POSITIVE DEFINITE FUNCTION AND DIRECT
 PRODUCT HILBERT SPACE

Hisaharu Umegaki

(Received October 5, 1955)

1. Introduction. A function $V\left(\omega, \omega^{\prime}\right)$ defined on a product set $\Omega \times \Omega$ with range in the ring $B(H)$ of all bounded operators on a Hilbert space H is called positive definite provided that $V\left(\omega, \omega^{\prime}\right)$ is a bounded operator on H for any ω, ω^{\prime} in Ω and satisfies the conditions that $V\left(\omega, \omega^{\prime}\right)=V\left(\omega^{\prime}, \omega\right)^{*}$ and

$$
\begin{equation*}
\sum_{j, k=1}^{n}\left(\xi_{j}, V\left(\omega_{j}, \omega_{k i}\right) \xi_{k}\right) \geqq 0 \tag{1}
\end{equation*}
$$

for any finite sets of $\omega_{j} \in \Omega, \quad \xi_{j} \in H(j=1,2, \ldots, n)$.
Now let $F(\Omega)$ be the vector space of all finite-valued numerical functions on Ω and $F(\Omega) \otimes H$ the algebraic direct product of $F(\Omega)$ and H. Putting $\delta_{\omega_{0}}(\omega)=1$ for $\omega=\omega_{0}$, $=0$ for $\omega \neq \omega_{0}$, and denoting $\delta_{\omega_{0}}(\omega) 冈 \xi$ as $\omega_{0} \times \xi$ conveniently, all elements $\omega \times \xi, \omega \in \Omega, \xi \in H$, generate a vector subspace of $F(\Omega) \otimes H$. We shall denote this subspace as $\Omega \odot H$ throughout this paper.

For a given positive definite operator-valued function $V\left(\omega, \omega^{\prime}\right)$ we introduce an inner product in $\Omega \odot H$ such that, for any element $\sum \omega_{j} \times \xi_{j}$ and $\sum \omega_{k}^{\prime} \times \xi_{k}^{\prime}$,

$$
\begin{equation*}
<\sum \omega_{j} \times \xi_{j}, \sum \omega_{k}^{\prime} \times \xi_{k}^{\prime}>=\sum_{j, k}\left(\xi_{j}, V\left(\omega_{j}, \omega_{k}^{\prime}\right) \xi_{k}^{\prime}\right) . \tag{2}
\end{equation*}
$$

It is clear that it satisfies the properties of an inner product except that

$$
<\sum \omega_{j} \times \xi_{j}, \sum \omega_{j} \times \xi_{j}>=0 \text { implies } \sum \omega_{j} \times \xi_{j}=0
$$

Let N_{V} be the set of all expressions $\sum \omega_{j} \times \xi_{j}$ with this condition, then the quotient vector space $(\Omega \odot H) / N_{V}$ is a prehilbert space. The completion of this space we shall call the direct product Hilbert space of Ω and H with respect to V, and denote it by $\Omega \otimes_{v} H$. It is obvious that we have

$$
\begin{equation*}
<\omega \times \xi, \omega^{\prime} \times \xi^{\prime}>=\left(\xi, V\left(\omega, \omega^{\prime}\right) \xi^{\prime}\right) \tag{3}
\end{equation*}
$$

for any $\omega, \omega^{\prime} \in \Omega$ and $\xi, \xi^{\prime} \in H .{ }^{1)}$
Sometimes when we want to treat a positive definite operator-valued functions, the above consideration may be useful and convenient, which we shall show in the following for the case that Ω is a group.

[^0]2. Neumark-Sz. Nagy's Theorem. Let V_{s} be a positive definite operator-valued function on a group G into $B(H)$, that is, when we put $V(s, t)=V_{s^{-1}}{ }_{t}$ for each $s, t \in G, V(s, t)$ satisfies the condition (1) for $G \times G$ and H. Such a function V_{s} satisfies always the equality $V_{s}-1=V_{s}^{*}$, i. e., $V(s, t)$ $=V(t, s)^{*}$. For, since $\varphi_{\xi}(s)=\left(\xi, V_{s^{-1}} \xi\right)$ is a positive definite function on G, $\overline{\varphi_{\xi}\left(s^{-1}\right)}=\varphi_{\xi}(s)$ and $\left(V_{s} \xi, \xi\right)=\left(\xi, V_{s^{-1}} \xi\right)$, and this implies $\left(V_{s} \xi, \eta\right)=\left(\xi, V_{s^{-1} \eta}\right)$ for any $\xi, \eta \in H$. Hence $V(s, t)$ is a positive definite operator-valued function on $G \times G$ into $B(H)$, and we can construct a Hilbert space $G \otimes_{v} H$.

The following Theorem 1 is a generalization, due to Sz. Nagy, of a theorem of M. A. Neumark [7] for a positive definite operator-valued function of a locally compact abelian group. ${ }^{2)}$

Theorem 1. Let V_{s} be a positive definite operator-valued function on a group G. Then there exists a unitary representation $\left(U_{s}, G \otimes_{v} H\right)$ of G such that

$$
\begin{equation*}
T^{*} U_{s} T=V_{s} \tag{4}
\end{equation*}
$$

where T is a bounded linear transformation from H to $G \otimes_{v} H$.
Proof. Put $U_{s}^{\prime}\left(\Sigma s_{j} \times \xi_{j}\right)=\Sigma s s_{j} \times \xi_{j}$, then U_{s}^{\prime} is an additive operator on $G \odot H$, and satisfies
(5) $\left\langle U_{s}^{\prime}\left(\Sigma s_{j} \times \xi_{j}\right), \Sigma t_{k_{i}} \times \eta_{k}\right\rangle=\left\langle\Sigma s s_{j} \times \xi_{j,}, ~ \Sigma t_{k_{k}} \times \eta_{k}\right\rangle=\Sigma_{j, k}\left(\xi_{j}, V\left(s s_{j}, t_{k}\right) \eta_{k}\right)$

$$
=\Sigma_{j, k}\left(\xi_{j}, V_{s^{-1} j^{-1} t_{k}} \eta_{k}\right)=\sum_{j, k}\left(\xi_{j}, V\left(s_{j},\left(s^{-1} t_{k}\right)\right) \eta_{k}\right)
$$

$\left.=\Sigma_{j, k}<s_{j} \times \xi_{j}, s^{-1} t_{t_{k}} \times \eta_{k}\right\rangle=\left\langle\Sigma s_{j} \times \xi_{j}, \Sigma s^{-1} t_{k i} \times \eta_{k}\right\rangle$
$=\left\langle\Sigma s_{j} \times \xi_{j}, U_{s}^{\prime-1}\left(\Sigma t_{k} \times \eta_{k}\right)\right\rangle$
and

$$
\left\langle J_{s}^{\prime}\left(\Sigma s_{j} \times \xi_{j}\right), U_{s}^{\prime}\left(\Sigma t_{k_{k}} \times \eta_{k}\right)>=\left\langle\Sigma s_{j} \times \xi_{j}, \Sigma t_{k} \times \eta_{k}\right\rangle\right.
$$

Thus the subspace

$$
N_{V}=\left\{\Sigma s_{j} \times \xi_{j} \mid<\Sigma s_{j} \times \xi_{j}, \Sigma s_{j} \times \xi_{j}>=0\right\}
$$

is invariant under the operation U_{s}^{\prime}.
Hence the operator U_{s}^{\prime} is well-defined on $G \bigodot_{V} H=(G \odot H) / N_{V}$ and uniquely extended to a unitary operator U_{s} on $G \bigotimes_{V} H$.

Now, if we define the linear transformation T from H into $G \otimes_{v} H$ by

$$
T: \xi \rightarrow e \times \xi
$$

then we have $\langle T \xi, T \xi\rangle=\langle e \times \xi, e \times \xi\rangle=\left(\xi, V_{e} \xi\right) \leqq\| \| V_{e} \|(\xi, \xi)$, which shows the boundedness of T. Moreover, if we denote the conjugate transformation of T by T^{*}, we have for any $\xi, \eta \in H$,

$$
\begin{aligned}
& \left(T^{*} U_{s} T \xi, \eta\right)=\left\langle U_{s} T \xi, T \eta\right\rangle=\left\langle U_{s}(e \times \xi), e \times \eta>\right. \\
& =\left\langle s \times \xi, e \times \eta>=\left(\xi, V_{s}^{-1} \eta\right)=\left(V_{s} \xi, \eta\right),\right.
\end{aligned}
$$

which implies $T^{*} U_{s} T=V_{s}$.
Remark. In the case $V_{e}=1, H$ can be embedded into $G \otimes{ }_{v} H$ by identifying $\xi \in H$ with $e \times \xi \in G \otimes_{v} H$, then the transformation T can be

[^1]considered as the projection of $G \otimes_{V} H$ onto H. This is the case which Sz. Nagy discussed in [4].

Corollary. If G is a topological group and $\left(V_{s}, H\right)$ is weakly continuous, then the unitary representation $\left(U_{s}, G \otimes_{v} H\right)$ of G and $\left(V_{s}, H\right)$ are strongly continuous.

Proof. Since

$$
\begin{aligned}
\left\langle\Sigma s_{j} \times \xi_{j}, U_{s}\left(\Sigma t_{k} \times \eta_{k s}\right)>\right. & =\left\langle\Sigma s_{j} \times \xi_{j}, \Sigma s t_{k} \times r_{k b}>\right. \\
& =\Sigma_{j, k}\left(\xi_{j}, V_{s}^{-1} s t_{k} \eta_{k}\right),
\end{aligned}
$$

the weak continuity of (V_{s}, H) implies the weak continuity of ($U_{s}, G \otimes_{\boldsymbol{v}} H$). Since $U_{s}(s \in G)$ are unitary operators ($U_{s}, G \otimes_{v} H$) is always strongly continuous. Since $V_{s}=T^{*} U_{s} T$ by Theorem 1 and ($U_{s}, G \bigotimes_{V} H$) is strongly continuous, (V_{s}, H) is also strongly continuous.
3. Positive definite function on a group and positive definite linear function on the group algebra. Let G be a locally compact group, and let $L^{1}(G)$ be the group algebra of all integrable functions on G with respect to the left invariant Haar measure with the convolution multiplication.

In order to discuss a positive definite operator-valued function on $L^{1}(G)$, we shall first define it on a *-algebra A as on the group in $\S 2$. A linear function W_{x} from A into $B(H)$ of a Hilbert space H is said to be positive definite, if $W(x, y)=W_{x^{*} y}$ is a positive definite operator-valued function on $A \times A$ into $B(H)$.

Now, let V_{s} be a positive definite operator-valued function defined on G whose range is in $B(H)$ then we can construct the unitary representation. ($U_{s}, G \otimes_{v} H$) of G as in the preceding section.

Since V_{s} and U_{s} are strongly continuous, for each $x \in L^{1}(G)$ the operator-valued functions $x(s) V_{s}$ and $x(s) U_{s}$ are Bochner integrable with respect to the Haar measure $d s$. Denote their Bochner integrals $\int x(s) \boldsymbol{V}_{s} d s$ and $\int x(s) U_{s} d s$ by \bar{V}_{x} and \bar{U}_{x} which are acting on the Hilbert spaces H and $G \otimes_{V} H$ respectively. Then $\left\|\bar{V}_{x}\right\|, \bar{U}_{x} \| \leqq \boldsymbol{x}_{1}$ where $\left\|\|_{1}\right.$ denotes the $L^{1}{ }^{1}$ norm and M is a constant. Taking the bounded transformation T from H^{-} into $G \otimes_{\nu} H$ as in Theorem 1 such that $T \xi=e \times \xi$, then ($\overline{U_{x}}, G \otimes_{\nu} H$) is a bounded ${ }^{*}$-respresentation of $L^{1}(G)$ and satisfies $T^{*} \bar{U}_{x} T=\bar{V}_{x}$ for all $x \in L^{1}(G)$. In fact, since $\left(U_{s}, G \otimes_{V} H\right)$ is a strongly continuous unitary representation. of G, the first part is clear. The second part follows from the fact that

$$
<\bar{U}_{x}(e \times \xi), e \times \eta>=\int x(s)<s \times \xi, e \times \eta>d s=\int x(s)\left(V_{s} \xi, \eta\right) d s=\left(\bar{V}_{x} \xi, \eta\right)
$$

Now, it is clear that \bar{V}_{x} is a positive definite operator-valued function on $L^{1}(G)$. With respect to the \bar{V}_{x}, we can construct a Hilbert space $L^{1}(G) \otimes \nabla_{\bar{v}} H^{-}$ in our sense (§1) which is the same as the Hilbert space constructed by

Stinespring as algebraic tensor product between a C^{*}-algebra and a Hilbert space with respect to a positive definite operator-valued function [10]. ${ }^{3)}$ Put $x * \xi=\bar{U}_{x}(e \times \xi)=\int x(s)(s \times \xi) d s$ (in the sense of Bochner integral), which belongs to $G \otimes_{\mathrm{V}} H$. then the set $L^{1}(G) * H=\left\{x^{*} \xi ; x \in L^{1}(G), \xi \in H\right\}$ is a subspace of $G \otimes_{\vee} H$.

For any finite subsets $\left\{x_{j}\right\},\left\{y_{k}\right\}$ of $L^{1}(G)$ and $\left\{\xi_{j}\right\},\left\{\eta_{k}\right\}$ of H, we have

$$
\begin{aligned}
& <\sum x_{* *} \xi_{j}, \sum y_{k}^{*} \eta_{h}>=\sum_{j, k}<x_{j *} \xi_{j,} y_{k} \psi_{\eta_{k}}>=\sum_{j, k}<\bar{U}_{y_{k_{*}} x_{j}}\left(e \times \xi_{j}\right), e \times \eta_{k}> \\
& =\sum \sum_{j, z_{j}} \int y_{k}^{*} x_{j}(s)<s \times \xi_{j} e \times \eta_{k}>d s=\sum_{j, k} \int y_{k}^{*} x_{j}(s)\left(V_{s} \xi_{j}, \eta_{k}\right) d s \\
& =\sum_{j, k}\left(V y_{k}^{*} x_{j} \xi_{j}, \eta_{k}\right)=\sum_{j, k_{k}}<x_{j} \times \xi_{j,} y_{k} \times \eta_{k}>=<\sum x_{j} \times \xi_{j,} \sum y_{k} \times \eta_{k}>.
\end{aligned}
$$

Hence the mapping $\phi: \Sigma x_{*} \xi_{j} \rightarrow \Sigma x_{j} \times \xi_{j}$ is a unitary transformation from $L^{1}(G) * H$ to $L^{1}(G) \otimes_{r} H$. Using the approximate identity $\left\{e_{\alpha}\right\}$ in $L^{1}(G)$ corresponding to a complete system of neighborhoods of the unit e of G and by the definition of the inner product $\left\langle\cdot, \cdot>\right.$ in $G \otimes_{\nabla} H,\left\{e_{\alpha}^{s} \times \xi\right\}$ converges to $s \times \xi$, and this implies that $L^{1}(G) * H$ is dense in $G \otimes_{\nu} H$. ${ }^{\text {4) }}$ Therefore, we obtain that the Hilbert spaces $G \otimes_{v} H$ and $L^{1}(G) \otimes \otimes_{\bar{v}} H$ are isomorphic by an isomorphism ϕ which maps the element $x * \xi$ of $G \otimes_{v} H$ to the element $x \times \xi$ in $L^{1}(G) \otimes \bar{v} H$.

In the above, we have seen that there can be defined a positive definiteo perator-valued linear function \bar{V}_{x} on $L^{1}(G)$ for a given positive definite operator-valued function V_{s} on G. We can also show the converse case.

Theorem 2. If a positive definite operator-valued bounded linear function W_{x} on $L^{1}(G)$ into $B(H)$ is given, then there exists a unique strongly continuous positive definite operator-valued function V_{s} on G into $B(H)$ such that

$$
\begin{equation*}
W_{x}=\int_{G} x(s) V_{s} d s \quad \text { for all } x \in L^{1}(G) \tag{6}
\end{equation*}
$$

where the integral is in the sense of Bochner.
Lemma 2.1. There exists a function $f(\xi, s)$ defined for $\xi \in H$ and $s \in G$ and with range in $L^{1}(G) \otimes{ }_{w} H$ such that, for each fixed $s \in G, f(\xi, s)$ is a bounded linear transformation from H into $L^{1}(G)_{\otimes} H$, and for each fixed $\xi \in H, f(\xi, s)$ is strongly continuous on G, and moreover $\langle f(\xi, s), f(\eta, t)\rangle=$ $\left\langle f(\xi, e), f\left(\eta, s^{-1} t\right)>\right.$ for any $\xi, \eta \in H$ and $s, t \in G$.

Proof. For each $\xi \in H$, put $\left.\sigma_{\xi}^{\prime} x\right)=\left(W_{x} \xi, \xi\right)$, then $\sigma_{\xi^{\prime}}(x)$ is a bounded linear functional on $L^{1}(G)$ such that $\sigma_{\xi}^{\prime}\left(x^{*} x\right) \geqq 0$ for all $x \in L^{1}(G)$. Hence there exists a continuous positive definite function $\varphi_{\xi}(s)$ on G such that

[^2]4) We denote the function $x\left(s^{-1} t\right)$ of t by $x^{s}(t)$.
$$
\sigma_{\xi}(x)=\int_{G} x(s) \varphi_{\xi}(s) d s
$$

For the approximate identity $\left\{e_{\alpha}\right\}$,

$$
\sigma_{\xi}\left(e_{\alpha}^{s} e_{\beta}^{s}\right)=\int e_{\alpha} e_{\beta}\left(t^{-1}\right) \varphi_{\xi}(t) d t \rightarrow \phi_{\xi}(e)
$$

Therefore

$$
\begin{aligned}
\left\|e_{\alpha}^{s} \times \xi-e_{\beta}^{s} \times \xi\right\|^{2} & =\left\langle e_{\alpha}^{s} \times \xi . e_{\alpha}^{s} \times \xi\right\rangle+\left\langle e_{\beta}^{s} \times \xi, e_{\beta}^{s} \times \xi>\right. \\
& -2 R<e_{\alpha}^{s} \times \xi e_{\beta}^{s}, \times \xi> \\
& =\sigma_{\xi}\left(e_{\alpha}^{s *} e_{\alpha}^{s}\right)+\sigma_{\xi}\left(e_{\beta}^{s *} e_{\beta}^{s}\right)-2 R \sigma_{\xi}\left(e_{\alpha}^{s *} e_{\beta}^{s}\right) \\
& =\sigma_{\xi}\left(e_{\alpha} e_{\alpha}\right)+\sigma_{\xi}\left(e_{\beta} e_{\beta}\right)-2 R \sigma_{\xi}\left(e_{\alpha} e_{\beta}\right) \rightarrow 0
\end{aligned}
$$

and the strong limit of $e_{\alpha}^{s} \times \xi$ exists in $L^{1}(G) \otimes_{W} H$. Denote it by $f(\xi, s)$. For any finite set $\xi_{j} \in H$ and any $s \in G$, we have

$$
\begin{align*}
& f\left(\sum \xi_{j}, s\right)=\lim _{\alpha} e_{\alpha}^{s} \times \sum \xi_{j}=\lim _{\alpha} \sum\left(e_{\alpha}^{\kappa} \times \xi_{j}\right) \tag{7}\\
& =\sum \lim _{\alpha}\left(e_{\alpha}^{s} \times \xi_{j}\right)=\sum f\left(\xi_{j}, s\right)
\end{align*}
$$

while.

$$
\begin{align*}
& \varphi_{\xi}(s)=\lim _{\alpha} \int e_{\alpha}^{s *} e_{\alpha}(t) \varphi_{\xi}(t) d t=\lim _{\alpha} \sigma_{\xi}\left(e_{\alpha}^{\kappa *} e_{\alpha}\right)=\lim \sigma_{\xi}\left(e_{\alpha} e_{\alpha}^{s^{s-1}}\right) \\
& =\lim _{\alpha}\left\langle e_{\alpha} \times \xi, e_{\alpha}^{s-1} \times \xi\right\rangle=\left\langle f(\xi, e), f\left(\xi, s^{-1}\right)\right\rangle, \\
& \langle f(\xi, s), f(\eta, t)\rangle=\lim \left\langle e_{\alpha}^{\dot{\alpha}} \times \xi, e_{\alpha}^{t} \times \eta>\right. \tag{8}\\
& =\lim \left\langle e_{\alpha} \times \xi, e_{\alpha}^{\alpha-1 t} \times \eta\right\rangle=\left\langle f(\xi, e), f\left(\eta, s^{-1} t\right)\right\rangle .
\end{align*}
$$

The strong continuity of $f(\xi, s)$ (for fixed $\xi \in H$) follows easily from the above fact and the construction of it. Since for any $\xi \in H$ and $s \in G$,
(9) $\left|f(\xi, s)\left\|^{2}=\right\| f(\xi, e)\left\|^{2}=\lim _{\alpha} \mid e_{\alpha} \times \xi\right\|^{2}=\lim _{\alpha}<\xi, W_{e_{\alpha_{\alpha}} \alpha} \xi>\leqq M\|\xi\|^{2}\right.$, for fixed $s \in G, f(\xi, s)$ is a bounded linear transformation from H into $L^{1}(G) \otimes{ }_{w} H$, where M is a constant such that $W_{x}\|\leqq M\| x \|_{1}$ for all $x \in L^{1}(G)$.

Proof of theorem 2. By the above Lemma, for any $\xi, \eta \in H$ and $\boldsymbol{s} \in G$.

$$
|<f(\xi, s), f(\eta, e)>|\leqq\|f(\xi, e) \mid f(\eta, e) \leqq M \xi \xi\| \eta
$$

Hence, there exists a bounded linear operator V_{s} on H (depending on $s \in G$) such that $\langle f(\xi, s), f(\eta, e)\rangle=\left\langle V_{s} \xi, \eta\right\rangle$; by Lemma 2.1, V_{s} is a strongly continuous positive definite $B(H)$-valued function on G. Moreover, for $x \in L^{1}(G)$

$$
\left.\left(W_{x} \xi, \eta\right)=\int x(s) \varphi_{\xi}(s) d s=\int x \cdot s\right)<f(\xi, s), f(\xi, e)>d s=\int x(s)\left(V_{s} \xi, \xi\right) d s
$$

and for any $\xi, \eta \in H,\left(W_{x} \xi, \eta\right)=\int x(s)\left(V_{s} \xi, \eta\right) d s$. Since $x(s) V_{s}$ is Bochner integrable, the Bochner integral $\int x(s) V_{s} d s$ exists and equals to W_{x}. The uniqueness of V_{s} is obvious by (6).

Corollary. Let V_{s} and W_{x} be positive definite operator-valued functions in Theorem 2. Then $V_{e}=1$ if and only if $W_{x} \leqq x_{1}$ and the weak closure
of $\left\{W_{x} ;\left.x\right|_{1} \leqq 1\right\}\left\{W_{x} ; x \in L^{1}(G)\right\}$ contains 1 .
Proof. "If" part: Using the notation in the proof of Theorem 2, taking a directed set $\left\{x_{\gamma}\right\} \subset L^{1}(G), x_{\gamma} \|_{1} \leqq 1$, such that $W_{x \gamma}$ converges weakly to 1 , we have

$$
\begin{aligned}
|\xi|^{2} & =\lim \left|\left(W_{x \gamma} \xi, \xi\right)\right|=\lim \left|\int_{G} x_{\gamma}(s) \varphi_{\xi}(s) d s\right| \leqq \varphi_{\xi}(e) \\
& =\langle f(\xi, e), f(\xi, e)\rangle=\|f(\xi, e)\|^{2}\left(\leqq \xi \|^{2} b y(9)\right)
\end{aligned}
$$

and hence $\|\xi=\| f(\xi, e) \|$ for all $\xi \in H$. Therefore for all $\xi, \eta \in H$ $(\xi, \eta)=\langle f(\xi, e), f(\eta, e)\rangle=\left(\xi, V_{e} \eta\right)$,
that is, $V_{e}=1$.
Conversely, if $V_{e}=1$, we have, for any $\xi \in H$,
$\left(W_{e \alpha} \xi, \xi\right)=\int e_{\alpha}(s)\left(V_{s} \xi, \xi\right) d s \rightarrow\left(V_{e^{\xi}}, \xi\right)=(\xi, \xi)$.
Since by (6) $W_{x} \leqq x_{1}$ holds we complete the proof.

References

[1] Ky HAN: On positive definite sequences, Ann. of Math., 47(1946), 593-607.
[2] R. Godement : Les fonctions de type positif et la theorie des groupes, Trans. Amer. Math. Soc., 63(1945), 1-84.
[3] F. J. Murray and J. von Neumann : On rings of operators, Ann. of Math., 37(1936), 116-229.
[4] S.Sz. NAGY: Transformations de l'espace de Hilbert, fonctions de type positif sur un groupe, Acta de Szeged, 15(1954), 104-114.
[5] M. Nakamura and T. TURUMARU: On the representations of positive definite functions and stationary functions on a topological group, Tôhoku Math. Journ., 4(1954), 1-9.
[6] H. Nakano : On the theory of Hilbert space (in Japanese), Sugaku, 1(1947-48), 38-42.
[7] M. Neumark : Positive definite functions on a commutative group, Akad. Nauk, Leningrad. Otdelnie Matematicheskaya i estestvennykh nauk. Izvestia akad. nauk, SSSR. Ser. mat., 7(1943), 237-244.
[8] M. NEUMAK : On representation of additive operator set functions, Akad. Nauk, SSSR(Doklady), 41(1943), 359-361.
[9] R. Schatten : A theory of cross-spaces, Ann. of Math. Stud., 26, Princeton, 1950.
[10] W. F. Stinespring : Positive functions on C^{*}-algebras, Proc. Amer. Math. Soc., 6(1955), 211-216.

Department of Mathematics, Tokyo Institute of Technology.

[^0]: 1) When $V\left(\omega, \omega^{\prime}\right)=1$ for $\omega=\omega^{\prime}$ and $=0$ for $\omega \neq \omega^{\prime}$, then $\Omega \otimes_{V} H$ is isometrically isomorphic to $l^{2}(\Omega) \otimes H$ in the sense of Murray-von Neumann [3].
[^1]: 2) Our proof is also similar to that of Godement [2], H. Nakano [6], Ky Fan [1], M. Nakamura and T. Turumaru [5] which are concerned with the numerical valued positive definite functions.
[^2]: 3) The material of the present paper is obtained independently to W. F. Stinespring [10]. The author is awared Stinespring's paper when he visits the Tohoku University in the summer. Stinespring calls completely positive instead of positive definite.
