}} = V_s^*$, i. e., V(s, t) $= V(t, s)^*$. For, since $\varphi_{\xi}(s) = (\xi, V_{s^{-1}}\xi)$ is a positive definite function on G, $\varphi_{\xi}(s^{-1}) = \varphi_{\xi}(s)$ and $(V_s\xi, \xi) = (\xi, V_{s^{-1}}\xi)$, and this implies $(V_s\xi, \eta) = (\xi, V_{s^{-1}}\eta)$ for any $\xi, \eta \in H$. Hence V(s, t) is a positive definite operator-valued function on $G \times G$ into B(H), and we can construct a Hilbert space $G \otimes_V H$.

The following Theorem 1 is a generalization, due to Sz. Nagy, of a theorem of M. A. Neumark [7] for a positive definite operator-valued function of a locally compact abelian group.²⁾

THEOREM 1. Let V_s be a positive definite operator-valued function on a group G. Then there exists a unitary representation $(U_s, G \otimes_v H)$ of G such that (4) $T^*U_sT = V_s$

where T is a bounded linear transformation from H to $G \otimes_{V} H$.

PROOF. Put $U'_s(\Sigma s_j \times \xi_j) = \Sigma ss_j \times \xi_j$, then U'_s is an additive operator on $G \odot H$, and satisfies

 $(5) \quad \langle U'_{s}(\Sigma s_{j} \times \xi_{j}), \Sigma t_{k} \times \eta_{k} \rangle = \langle \Sigma ss_{j} \times \xi_{j}, \Sigma t_{k} \times \eta_{k} \rangle = \Sigma_{j,k}(\xi_{j}, V(s_{j}, t_{k})), \\ = \Sigma_{j,k}(\xi_{j}, V_{S^{-1}jS^{-1}t_{k}}\eta_{k}) = \Sigma_{j,k}(\xi_{j}, V(s_{j}, (s^{-1}t_{k}))), \\ = \Sigma_{j,k}\langle s_{j} \times \xi_{j}, s^{-1}t_{k} \times \eta_{k} \rangle = \langle \Sigma s_{j} \times \xi_{j}, \Sigma s^{-1}t_{k} \times \eta_{k} \rangle \\ = \langle \Sigma s_{j} \times \xi_{j}, U'_{s}^{-1}(\Sigma t_{k} \times \eta_{k}) \rangle$

and

$$\langle U'_s(\Sigma s_j imes \xi_j), U'_s(\Sigma t_k imes \eta_k) \rangle = \langle \Sigma s_j imes \xi_j, \Sigma t_k imes \eta_k \rangle.$$

Thus the subspace

$$N_{V} = \{ \sum s_{j} \times \xi_{j} | < \sum s_{j} \times \xi_{j}, \sum s_{j} \times \xi_{j} > = 0 \}$$

is invariant under the operation U'_s .

Hence the operator U'_s is well-defined on $G \odot_{\nu} H = (G \odot H)/N_{\nu}$ and uniquely extended to a unitary operator U_s on $G \otimes_{\nu} H$.

Now, if we define the linear transformation T from H into $G \otimes_{v} H$ by

$$T: \xi \to e \times \xi$$

then we have $\langle T\xi, T\xi \rangle = \langle e \times \xi, e \times \xi \rangle = (\xi, V_e\xi) \leq ||| V_e ||| (\xi, \xi)$, which shows the boundedness of T. Moreover, if we denote the conjugate transformation of T by T^* , we have for any $\xi, \eta \in H$,

$$(T^*U_sT\xi,\eta) = \langle U_sT\xi,T\eta \rangle = \langle U_s(e \times \xi), e \times \eta \rangle$$

$$= \langle s \times \xi, e \times \eta \rangle = (\xi, V_s^{-1}\eta) = (V_s\xi, \eta),$$

which implies $T^*U_sT = V_s$.

REMARK. In the case $V_e = 1$, H can be embedded into $G \otimes_{v} H$ by identifying $\xi \in H$ with $e \times \xi \in G \otimes_{v} H$, then the transformation T can be

²⁾ Our proof is also similar to that of Godement [2], H. Nakano [6], Ky Fan [1], M. Nakamura and T. Turumaru [5] which are concerned with the numerical valued positive definite functions.

H. UMEGAKI

considered as the projection of $G \otimes_{\mathbb{V}} H$ onto H. This is the case which Sz. Nagy discussed in [4].

COROLLARY. If G is a topological group and (V_s, H) is weakly continuous, then the unitary representation $(U_s, G \otimes_V H)$ of G and (V_s, H) are strongly continuous.

PROOF. Since

$$\langle \Sigma s_j \times \xi_j, \ U_s(\Sigma t_k \times \eta_k) \rangle = \langle \Sigma s_j \times \xi_j, \ \Sigma s t_k \times \eta_k \rangle \\ = \sum_{j,k} \langle \xi_j, \ V s_j^{-1} s t_k \eta_h \rangle,$$

the weak continuity of (V_s, H) implies the weak continuity of $(U_s, G \otimes_{\mathbb{P}} H)$. Since U_s $(s \in G)$ are unitary operators $(U_s, G \otimes_{\mathbb{P}} H)$ is always strongly continuous. Since $V_s = T^*U_sT$ by Theorem 1 and $(U_s, G \otimes_{\mathbb{P}} H)$ is strongly continuous, (V_s, H) is also strongly continuous.

3. Positive definite function on a group and positive definite linear function on the group algebra. Let G be a locally compact group, and let $L^{1}(G)$ be the group algebra of all integrable functions on G with respect to the left invariant Haar measure with the convolution multiplication.

In order to discuss a positive definite operator-valued function on $L^{1}(G)$, we shall first define it on a *-algebra A as on the group in §2. A linear function W_{x} from A into B(H) of a Hilbert space H is said to be *positive definite*, if $W(x, y) = W_{x^*y}$ is a positive definite operator-valued function on $A \times A$ into B(H).

Now, let V_s be a positive definite operator-valued function defined on G whose range is in B(H) then we can construct the unitary representation $(U_s, G \otimes_{\mathbb{V}} H)$ of G as in the preceding section.

Since V_s and U_s are strongly continuous, for each $x \in L^1(G)$ the operator-valued functions $x(s)V_s$ and $x(s)U_s$ are Bochner integrable with respect to the Haar measure ds. Denote their Bochner integrals $\int x(s)V_s ds^{-1}$ and $\int x(s)U_s ds$ by \overline{V}_x and \overline{U}_x which are acting on the Hilbert spaces H and $G \otimes_{V} H$ respectively. Then $||| \overline{V}_x ||| , || \overline{U}_x || \leq M || x|_1$ where $|| ||_1$ denotes the L^1 -norm and M is a constant. Taking the bounded transformation T from H into $G \otimes_{V} H$ as in Theorem 1 such that $T\xi = e \times \xi$, then $(\overline{U}_x, G \otimes_{V} H)$ is a bounded *-respresentation of $L^1(G)$ and satisfies $T^*\overline{U}_x T = \overline{V}_x$ for all $x \in L^1(G)$. In fact, since $(U_s, G \otimes_{V} H)$ is a strongly continuous unitary representation of G, the first part is clear. The second part follows from the fact that

$$<\overline{U}_x(e \times \xi), \ e \times \eta > = \int x(s) < s \times \xi, \ e \times \eta > ds = \int x(s)(V_s\xi, \eta) ds = (\overline{V}_x\xi, \eta).$$

Now, it is clear that \overline{V}_x is a positive definite operator-valued function on $L^1(G)$. With respect to the \overline{V}_x , we can construct a Hilbert space $L^1(G)\otimes_{\overline{V}}H^{-1}$ in our sense (§1) which is the same as the Hilbert space constructed by

Stinespring as algebraic tensor product between a C^* -algebra and a Hilbert space with respect to a positive definite operator-valued function [10].³ Put $x * \xi = \overline{U}_x(e \times \xi) = \int x(s)(s \times \xi) ds$ (in the sense of Bochner integral), which belongs to $G \otimes_{\mathbb{P}} H$, then the set $L^1(G) * H = \{x^*\xi; x \in L^1(G), \xi \in H\}$ is a subspace of $G \otimes_{\mathbb{P}} H$.

For any finite subsets $\{x_j\}$, $\{y_k\}$ of $L^1(G)$ and $\{\xi_j\}$, $\{\eta_k\}$ of H, we have

$$<\sum x_{k}\xi_{j}, \sum y_{k}^{*}\eta_{h} > = \sum_{j,k} < x_{j}\xi_{j}, y_{k}^{*}\eta_{k} > = \sum_{j,k} < \overline{U}y_{k}x_{j} \quad (e \times \xi_{j}), \ e \times \eta_{k} >$$
$$= \sum_{j,k} \int y_{k}^{*}x_{j}(s) < s \times \xi_{j}, \ e \times \eta_{k} > ds = \sum_{j,k} \int y_{k}^{*}x_{j}(s) (V_{s}\xi_{j}, \ \eta_{k}) ds$$
$$= \sum_{j,k} (Vy_{k}^{*}x_{j}\xi_{j}, \eta_{k}) = \sum_{j,k} < x_{j} \times \xi_{j}, \ y_{k} \times \eta_{k} > = <\sum x_{j} \times \xi_{j}, \ \sum y_{k} \times \eta_{k} >.$$

Hence the mapping $\phi: \sum x_{*j}\xi_j \to \sum x_j \times \xi_j$ is a unitary transformation from $L^1(G) * H$ to $L^1(G) \otimes_{V} H$. Using the approximate identity $\{e_{\alpha}\}$ in $L^1(G)$ corresponding to a complete system of neighborhoods of the unit e of G and by the definition of the inner product $\langle \cdot, \cdot \rangle$ in $G \otimes_{V} H$, $\{e_{\alpha}^{s} \times \xi\}$ converges to $s \times \xi$, and this implies that $L^1(G) * H$ is dense in $G \otimes_{V} H$. ⁴ Therefore, we obtain that the Hilbert spaces $G \otimes_{V} H$ and $L^1(G) \otimes_{V} H$ are isomorphic by an isomorphism ϕ which maps the element $x * \xi$ of $G \otimes_{V} H$ to the element $x \times \xi$ in $L^1(G) \otimes_{V} H$.

In the above, we have seen that there can be defined a positive definite perator-valued linear function \overline{V}_x on $L^1(G)$ for a given positive definite operator-valued function V_s on G. We can also show the converse case.

THEOREM 2. If a positive definite operator-valued bounded linear function W_x on $L^1(G)$ into B(H) is given, then there exists a unique strongly continuous positive definite operator-valued function V_s on G into B(H) such that

(6)
$$W_x = \int_{\mathcal{G}} \mathbf{x}(s) V_s ds \qquad \text{for all } \mathbf{x} \in L^1(G)$$

where the integral is in the sense of Bochner.

LEMMA 2.1. There exists a function $f(\xi, s)$ defined for $\xi \in H$ and $s \in G$ and with range in $L^1(G) \otimes_W H$ such that, for each fixed $s \in G$, $f(\xi, s)$ is a bounded linear transformation from H into $L^1(G) \otimes_W H$, and for each fixed $\xi \in H$, $f(\xi, s)$ is strongly continuous on G, and moreover $\langle f(\xi, s), f(\eta, t) \rangle =$ $\langle f(\xi, e), f(\eta, s^{-1}t) \rangle$ for any $\xi, \eta \in H$ and $s, t \in G$.

PROOF. For each $\xi \in H$, put $\sigma_{\xi}(x) = (W_x\xi, \xi)$, then $\sigma_{\xi}(x)$ is a bounded linear functional on $L^1(G)$ such that $\sigma_{\xi}(x^*x) \ge 0$ for all $x \in L^1(G)$. Hence there exists a continuous positive definite function $\varphi_{\xi}(s)$ on G such that

³⁾ The material of the present paper is obtained independently to W. F. Stinespring [10]. The author is awared Stinespring's paper when he visits the Tôhoku University in the summer. Stinespring calls *completely positive* instead of positive definite.

⁴⁾ We denote the function $x(s^{-1}t)$ of t by $x^{s}(t)$.

$$\sigma_{\xi}(x) = \int_{G} x(s) \varphi_{\xi}(s) ds.$$

For the approximate identity $\{e_{\alpha}\}$,

$$\sigma_{\xi}(e^{s}_{\alpha}e^{s}_{\beta}) = \int e_{\alpha}e_{\beta}(t^{-1})\varphi_{\xi}(t)dt \rightarrow \varphi_{\xi}(e).$$

Therefore

$$\| e^{s}_{\alpha} \times \xi - e^{s}_{\beta} \times \xi \|^{2} = \langle e^{s}_{\alpha} \times \xi, e^{s}_{\alpha} \times \xi \rangle + \langle e^{s}_{\beta} \times \xi, e^{s}_{\beta} \times \xi \rangle$$
$$- 2R \langle e^{s}_{\alpha} \times \xi e^{s}_{\beta}, \times \xi \rangle$$
$$= \sigma_{\xi} (e^{s \times}_{\alpha} e^{s}_{\alpha}) + \sigma_{\xi} (e^{s \times}_{\beta} e^{s}_{\beta}) - 2R \sigma_{\xi} (e^{s \times}_{\alpha} e^{s}_{\beta})$$
$$= \sigma_{\xi} (e_{\alpha} e_{\alpha}) + \sigma_{\xi} (e_{\beta} e_{\beta}) - 2R \sigma_{\xi} (e_{\alpha} e_{\beta}) \rightarrow 0$$

and the strong limit of $e^s_{\alpha} \times \xi$ exists in $L^1(G) \otimes_w H$. Denote it by $f(\xi, s)$. For any finite set $\xi_j \in H$ and any $s \in G$, we have

(7)
$$f(\sum \xi_j, s) = \lim_{\alpha} e_{\alpha}^s \times \sum \xi_j = \lim_{\alpha} \sum (e_{\alpha}^s \times \xi_j)$$
$$= \sum \lim_{\alpha} (e_{\alpha}^s \times \xi_j) = \sum f(\xi_j, s)$$

r

while,

(8)

$$\varphi_{\xi}(s) = \lim_{\alpha} \int e_{\alpha}^{s*} e_{\alpha}(t)\varphi_{\xi}(t)dt = \lim_{\alpha} \sigma_{\xi}(e_{\alpha}^{s*} e_{\alpha}) = \lim_{\alpha} \sigma_{\xi}(e_{\alpha}e_{\alpha}^{s^{-1}})$$

$$= \lim_{\alpha} \langle e_{\alpha} \times \xi, e_{\alpha}^{s^{-1}} \times \xi \rangle = \langle f(\xi, e), f(\xi, s^{-1}) \rangle,$$

$$\langle f(\xi, s), f(\eta, t) \rangle = \lim_{\alpha} \langle e_{\alpha}^{s} \times \xi, e_{\alpha}^{t} \times \eta \rangle$$

$$= \lim_{\alpha} \langle e_{\alpha} \times \xi, e_{\alpha}^{s^{-1}t} \times \eta \rangle = \langle f(\xi, e), f(\eta, s^{-1}t) \rangle.$$

The strong continuity of $f(\xi, s)$ (for fixed $\xi \in H$) follows easily from the above fact and the construction of it. Since for any $\xi \in H$ and $s \in G$, (9) $|f(\xi, s)||^2 = ||f(\xi, e)||^2 = \lim_{\alpha} ||e_{\alpha} \times \xi||^2 = \lim_{\alpha} \langle \xi, W_{e_{\alpha}e_{\alpha}}\xi \rangle \leq M ||\xi||^2$, for fixed $s \in G$, $f(\xi, s)$ is a bounded linear transformation from H into $L^1(G) \otimes_W H$, where M is a constant such that $||W_{\alpha}|| \leq M ||x||_1$ for all $x \in L^1(G)$.

PROOF OF THEOREM 2. By the above Lemma, for any ξ , $\eta \in H$ and $s \in G$,

$$\langle f(\xi, s), f(\eta, e) \rangle | \leq ||f(\xi, e)|| |f(\eta, e)| \leq M ||\xi|| ||\eta|$$

Hence, there exists a bounded linear operator V_s on H (depending on $s \in G$) such that $\langle f(\xi, s), f(\eta, e) \rangle = \langle V_s \xi, \eta \rangle$; by Lemma 2.1, V_s is a strongly continuous positive definite B(H)-valued function on G. Moreover, for $x \in L^1(G)$

$$(W_{x\xi}\xi, \eta) = \int x(s)\varphi_{\xi}(s)ds = \int x(s) \langle f(\xi, s), f(\xi, e) \rangle ds = \int x(s) (V_s\xi,\xi)ds$$

and for any $\xi, \eta \in H$, $(W_x \xi, \eta) = \int x(s) (V_s \xi, \eta) ds$. Since $x(s) V_s$ is Bochner integrable, the Bochner integral $\int x(s) V_s ds$ exists and equals to W_x . The uniqueness of V_s is obvious by (6).

COROLLARY. Let V_s and W_x be positive definite operator-valued functions in Theorem 2. Then $V_e = 1$ if and only if $||W_x|| \leq ||x||_1$ and the weak closure of $\{W_x; \|x\|_1 \leq 1\} \{W_x; x \in L^1(G)\}$ contains 1.

PROOF. "If" part: Using the notation in the proof of Theorem 2, taking a directed set $\{x_{\gamma}\}\subset L^{1}(G)$, $\|x_{\gamma}\|_{1} \leq 1$, such that $W_{x\gamma}$ converges weakly to 1, we have

$$|\xi||^{2} = \lim |(W_{x\gamma}\xi, \xi)| = \lim |\int_{G} x_{\gamma}(s)\varphi_{\xi}(s) ds| \leq \varphi_{\xi}(e)$$

= $\langle f(\xi, e), f(\xi, e) \rangle = ||f(\xi, e)||^{2} (\leq ||\xi||^{2} by (9))$

and hence $\|\xi\| = \|f(\xi, e)\|$ for all $\xi \in H$. Therefore for all ξ , $\eta \in H$ $(\xi, \eta) = \langle f(\xi, e), f(\eta, e) \rangle = (\xi, V_e \eta),$

that is, $V_e = 1$.

Conversely, if $V_e = 1$, we have, for any $\xi \in H$,

$$(W_{e_{\alpha}}\xi, \xi) = \int e_{\alpha}(s) (V_{s}\xi, \xi) ds \to (V_{e_{s}}\xi, \xi) = (\xi, \xi).$$

Since by (6) $W_x \leq |x_1|$ holds we complete the proof.

References

- [1] KY FAN: On positive definite sequences, Ann. of Math., 47(1946), 593-607.
- [2] R. GODEMENT: Les fonctions de type positif et la theorie des groupes, Trans. Amer. Math. Soc., 63(1945), 1-84.
- [3] F. J. MURRAY AND J. VON NEUMANN: On rings of operators, Ann. of Math., 37(1936), 116-229.
- [4] S. SZ. NAGY: Transformations de l'espace de Hilbert, fonctions de type positif sur un groupe, Acta de Szeged, 15(1954), 104-114.
- [5] M. NAKAMURA AND T. TURUMARU: On the representations of positive definite functions and stationary functions on a topological group, Tôhoku Math. Journ., 4(1954), 1-9.
- [6] H. NAKANO: On the theory of Hilbert space (in Japanese), Sugaku, 1(1947-48), 38-42.
- [7] M. NEUMARK: Positive definite functions on a commutative group, Akad. Nauk, Leningrad. Otdelnie Matematicheskaya i estestvennykh nauk. Izvestia akad. nauk, SSSR. Ser. mat., 7(1943), 237-244.
- [8] M. NEUMAK: On representation of additive operator set functions, Akad. Nauk, SSSR(Doklady), 41(1943), 359-361.
- [9] R. SCHATTEN: A theory of cross-spaces, Ann. of Math. Stud., 26, Princeton, 1950.
- [10] W. F. STINESPRING : Positive functions on C*-algebras, Proc. Amer. Math. Soc., 6(1955), 211-216.

DEPARTMENT OF MATHEMATICS, TOKYO INSTITUTE OF TECHNOLOGY.