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1. Introduction. A function V(w, »’) defined on a product set  x Q
with range in the ring B(H) of all bounded operators on a Hilbert space
H is called positive definite provided that V(w, »') is a bounded operator on
H for any o, o’ in  and satisfies the conditions that V(w, »’) = V(e', ®)* and

@ X (B V(o w)E) 20,

for any finite sets of w; € Q, & € H(7=1,2,...,n).

Now let F()) be the vector space of all finite-valued numerical
functions on Q and F(Q)XH the algebraic direct product of F(Q) and H.
Putting d,(w) =1 for o = wy, =0 for w=*w, and denoting 38, (w)XE as
wy X & conveniently, all elements o X & w € Q, & € H, generate a vector
subspace of F(Q)XH. We shall denote this subspace as Q®H throughout
this paper.

For a given positive definite operator-valued function V(w, ') we
introduce an inner product in Q®H such that, for any element 2«) 5 X &

and 2oy X &,
2 <2m1 x Ej 2’0;; X E> = 2 uEs Viws, op)En.

It is clear that it satisfies the properties of an inner product except that
<oy x £, > @y x E> =0 implies >w; x & = 0.

Let Ny be the set of all expressions Ew 5 X &; with this condition, then the
quotient vector space (Q®H)/Ny is a prehilbert space. The completion of
this space we shall call the direct product Hilbert space of ) and H with
respect to V, and denote it by QX vH. It is obviousthat we have

(3) <w X E o xE> = Vio o))

for any o, o’ € Q and &, ¥ € H.D

Sometimes when we want to treat a positive definite operator-valued
functions, the above consideration may be useful and convenient, which we
shall show in the following for the case that Q is a group.

1) When V(w,o')=1 for w=o' and=0 for w=#w', then QQ®vHis isometrically
isomorphic to /%Q)RXH in the sense of Murray-von Neumann [3].
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2. Neumark-Sz. Nagy’s Theorem. Let V,; be a positive definite
operator-valued function on a group G into B(H), that is, when we put
Vs, t) = Vs-1,for each s, t€G, Vs, t) satisfies the condition (1) for G x G and
H. Such a function V; satisfies always the equality Vs-1= V¥, ie, V(s )
= V(¢ s)*. For, since g(s) = (&, Vs-1€) is a positive definite function on G,
Pi(s™) = gi(s) and (VE, £) = (€, V,-1£), and this implies (V, &, ) = (£, Vs-1)
for any &, » € H. Hence V(s,?) is a positive definite operator-valued function
on G x G into B(H), and we can construct a Hilbert space GXvH.

The following Theorem 1 is a generalization, due to Sz.Nagy, of a
theorem of M. A. Neumark [7] for a positive definite operator-valued func-
tion of a locally compact abelian group. ®

THEOREM 1. Let Vs be a positive definite operator-valued function on a
group G. Then there exists a unitary representation (Us, GRvH) of G such that
(4 T*UT = Vs
where T is a bounded linear transformation from H to GXvH.

ProOOF. Put U{Ss; x &;) = Sss; x &;, then U, is an additive operator
on G®H, and satisfies
(B) <ULSs; x &), Sty X m> = <Sss; X &5, Sty X m> = 35,45, V(ssy, teymn)

= 3;x(&;, Vs‘}s‘ltk%) = 3,1, V(sj, (s718))m)
= 35<8; X Ej, s X > = <Zs; x &j, ST X >
<3s; X &, U.;—I(Etk X M) >

Il

and

LT (Ssy x &y, USt: X ny)> = <355 X &5, Sty X mp>.
Thus the subspace
Ny = {Ss; x &;] <3s; x &, 3s; x ;> = 0}
is invariant under the operation U..
Hence the operator U; is well-defined on GOvH = (GOH)/N» and
uniquely extended to a unitary operator U; on GX)vH.
Now, if we define the linear transformation T from H into GX)vH by
' T: 8 —>exE§
then we have <TE, TE> = <e X E, ex E> = (€, V.£)< || V.l (E.E), which
shows the boundedness of 7. Moreover, if we denote the conjugate trans—
formation of T by T*, we have for any & n€H,
(T*UsTE,n) = <U;TE, Tn> = <Usle x E),e x >
=<sX & exn>=(E Vi) = (V.En),
which implies T*U,T = V.

REMARK. In the case V.,=1, H can be embedded into GXvH by
identifying & € H with e X £ € GXvH, then the transformation T can be

2) Our proof is also similar to that of Godement [2], H.Nakano [6], Ky Fan
[1], M.Nakamura and T.Turumaru [5] which are concerned with the numerical
valued positive definite functions.
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considered as the projection of G®rH onto H. This is the case which Sz.
Nagy discussed in [4].

CoROLLARY. If G is a topological group and (V,, H) is weakly continuous,
then the unitary representation (Us, GOvH) of G and (V,, H) are strongly
continuous.

Proor. Since

<2sf X Ej: Us(zt’c X 777\:)> = <Egj X E,f} EStk X 7}7;>
. = zj,lc(gjy Vsjlsrk"?h):

the weak continuity of (V,, H) implies the weak continuity of (Us;, GRvH).
Since U; (s € G) are unitary operators (Us, GXrH) is always strongly
continuous. Since V; = T*U,T by Theorem 1 and (U;, GXvH) is strongly
continuous, (V, H) is also strongly continuous.

3. Positive definite function on a group and positive definite
linear function on the group algebra. Let G be a locally compact group,
and let ZY{(G) be the group algebra of all integrable functions on G with
respect to the left invariant Haar measure with the convolution multiplication,

In order to discuss a positive definite operator-valued function on
L1 (G), we shall first define it on a *-algebra A as on the group in §2. A
linear function W, from A into B(H) of a Hilbert space H is said to be
Dositive definite, if W(x, ) = Wy is a positive definite operator-valued.
function on A x A into B(H).

Now, let Vs be a positive definite operator-valued function defined on
G whose range is in B(H) then we can construct the unitary representation
(Us, G®vH) of G as in the preceding section.

Since Vs and U, are strongly continuous, for each x¢& LYG) the
operator-valued functions x(s)V; and xs)U; are Bochner integrable with

respect to the Haar measure ds. Denote their Bochner integrals f x(s)Vsds-
and j %(s)Usds by V, and U, which are acting on the Hilbert spaces H and

G®vH respectively. Then [ V.||, | U,/| <M ,x , where | |; denotes the L'-
norm and M is a constant. Taking the bounded transformation T from H~
into G®vH as in Theorem 1 such that T¢ =e x £, then (U,, GRvH) is a
bounded *-respresentation of L\G) and satisfies T*U,T =V, for all x € L\(G).

In fact, since (U;, GX)vH) is a strongly continuous unitary representation
of G, the first part is clear. The second part follows from the fact that

<Ufe x &), ex n> = fx(s)<s x &, e X n>ds = /‘x(s)(Vsé, n)ds = (V,E,7).

Now, it is clear that V, is a positive definite operator-valued function on

L(G). With respect to the V,, we can construct a Hilbert space LZ(G)®)r
in our sense (§1) which is the same as the Hilbert space constructed by~
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Stinespring as algebraic tensor product between a C*-algebra and a Hilbert
space with respect to a positive definite operator-valued function [10]. 3

Putaxf = Ule X ) = f x(s) (s x &)ds (in the sense of Bochner integral),which

belongs to GXvH, then the set LYG)xH = {x*& x € LY(G), €€ H} is a
subspace of GXvH.

For any finite subsets {x;}, {3} of LYG) and {&;}, {m} of H, we have
<2x.‘a‘<g,i; 2-%:*771&> = 2],7c<xi*"::j-y’f*77k> = 21,k<vyk*xj (ex &), ex n>

= s [ Yixy(s) <s X &5, e X mp>ds = 2} . f Yixy(s)(VsEs, mids

= Zj’k(Vyiijfj, ) = Em_<xj X Ej, 36 X > = <Dy X Eg, S X 1>

Hence the mapping ¢ : SxE—3%; X &; is a unitary transformation from
LY GH to L(G)XvH. Using the approximate identity {e,} in L/(G) corres—
ponding to a complete system of neighborhoods of the unit e of G and by
the definition of the inner product <-,-> in G&®vH,{e, x & converges to
s x & and this implies that LZ(G*H is dense in GXvH. * Therefore, we
obtain that the Hilbert spaces GXvH and LNG)XvH are isomorphic by an
isomorphism ¢ which maps the element xx& of GRvH to the element x X & in
LY G)®vH.

In the above, we have seen that there can be defined a positive

definiteo perator-valued linear functionV, on L(G) for a given positive definite
operator-valued function V; on G. We can also show the converse case.

THEOREM 2. If a positive definite operator-valued bounded linear function
W, on LY G) into B(H) is given, then there exists a unique strongly continuous
positive definite operator-valued function Vs on G into B(H) such that

6) W, = [ xX(s)Vds for all x € LXG)
‘e

where the integral is in the sense of Bochner.

LEMMA 2.1. There exists a function f(E,s) defined for € € H and s € G
and with range in LNG)XwH such that, for each fixed s €G, flE, s) is a
bounded linear transformation from H into LNG)XwH, and for each fixed
E < H, & s) is strongly continuous on G, and moreover <f(E, s), fin, t)> =
<flE, e), f(n, s~1t)> for any &, n €H and s, t € G.

Proor. For each & € H, put o¢x) = (W,E E), then ogx) is a bounded
linear functional on L{(G) such that ogx*x)=0 for all x & L{(G). Hence
there exists a continuous positive definite function ggs) on G such that

3) The material of the present paper is obtained independently to W. F. Stinespring
[10]. The author is awared Stinespring’s paper when he visits the Tohoku University
in the summer. Stinespring calls completely positive instead of positive definite.

4) We denote the function z(s™'t) of ¢ by z5(2).
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ai(x) = f H(S)pg(s)ds.
G
For the approximate identity {es},

el = [ eats(t @i t)dt—pile).
Therefore .
e, xE—ey xE 2= <e), xE. ey, xE>+ <ey xE ey x E>
—2R<e, x Eej, X &>
= gi(er ) + ogleyt ey) — 2Roi(ef ef
= oew ea) + orlepeg) — 2Rai(ex €3) — 0
and the strong limit of ¢} x & exists in LY{G)XwH. Denote it by f(&, s). For
any finite set &; € H and any s € G, we have

7) A2E;, s)=limge s x 2 & = lima >, (€} X &)
= > lima(e}, X ;) = 2 fEs, 9)

while,
P(s) = lima [ e* en (Dapet)dt = limaog(el¥ eq) = Hm oileae’ )

= lima<es x £, &' X £> = <fE,e), fiE, s71)>,

8 <AE,s), [(n,t)> = lim<e, x &, €, x n>
= lim<ey X &, e x 9> = <fE, e). fin,s™it)>.

The strong continuity of A&, s) (for fixed & € H) follows easily from the
above fact and the construction of it. Since for any & € H and s€G,
9) [AE s)2=[fE e *=1ims|es x &2 =1ima<E, W, 6> =M EJ?,
for fixed s€ G, fl§, s) is a bounded linear transformation from H into
L(G)%wH, where M is a constant such that | W, || < M | x| for all x € LY{G).

PROOF OF THEOREM 2. By the above Lemma, for any & #» < H and
se€G,
|<fE, 9, fn, e)>| = |f(E, e)|if(n.e) =MIE||n
Hence, there exists a bounded linear operator Vs on H (depending on s € G)
such that <f(§s), (n,e)> = <ViE n>; by Lemma 2.1, V is a strongly
continuous positive definite B (H)-valued function on G. Moreover, for
x € LY(G)

(W.E, m) = f X S)pe(s)ds = / x's)<AE, s), A e)>ds = f x(s) (VsE, E)ds

e e

and for any & n€ H, (W, 7) = /x(s)(VSE, n)ds. Since x(s) Vs is Bochner

integrable, the Bochner integral [ x(s)Vsds exists and equals to W,. The

uniqueness of V; is obvious by (6).'

COROLLARY. ZLet Vs and W, be positive definite operator-valued functions
in Theorem 2. Then V,=1 if and onlyif | W, <! x', and the weak closure
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of {Wy; |2/ <1} {Wa; x€ LYG)} contains 1.
Proor. “If” part: Using the notation in the proof of Theorem 2, taking
a directed set {x}cZYG), | %1 =1, such that W,y converges weakly to 1,

we have
£ lim OE 8| = lim] [50p(9)ds] < gte)
¢

= <f(E. ), fiE.e)> = f(E e (ZIEE by (9)
and hence |&| = |[f(&, e)| for all & € H. Therefore for all & ne€ H
(&,m) = <fiE e), fn,e)> = (& V),

that is, V, = 1.
Conversely, if V, =1, we have, for any & € H,

(W, o, £) = j €u(s) (VE, B)ds > (V.5,8) = (£, &)
Since by (6)W, = x| holds we complete the proof.
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