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J. von Neumann has classified factors in some classes, type I, II, III and1

finite, infinite in his monumental works "Rings of operators". The really
interesting is the theory of type IIL (type II and finite). As a special one of
such factors, F. J. Murray and J. von Neumann [8] investigated approximately
finite factors and they have many interesting results. I. Kaplansky [6] gene-
ralized this theory to general T7*-algebras. In these theories, the separability
condition for the underlying Hubert space is essential. The purpose of this
paper is to generalize these theories in non-separable casss, on the basis of
the theory of direct products of W*-algebras in the preceding paper[7J.

In the first section we shall study some preliminary lemmas. The second-
section will be devoted to the study of factors. A factor will be called to
be approximately finite if it is of type Hi and generated by a family of
subfactors of type I which mutually commute. Then two approximately
finite factors are algebraically ^-isomorphic to each other if and only if the
cardinals of families of subfactors mentioned above are identical. Murray
and von Neumann's approximately finite factor is considered as a special
one.

In the final section, we shall generalize the above considerations for
factors to general flP-algebras. A TF*-algebra will be called to be approx-
imately finite if it is of type Πt and generated by T7*-subalgebras of type Γ
which mutually commute. Especially if these W *-subalgebras have no
commutative part in every central decomposition, then it is called to be
uniformly approximately finite. Then every approximately finite TF*-algebra
can be represented as a direct sum of uniformly approximately finite W
*-subalgebras, and a uniformly approximately finite TF*-algebra is a direct
product of an approximately finite factor and a commutative ΫF*-algebra.

1. Preliminaries. In this paper, a ]/F*-subalgebra of W*-algebra will
be meant a weakly closed self-adjoint subalgebra. Let Sλ(λ€Λ) be a family
of sets of operators, by R(Sλ λ € Λ) we shall mean the smallest l/F*-suba-
Igebra of full operator algebra which contains all Sλ. A ΉP-algebra is called
σ-finite if any family of projections which are mutually orthogonal is at most
countable. A T^*-algebra M is finite it £7*ί7 = 7 implies UU* = / for any
unitary operator U € M. J. Dixmier [1] showed that in a finite TF*-algebra
there exists a unique center valued trace fcj.

Let M be a finite W*-algebra of type II, then one can represent M
faithfully as a standard TP*-algebra (in the sense of I. E. Segal [11]) on a
suitable Hubert space ©. Moreover if M is σ-finite, then there exists a_
vector x € ©(iiXU = 1) with following properties: If we define a positive:
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linear functional τ on M by

r(A) = (Ax, X\

then T is a complete trace, that is, τ(A*A) = 0 if and only if A = 0 and
τ(AB) = τ(BA) for all A, B € M. Put

<A,B> = τ(B*A) and [[A]] - <A, A>*,

then <, > satisfies the common properties of the inner product and M
becomes a prehilbert space. Let ί? be the completion of this prehilbert space,
then M can be represented as a PF*-algebra on $ faithfully. It is known
that M on © is unitarily equivalent to M on if (cf. [4], [10], [11]).

The next lemma is due to F. J. Murray and J. von Neumann [8 Theorem
1] in the case of factors.

LEMMA 1.1. Let M be a σ-finie finite standard W*-algebra and [[ ]] be the
metric as above. Then the strong (weak) closure of a self-adjoint *-algebra in
J\T coincides with the metric closure of it.

PROOF. Let <£) be the underlying Hubert space and x be the vector which
•define the metric [[ J]. Let JNΓ be a self-adjoint *-algebra in M and NΊ,
N2 be the closure of 3SΓ by the strong topology and the metric topology
respectively. It is obvious that NL £ N>. Let A be an arbitrary element in
Ni, then there exists a directed set AΛ in N which converges to A in the
metric topology. We can easily choose a subsequence AΛ. which converges
to A in the metric topology. By an analogous way to the proof of [8, Lemma
1.5.4], we can assume without loss of generality that || AΛi \\ <i K for all i.
For any B € M'

[ (A*t - A)Bx ^ B j [[A«( - A]] -> 0 as i -* oo.
By the standardness of M, [Mx] = ξ). Hence for all y € <£)

I (Aut — A)y I -> 0 as i -> co.
In other wards, AΛi converges to A in the strong topology. This shows
that N! 3 N2. Thus we have proved that Ni = N2.

LEMMA 1. 2. Let M. be a σ-finite finite W*-algebra and {N\ λ € Λ} be a
family of factors of type I in M which commute with each other. Then R(Nh
λ € Λ) is a factor too.

PROOF. We can assume without loss of generality that M is standard
on the acting space. Let S be the algebra which is generated algebraically
by all Wλ. Then S is weakly dense in R(N\ λ € Λ). Now we shall define
T and [[ ]] as above. Let A be an arbitrary central element in /?(ISΓλ; λ
€! Λ), then, by the preceding lemma, for any 6 > 0 there exists a B ^ S
with

[[A - B]] < 6.

Then there exist Nλl, , Nλn such that B is contained in the algebra N =
R(N\i i = 1, , n). It is clear that N is a factor of type I. For any X €
N, we have
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[[(B - T(B)1)X -X(B- τ(B)l)}] - [[(B - A)X - X(B - A)]] < 26 j : X .

Hence we have

[[B-τ(B)I]]<26

(cf. [2, Lemma 4. 7. 1]), moreover we have

\τ(B) - τ(A)| - \τ(B - A) I :S HA - B]] < ε.

Accordingly
[[A - τ(A)/]] 5S [[A - B]] H- [[5 - τ(£)/]J + [[(τ(B) - τ(A))/J] < 46.

Since £ is arbitrary, we have [[A — τ(A)7j] = 0; which shows that A = τ(A)/
and /?(lSΓλ λ € Λ) is a factor.

The next lemma can be proved by an analogous way to the proof of
[7; Theorem 5] and we shall omit its proof.

LEMMA 1. 3. Let N be a factor of type I in a W*-algebra M, the latter
being not of type I. Then M is *-isomorphic to the direct product of N and a
"W*-algebra M! which is *-isomorphic to the contraction of M to the range of
a minimal projection in N.

LEMMA 1. 4. Let M be a W*-algebra which is not of type I, then, for any
positive inter ger p, we have

M = M! ® M,

where MI is a factor of type I.

PROOF. Consider p families of projections {Pt\}, ---- , {/V} such that all
projections are mutually orthogonal and P]λ, ____ , Pp\ are mutually equivalent
for every λ. Choose a maximal _£> families {Pα}, ____ , {^W} with this property
by Zorn's lemma and put

Λ ~2Λλ for ί = l, ...., p.
λ

Then it is clear that they are mutually orthogonal and equivalent. If Q =
V

I — 2 Λ is n°t zeι"θ; then Q'M.Q is considered as a W*-algebra on the
ί = 1

range of Q which is not of type I. Hence we can easily choose orthogonal
equivalent non-zero projections Q:, ........ , QP which are contained in Q.
This contradicts to the maximality of the sets {Pι\}, ---- ,{Pp\) and we have

Since Pi are mutually orthogonal and equivalent, we can easily construct
a system of matrix units in M whose diagonals are Pi. The PF*-algebra
generated by these matrix units is of type I, hence the lemma is the im-
mediate consequence of the preceding lemma.

LEMMA 1. 5. Let N be a factor of type lp in a W*-algebra M, the latter
being not of type I. Then, for any q^p which is divisible by p, there exists
a factor Nτ of type Iq which contains N.
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PROOF. Let r = q/p. By the preceding lemma, we have

It is clear that Mτ is not of type I. Hence, we have

MT = N2 ® M2,

where Nz is a factor of type Tr, so that

M - N © N3 ® M2.

Put NΊ = N ® N>, then NΊ is a factor of type Iq and contains N.

REMARK. In Lemmas 1. 3, 1. 4 and 1. 5, we have assumed that M is not
of type I. In the case of type I, we can state analogous ones under suitable
conditions.

Let M be a PF^-algebra and E be any projection in M, then we shall
denote the contraction of M on the range of E as M#.

LEMMA 1. 6. Let N be a factor in a finite "W*-algebra M, then

R(N, Z) = N (g) Z

where Z is the center of M.

PROOF. As R(N, Z) is a TF*-subalgebra in a finite TF*-algebra, R(N, Z)
is also finite. Suppose that R(N, Z) is a σ-finite, then there exists a complete
trace r such as at the beginning of this section. Let TI and τ2 be its con-
tractions on N and Z, then n and τa are traces in these TF*-algebras. As
Z is contained in the center of R(N, Z), we have

(ABγ = A*B
where A, B are arbitrary elements in N, Z respectively and fc| is the center
valued trace in R(N, Z). It is known that T(X) = T^) in R(N, Z) and then

τ(AB) = τ((A£» = τ(A^) = TCnCA)/^) = Tl(Λ) ra(S).

Therefore, by an analogous way to [8 Theorem 1J, we can prove the lemma,
since N Π Z = {alj.

Now we shall consider the general case. We can choose a family Eλ of
central projections in M which are mutually orthogonal such that each
contraction R(N, Z)#λ is σ-finite. It is clear that N λ̂ are factors. Therefore,
we have R(N, Z) λ̂ = N λ̂ ® Z λ̂ and this implies that

On the other hand (N ® Z)E^ = NE^ ® Z λ̂ and this implies that

Hence we have #(N, Z) = N ® Z.

2. Generalized approximately finite factors. In this section, we shall
concern with factors.

LEMMA 2.1. Let Mi be a factor of type IIt. Suppose that there exists a
family {Mλ λ €: Λ} with the following properties:
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(1) each Mλ is of type I (necessary finite),
(2) M ŝ commute with each other in elmentwise,
(3) M = #(Mλ λ 6 Λ).

Then there exists a family {Nμ , μ € M} M;/«£& satisfies the conditions (2), (3)

(4) each N^ is of type Ia.
Moreover the cardinal of {Mλ λ € Λ} as a set is identical with that of {Nμ

/*€M}.

PROOF. Split Λ into mutually disjoint subsets {AΛ a <~ A} such that

Λ = \^J ΛΛ and each Λ* is countably infinite. Let M" = jR(Mλ λ € Λα),
αε4

then it is clear that there exists an increasing sequence {Pn} of factors of
type I in M with M = R(Pn n = 1, 2, ---- ). Hence there exists an increasing
sequence {Qn} of factors of type I2 in M* with M* = /?(Qn n = 1, 2, ---- )
(cf., [8, §4. 4]). Put M? = QL By induction, we shall define M* with following
properties

(i) R(Mf -, i = l,2, . . . . , Λ ) = Q«,
(ii) Mf s commute with each other.

Suppose that Mf, ---- , M^ are already defined. By assumptions
#(Mf 1 = 1,2, . . . . , Λ - 1) = Qn-ι cz Q»

and Qn-i, Qw are of type Ia

n-ι, Is" respectively. By an analogous way to the
proof of [7, Lemma 4. 1. 2], we can take a factor M£+1 of type I2 such that

i - 1, 2, ---- , Λ) = Qn and M^ commute with Qn_ι. Hence the sequence
has the desired properties. Moveover, we have

Λ(MJ; n = l,2, ....) = Λ(Q»; Λ = 1,2, . . . . ) = M-.
If we write the family {M* α: € Λ Λ w = 1, 2, . . . .} by {Nμ μ, € M}, then
it is obvious that this family has the disired properties.

By the construction of {Nμ μ € M}, the cardinal of this family equals
to that of {Mλ λ € Λ}.

The following lemma is a slight generalization of a lemma due to M.
Nakamura [9] and we shall omit its proof.

LEMMA 2. 2. Let M be a finite factor which is generated by a finite number
of subf actors MI, ---- , Mw where Mi '5 commute with each other. Then the trace
on M is multiplicative in the sense of

for At € Mi (ί = 1,2, . . . . ,w).

THEOREM 2. 1. Zgf M be a finite factor. If there exists a family {Mλ λ
Λ> 0/ sub/actors satisfying the conditions (1), ('2) «wJ (3) in Lemma 2. 1,
the cardinal of the family is uniquely determined by M.

PROOF. Let © be the Hubert space on which M acts as a standard factor
in the sense of 1. E. Segal [11]. By Lemma 2. 1, we may assume that each
Mλ is of type I2 and there exists a system of matrix units {W$: i,j = 1,2}
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in each Mλ. Put £/λ = W{^ + W$l, then C/λ is unitary and Mλ is generated
by W$ and U\. Let © be the group generated by all U\ and JSΓ0 be the
commutative *-algebra generated by all W$ and N* be its weak closure.
Then N" is a commutative TΓ*-algebra in M. We can easily show that
M = R(N, %

Let T be the trace of M, then by the standardness of M on ξ), there
exists a vector x € «£> such that τ( ) = ( x, x). It is obvious that the contraction
of r on each Mλ is a trace of Mλ, hence τ(TF$) = 0 and τ(C7λ) = 0.

Next, for any U €• (8, we shall define the manifold 5Dίσ by

We shall show that if U =t= / then SDΪσ is orthogonal to 9ft/. Let A, B be
arbitrary elements in N, then for any 6 > 0 there exist Λ0, B0 in N"0 such

that
\(UAx, Bx) - (UAx, B0x)\ < £/2

and
I (UAx, BO*) - (UA0x, B0x) I < 6/2.

For these U, A0, B0, we can find indices λb ---- , \n such that Z7, A0, B0 are
contained in /?(Mλί i = 1, 2, ---- , w). Therefore, we can write as follows :

where 6«, λί,p, λί>β are 0 or 1. Then by using Lemma 2.2, we have
(UA0x,

= 0.

Accordingly, we have
\(UAx,Bx)\ = KZ7-AΛΓ, Bx)-(UA0x, B0x)\

= (ί/ AΛr, BΛΓ) - (ί/AΛΓ, £0#) - (C/AΛΓ, 50Λ:) - (UAQx, B0x)\

< ε.
Since 6 is arbitrary, this shows that (UAx, Bx) = 0. This implies that if
U 4= 7, 9DΪZ7 is orthogonal to 9JΪ/ and, by this fact, we can easily prove that
ΪHσ is orthogonal to 9JίF for £7, F € © with Z7 Φ F.

According to the standardness of M on $, [Mj*rJ = § and, as we noticed
in the above, M = R(N, (8). Hence

It is clear that 3DΪC7 is the image of 9Jiz under £7. Therefore Wlσ have the same
dimension for all U € ®. Let #0 be this dimension and a be the cardinal of
(S, then © has #0# as its dimension. By the elementary calculations of sets
theory, it is easily shown that a is the cardinal of {Mλ λ ^ Λ>.

Now {M° μ € M} be any family satisfying the conditions (2), (3), (4) in
Lemma 2. 1 and β be its cardinal. Then according to the procedure mentioned
above we can constract a unitary group & and manifolds 9Jΐ^ for V € (S°
such that
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If /3 > #, then, by the construction of 5Dif and 9J^ it is easily shown that
the dimension βQ of 9JΪJ is greater than the dimension a0 of 9JΪ/. Hence we
have βQβ > aΰa. On the other hand β(}β equals to a^a since both are the
dimension of «£). This is a contradiction, that is, a = β.

REMARKS. In the proof of the preceding theorem, we have employed the
abelian PF*-algebra N in M. We show that N is maximal abelian and
moreover regular in the sense of J. Dixmier [2J. Such property of 10" is of
some interest but we do not go into its detailed investigations.

By the above theorem, we will give the following definition :

DEFINTION 2. 1. A finite factor M which is of type II is called to be a-
approximately finite if there exists a family of subf actors satisfying the
conditions (l)-(2) in Lemma 2. 1 and all such factors are called as approximately
finite factors.

Then we have following corollaries :

COROLLARY 2. 1. A factor is ^^-approximately finite if and only if it is appro-
ximately finite in the sense of F.J. Murray and J. von Neumann [8].

The following is an immediate consequence of Lemma 1. 2 and Theorem 2. 1.

COROLLARY 2. 2. The condition (1) in Lemma 2. 1 can be replaced by
(Γ) each Mλ is ^^npproximately finite.

Now we shall prove the following theorem :

THEOREM 2. 2. M and N be a and β-approximately finite factors respectively,
then M is *-isomorphic to N if and only if a = β.

PROOF. Since the necessity is clear, we shall show the sufficiency. Let
{Mλ λ € Λ> and {Nλ λ € Λ> be the families of factors of M and N
respectively which satisfy the conditions (l)-(3) in Lemma 2. 1. (By the
assumption we may use the same set of indices Λ). By Lemma 2. 1, we can
assume that Mλ and Nλ are of type I2 for all λ. Hence, there exists a *-
isomorphism θ\ from MA onto N\.

Let M° and N° be *-algebras generated by {Mλ λ ̂  Λ} and {Nλ 7 €
Λ} respectively. Let A be an arbitrary element in M°, then A is expressed
in finite sum :

A = 2Λλι,.*..,^AλlAλa. . . .Aλn

where Akp € Mv Put

Θ(A) = 2**,..., λ» 0λi(Aλl) 0λ2(Aλ2). . - An(AλJ.
Then we can prove without difficulties that θ is a ^isomorphism between M°
and N°. Moreover, by Lemma 2. 2, we have

τ(A) = 2αλι,..,λnτ(Aλl)τ(Aλ2) . . . .τ(Aλ7ί)

. - τ'(έ?(Aλn))
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where r and r' are traces of M and N respectively. Accordingly the mapping
θ is extended to a mapping from M onto N and we can easily prove that
this extended mapping is a *-isomorphism from M onto NTcf. [8, p. 760]).
This prove the theorem.

The following theorem is proved in [7] only in the separable case. Now
we shall extend it in the non-separable case.

THEOREM 2. 3. The direct product of two approximately finite factors is
approximately finite.

PROOF. Let M and N be two approximately finite factors and {Mλ λ
C Λ} and {Nμ. μ ^ M} be the families in M and N such as Theorem 2. 1.
Since M © N is a factor (cf. [7, Lemma 14]), we must show that it is
approximately finite. It is clear that

M®N = #(Mλ®Nμ; λ < Ξ Λ , μ € M )
and Mλ®Nμ are of type I and commute to each other. This shows that
Mλ © N^ is approximately finite.

Recently Z. Takeda [12] has .introduced the notion of the infinite direct
product of operator algebras. We shall give brief considerations to the
infinite direct product of approximately finite factors. Let {Mλ} be the
family of finite factors and TΛ be their traces. Then formal expression ©λ
τλ can be considered as a positive functional on the algebraical direct product
of M\. By the usual way we can construct a Hubert space «£) by them. By
the restricted direct product of Mλ; we shall mean the weak closure of the
algebraical direct product of Mλ on ξ>.

By Corollary 2. 2, an approximately finite factor M can be generated
by infinite (countable) subfactors M,, which commute with each other and
each of which is approximately finite. By Lemma 2. 2, the trace of M is
multiplicative and so M is the restricted infinite direct product of Mw.
Conversely we can easily show that the restricted infinite direct product of
approximately finite factors is an approximately finite factor. Thus we have
the following :

THEOREM 2. 4. A factor is approximately finite if and only if it is *-isomorphic
to the restricted infinite direct product of approximately finite factors.

Now we shall consider examples. For a given discrete group (3, we can
construct the Hubert space © = L^β) as a usual way, i. e., <£> is the set of

all complex valued functions f(x) on © such that 2 1/0*0 1 2 is finite and (f(x),

for any/, g^ ξ>. For any a € @, we shall define the operator
xe©

Ua on ξ) as following :

Uaf(x) = f(a-^x) for all / € &
Then it is known that Ua is unitary. By W(@) we shall mean the flP-algebra
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generated by {Ua; aζ ©}. As R. Godement [4] has shown, W(@j is finite.
Especially we shall take the group & of all those permutations of (1,

2, . . . . ) which move only a finite number of elements. Then F. J. Murray and
J. von Neumann [9] proved that W(@) is an ^-approximately finite factors.
Let {©λ λ € Λ} be a family of such permutation groups and a be the
cardinal of A. We shall construct a infinite direct product © of {©λ λ € A},
then we can easily show that W((§) is an a-approximately finite factor.
Thus our α-approximately finite factor exists for every cardianl oc.

3. Approximately finite W*-algebras in the large. In this section,
we shall introduce the notion of approximate finiteness for general W*-
algebras and study the properties of such W*-algebras.

DEFINITION 3.1. A W*-algebra M of type ILi is approximately finite if there
exists a family {Mλ λ € A} of W*-subalgebras with following properties

(1) each Mλ is of type I and contains the center of M as its center,
(2) Mλ commute with each other,
(3) M-#(Mλ; λ € A).

DEFINITION 3. 2. Let M be a W*-algebra of type I. The type of M is
uniformly greater than 1 if, for any non-zero central projection E, there
exists a non-zero non-central projection P with P < E.

DEFINITION 3.3. An approximately finite W*-algebra M is uniformly a-
approximately finite if there exists a family {Mλ λ 6 A} of W*-subalgebras
which satisfies the conditions (1), (2), (3) and

(4) the type of each Mλ is uniformly greater than 1,
(5) the cardinal of {Mλ λ € A} as a set is a.

The unicity of the cardinal of such family will be proved in the Corollary
of Theorem 3.1.

THEOREM 3.1. A W-algebra M is uniformly a-approximately finite if and
only if M is *-isomorphic to the direct product of an a-approximately finite
factor and a commutative W*-algebra.

PROOF OF SUFFICIENCY. We can assume that M is the direct product of
an ^-approximately finite factor A and a commutative W*-algebra N. There
exists a family {Aλ} of factors in A satisfying the conditions (l)-(3) in Lemma
2.1 and whose cardinal is a. Let Mλ be the direct product of Aλ and N,
then it is obvious that the family {Mλ} satisfies »the conditions (l)-(5) of
Definitions in this section. In other words, M is uniformly a-approximately
finite.

To prove the necessity of the theorem, we shall give some lemmas.

LEMMA 3.1. In the theorem, we can assume that M is σ~finite.

PROOF. kThere exists a family {£μ} of central projections which are
mutually orthogonal and 2 Eμ = I and each contraction M ,̂ of M on the
range of Eμ is σ-finite. Now we shall assume that the theorem is valid for
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all M .̂ Then, for each μ, there exists a family {Mμ,λ} of PF*-subalgebrab
of M satisfyng the conditions (l)-(5). Let

then it is clear that {Mλ} satisfies the same conditions; that is, M is uni-
formly ^-approximately finite.

Let M be a fixed σ-finite α-approximately finite W*-algebra, then we
can define a complete normal trace r and a metric U * ]] as in §1. Γn the
follwoing, these r, [[ ]] and a family (Mλ λ ^ Λ } of W*-subalgebras
satisfying (l)-(5) will be fixed. Under these notations, we shall prove the
following.

LEMMA 3. 2. For given Aι, ---- , Am 6 M and 8 > 0, there exists an integer
p = p(Al} . . ..,Am, £) and W*-subalgebra N" such that :

(6) N is of type IP,
(7) there exist Bl} ---- , Bm € M such that

[[Af - Bt]] < € for i = 1, . . . ., w.

PROOF. Let S be the *-algebra which is generated by all M"A in algebraical
sense, then S is weakly dense in M = /?(Mλ λ € A). Therefore, by Lemma
1. 1, for any £ > 0 there exist A/, ---- , Am' in S such that

[[At - Ai']] < 6/2 for i = 1, ..... w.

By the definition of S, there exist MΛl, , ---- , ΊVL\n such that A/, ____ , Am' are
contained in the algebra P = 7?(Mλ.; / = 1, ---- n). Since every Mλί is of type
I, P is of type I (necessary finite). Hence there exists a family {En} of central
projections which are mutually orthogonal and Σ En = / and each P^ is of
type ln. There exists n0 such that

where

Put E = Eι + .. - . + ^«0

 and Bt = EΆ/, then

[[Λι - A]] - [[At - EAi'}} S [[(/- B)A«]] + [[B(At - A/)]] < 6/2 + 6/2 = 6.

Let /> = n0\, then by Lemma 1.4 there exists a W*-subalgebra NΊ in M^
which contains PE and is of type Ip. By Lemma 1.3, there exists a TF*-
subalgebra N2 in Mί/-^) which is of type !#. Let

N - N,E + N.(7 - E\

then N is of type lp and β« € N". This proves the lemma.

LEMMA 3. 3. If a = %0) then there exists a sequence {An} of operators in
M such that

M-/?(AW; w = 1,2, . . . . )

where Z z's ί/^ center of M.
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PROOF. Let {M^; n = 1,2, ____ } be a family of TT^-subalgebras in the
Definition. For each n, there exists a family {En%m} of central projections

oo

in M« which are mutually orthogonal, 2 ^»>»» = ^ an(^ eacn contraction Mn>m
m = l

of Mra on the range of En,m( * 0) is of type I. It is clear that if En,m * 0,
then

where ZWjOT is a factor of type Im. There exist linear basis in Pw>?w and we
can choose a countable set {An>wl|i>; p = 1,2, ____ } which are weakly dense
in Pra.m This shows that

v, Zw,m it, m,p = 1,2, ---- ).

Since the set {EntmAn.m,p En,m; ntm,p = 1,2, ____ } is countable, we can
describe them as Aι, A>>, ..... By the above considerations, it is obvious
that

M = ΛίZ,Aί,; ί = 1,2, ....).

This proves the lemma.

If α: = #β then, by Lemma 3. 2, M can be considered to be approximately
finite (B) in the sense of F. J. Murray and J. von Neumann [8]. Hence, by an
analogous way to [7 §§ 4. 3, 4. 4, 4, 5], we can show the following lemma.
We shall omit its proof.

LEMMA 3. 4. If a = #0 then for given Alt ---- , Am € M αwjy p = 1,2, ----
and S > 0, /&£r£ exists an n = «(Aι, . . . . , Am,p,£) such that for every q^n which
is divisible by p and every W*-subalgebra N0 Q/* ί>!ί>β IP, there exists a W*-
sub algebra M with following properties :

(8) ΓT is of type lq>

(9) /Aβrβ exist BL) . , . ., Bm € M w/ίA [[Si - A,-]] < f,
(10) No EN.

LEMMA 3. 5. T^ theorem is valid in the case a — ^<o

PROOF. Let {A.j} be a sequence of operators in M which satisfies the
condition in Lemma 3. 3. For A\ and m = 1, we shall define a W*-subalgebra
Ni after Lemma 3. 2 and we assume that it is of type Γp. By a repeted
application of the preceding lemma, we can easily choose the TF*-subalgebras
N2, N2, ---- , such that

(11) each NL is of type lpjί

(12) Nl d N, d . . . . d M,
(13) for every n, there exist Bh ....,BneNn with [[Bt — Ail] < 1/n.

Let S be the algebra which is the algebraical union of Nw. It is obvious
that every Ai can be approximated by elements in S in the metric topology.
Since S contains the cente Z of M, the weak closure of S coincides with
M. It is clear that

Nn = Mn ® Z
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where M is a factor of type Inp. Let M° - R(Nn; n = I,2 ----- ), then M°
is a factor by Lemma 1. 2 and ^-approximately finite. Since M = R(Nn @ Z
n = 1, 2, . . . .), we have

M = M° ® Z

by Lemma 1. 6. This proves the lemma.

PROOF OF NECESSITY. There exists a family {Nλ λ € Λ} which satisfies
the conditions of Definition 3.1. Split Λ to subsets...., Aμ, . . . . such that
every Aμ is countably infinite. Now we put

Wμ - /?(Nλ λ 6 Λ^),

Then Mμ is #0- approximately finite. It is clear that the cardinal of {M^} is a
and they commute with each other. Hence we can assume without loss of
generality that each N\ is ^-approximately finite.

By the preceding lemma, we have

Nλ = M λ®Z

where Mλ is an ^-approximately finite and Z is the center of N (which
coincides with that of M). Put M° = #(Mλ λ € Λ) and we shall show that
M° is an # -approximately finite factor. Since each Mλ can be generated by
factors which commute with each other and are of type I, M° is generated
by such factors. Hence, by Lemma 1. 2, M° is a factor and so it is clear
that M° is an ^-approximately finite factor. By Lemma 1. 6, we have

M = #(Nλ; λ € Λ) - #(Mλ x) Z λ € Λ) = #(M°, Z) - M° ® Z.

This proves the theorem.

Now we shall consider general approximately finite W*-algebras.

THEOREM 3. 2. Let M be an approximately finite W*-algebra, then, for any
cardinal a > # o, there exists a central projection Ea such that EΛ are mutually
orthogonal and have the union equal to 7 and each M α̂ is oί-uniformly appro-
ximately finite.

To prove the theorem, we shall prepare for some lemmas. In the
following, we shall assume that M is an approximately finite TF*-algebra.
Let {Mλ λ € Λ} be as in Definition 3. 1. We shall say that a subfamily
{Nλ λ 6 Λ'} of this family is uniformly distributed if R(Nλ λ € Λr) has no
-commutative part, that is, for any central projection in M the contraction
of R(Nλ λ € Λ7) on the range of this projection is not commutative.

LEMMA 3. 6. Suppose that M is σ-finite, then there exists a uniformly
distributed countable subfamily of {N\ λ € Λ'}.

PROOF. Let $ be the set of all countable subfamilies of {Nλ λ € Λ}.
.For {Nλ λ 6 Λ,}, {Nλ , λ € Λa} € & we shall define

{JNΓλ; λ € Λ x } >- {INΓλ; λ € A,}
if the commutative part of the former is contained in that of the latter.
Then it is obvious that this relation satisfies conditions of the usual order
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ralation. Let $ be a linearly ordered subset of §•', then we can find a
countable subset $2 of fa which is cofinal with Si, since M is σ-finite. Let

O = \J A*

then {Nλ λ € A} is countable and {ΓsΓλ λ € Λ0}>- {!NΓλ ; λ e Aj} for all
{Nλ λ € Aj} € δi Therefore, by Zorn's lemma, there exists a {Nλ λ <E
Λ7} in g which is maximal under the relation >-. If {Nλ; λ£ Λ'} has a
commutative part, then we can easily choose Nμ such that

{Nλ; λ € A'}U {Nμ»-{Nμ;€Λ}

properly. This contradicts to the maximality of {Nλ λ € A7}, that is, this
is uniformly distributed.

LEMMA 3. 7. Let M fe σ-finite and $ fe <zs above and %ι be a subset of $,
then following conditions are equivalent :

(13) there is no uniformly distributed countable subset in $,
(14) R(Nλ λ € Λ) has a commutative part.

PROOF. It is clear that (14) implies (13) and we shall show the converse.
As in the preceding lemma, we can find a countable subfamily {Nλ λ € A'}
which is maximal under the relation >. As {Nλ λ 6 A/} is not uniformly
distributed, there exists a central projection E in M such that the contra-
ction of R(Nλ λ € Λ') on the range of E is commutative. By the maximality
of {Nλ λ <E A'}, there is no Nλ in {Nλ λ ^ Λ> such that N^E is non-
commutative. This shows that R(Nχ λ 6 Λ) has a commutative part.

LEMMA 3. 8. Let $0 = {{Nλ λ 6 Ay} j € Γ} be a set of uniformly distributed

countable families and Λ0 = \J Ay, then

R(N, λ € AO)
is uniformly approximately finite.

PROOF. Split Γ into subsets {Γμ} which are mutually disjoint and each
of which is countable. Then, by an analogous way to the proof of Lemma

3. 4, we can prove that R(Nλ λ € \^J Λγ) is uniformly #u -approximately

finite. Hence we can show that R(N\ λ € A) is uniformly approximately
finite by a similar way to the proof of Theorem 3. 1.

LEMMA 3. 9. For any central projection E in M, there exists a central
Projection F^E such that T^£E is uniformly approximately finite.

PROOF. There exists a central projection Ei<^E such that M^ is σ-finite
and so we can assume that M^ is σ-finite. Hence it is sufficient to show the
lemma under the assumption that M is σ-finite and E = I.

Let {{Nλ λ € Λγ> , 7 <E Γ} be the set of all uniformly distributed co-
untable subfamilies of {N\ λ € A). By Zorn's lemma, we can find a
maximal subfamily {{N\ λ ^ Λ7} γ € Γ0} such that Λγ(γ € Γ0) are mutually
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disjoint. Let Λ' be the family of complement of ^ Ay in Λ, then, by the
VeΓ 0

maximality of {{N\ λ 6 Λγ} 76 Γ0}, /?(Nλ , X 6 Λ') satisfies the condition
(1) in Lemma 3. 8. Hence there exists a projection F 6 M which is central
in R(Nλ λ € Λ') and the contraction of R(Nλ λ <E Λ') on the range of F is
commutative. It is clear that F is central in M. This shows that

\J Λγ)

and M.F is uniformly approximately finite by the preceding lemma.

PROOF OF THEOREM. By the preceding lemma, there exist central proje-
ctions such that contractions of M on their ranges are uniformly approx-
imately finite. Let {Pμ} be a maximal family of such projections which are
mutually orthogonal. Then we have 2 Pμ = / by the preceding lemma.

Let Ecί be the union of Pμ such that Mpμ is uniformly ^-approximately
finite. Clearly M^ is uniformly ^-approximately finite and 2 EΛ~ I. This
proves the theorem.

COROLLARY. Let M, N be two approximately finite W*-algebras and {E<*},
{F<*} be the families of central projections in M. N respectively which are
determine by Theorem 3. 2. Then M is *-isomorphic to N" if and only if the
center of M is *-isomcrphic to the one of N and by this isomorphism EΛ is
mapped to EΛ for all a.
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