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1. The purpose of this paper is to state an extension of Kolmogorov's
theorem [3] which provides a necessary and sufficient condition for the
validity of the strong law of large numbers for a sequence of independent,
identically distributed random variables.

We consider the probability space (X, P) such that X is a space whose
points are denoted by t and P is a probability measure. Then our extension
is stated as follows.

THEOREM. Let {Xn(ΐ}} be a sequence of independent random variables satis-
fying that
(1.1) there exists a positive constant K such that, for any positive integer m
and for any extended real numbers1^ a1} bι, ---- , am, bm,

I n~l

lim sup-- 2 p{t ; βl ̂  Xl+i(t) < £ , , . . . . , am ̂  Xm+i(t) < bm}
i=t)

^ K P{t } a, ̂  Ai(f) < bi, . . . ., am ̂  Xm(f) < bm}.

Then the following (1. 2) and (1. 3) are equivalent.

(1.2) 2 / \*n(t}\dP<™
n=l\X.n(t)\eAn

for some Borel sets Aί} A2, — satisfying

At(]Aj = 0 ( ίΦΛ, (1 An = [0,03),
W = l

where some of A»s may be empty.
1 n

(1. 3) P 1 1 lim 2 *(ί) = c j = l

/or s0τw£ constant c.

The proof appears in § 2.
If {Xn(t}} is identically distributed, (1. 1) holds trivially and the sum in

(1.2) is equal to the first absolute moment E(\X\\) common for all Xn's, so
that the theorem is reduced to Kolmogorov's.

2. To prove the theorem we need a lemma. Before stating this we must
prepare several definitions and notations.

1) By an extended real number we mean either a usual real number or one of
the symbols 4- oo and — «». In what follows we make the convention that when a =
—so, "a^," is replaced by "α<".
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Let Ω be an infinite product space of real lines Ωn (n = 1, 2, ____ ), that
is, Ω be the set consists of all infinite sequences ω = (xlt x2, ---- ) with xn € ΩΛ

(w = 1, 2, . . . .)• If we Put f°r any positive integer ra and for any extended
real numbers at, bi (i = 1, 2, . . . ., )̂

Λ = {(#!, a*, . . . . ) aι <> Xι < bι, . . . ., am^xm< bmy,

then Λ is a subset of Ω. Let 6 be the class consists of all sets of the form
above, 330 be the field consists of all finite unions of sets in S and S3 be the
Borel field generated by S30. Further let T be the shift transformation of Ω
onto itself defined by

T(Xι,Xz, . . . . ) = (%#3, . . - . )

for every (xlt &2, ---- ) € Ω. Let 3DΪ be the class consists of all sets Λ's.
satisfying Γ^Λ = Λ, Λ € 33.

Then we have

LEMMA. 2) £#/ a be a probability measure on 33 satisfying that
(2. 1) £/tere exists a positive constant K such that, for every Λ <~ 230,

I n~l

lim sup 2 tf <T~*Λ)

probability measure j on 23

(2. 2) 7(Λ) ̂  ΛΓ α(Λ) for every Λ € 33,
(2. 3) γίΓ-JΛ) - 7(A) /or βz β^ Λ € S3,
(2. 4) 7(Λ) - α(Λ) /or ^^y Λ € 2JΪ,

(2. 5) 7(Λ) > lim inf — ^(^-ίΛ) for every A € 930.
n i = L

Further with respect to such a measure 7 it holds that, for every j integrable

function f(ω\ lim — 2Λ^ω) ^s/s «wc? is finite for a-almost every ω.
n n ί =o

PROOF. With respect to the constant K in (2. 1) we put

i w~l

ft = j Λ Jim sup — 2 a(T-*A) ^ K - α(Λ), Λ € S3
( n » ί = { )

( 1 n~l )
We have clearly 330 U 9Λ c g. Since j — 2 #(T~*Λ) h is a bounded sequence

for every Λ € S3, we can put

for every Λ € $, where Lim denotes the Mazur-Banach limit [1 : pp. 33-34].
n

Then by virtue of the properties of the Mazur-Banach limit we have that
(2. 6) β is non-negative, finitely additive on $,

2) This lemma is reminiscent of C. Ryll-Nardzewski's result ([4], [5]) and shown
essentially in the proof of Theoremi2 in [6] under the stronger assumption that the
inequality in (2.1) holds for every set in a certain class wider than 33o
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<2. 7) /5(Λ) g K α(Δ) /or mw Λ
(2. 8) β(T~λA) = β(Δ) for every A

(2. 9) /3(Λ) - α(Λ) /or ez w Λ
- n-l

(2. 10) β(A) ;> lim inf — 2 # CΓ~'Λ) /<>r ^W Λ

Thus, by (2. 6) and (2. 7), /? is non-negative, countably additive on $ :=> S50,
so that there exists an unique extension 7 such that 7 is a probability
measure on 33 and γ(A) = β(Λ) for every Λ€$. Then from (2. 9) and (2. 10)
it follows that 7 satisfies (2. 4) and (2. 5). If we now put © = {Λ 7(T~1Λ) =
7(Λ), Λ € 33}, it follows from (2. 8) that S30 c: f? d ©. Let {Λn} be any mo-
notone sequence of sets in ©. Then 7(Γ~1ΛW) = 7(ΛM) for every n and hence
7ΪΓ-1 (lim An)) = 7 (lim Λn), so that lim Λn € ©. By the monotone class

n n n

theorem (see, for example [2 : p. 599, Theorem 1. 2]) it follows that © ID
(Minimal Borel extension of S90) = S3. This concludes that 7 satisfies (2. 3). It
follows similarly by (2. 7) that 7 satisfies (2. 2). Thus the first assertion is
proved.

Let f(ω) now be any 7-integrable function. Then upon applying the
! n~l

individual ergodic theorem by virtue of (2. 3) we deduce that lim — 2 /(^ω)
n n ι=o

exists and is finite for 7-almost every ω. Since the set of all points at each
of which the limit above does not exist belongs to 9DΪ, we obtain the second
assertion by virtue of (2. 4). Thus the proof of the lemma is terminated.

PROOF OF THE THEOREM. We define ίl, ®, 230 and 23 as in the preceding
and further define a transformation φ of X into ίl by

φt^(

for every t € X. Let us now put

for every A € 230. Then α: is a probability measure on 33. By the assumption
(1. 1) a satisfies that the inequality in (2. 1) of the lemma holds for every A
€ ®, while every set in 330 can be described as a finite union of disjoint
.sets in K, so that (2. 1) holds. Thus by the lemma there exists a probability
measure 7 on 33 satisfying (2. 2)~(2. 5).

For each positive integer n, let xn(ω) be the coordinate function defined
by

Xn(ω) = #M

for every &> =.(#!, x2 ..... ) € ίl. Then it is easy to see that if, for an arbitrary
but fixed positive integer m, Φ is any Borel function in m-dimensional
space, then

(2. 11) a{ω , a ̂  φ(*ι(ω), . . . . , xm(ω)) < b}
= P{t a ̂  Φ(Xl(t\ . . . . , Xm(t}) < b}

for any extended real numbers a, b (cf . [2 : pp. 12-15]).
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We are now in a position to prove the implication : (1. 2) -> (1. 3). Let us
put Λn ^ {ω; \Xn(ω)\ € An} for each Λn of (1.2). Since xn(ω) = ̂ (T"-1®) for
every n and ω € ίl, it holds that

T^Λi Π T^Λ, = 0 (, =!=», U T-'Λn - 0.
n-l

By (2. 3), (2. 2), (2. 11) and (1. 2) we have

f|*ι(ω)|rf7= 2 Γ l*ι(ω)[rfy = 2

n

 W β l I * n

so that Xι(ω) is 7-integrable. Since ^(ω) = Xι(Tl~lω} for every 2 and ω € Ωr

1 n

by the lemma it holds that lim — *Σxι(ω) exists and is finite for α-almost
n n i.i

1 n

every ω. By (2. 11) it follows that lim — 2 ^*W exists and is finite with
n i = ι

probability 1. Since {Xn(tJ} is a sequence of independent random variables,
we obtain (1.3) by virtue of the zero-one law.

Next we shall prove the implication : (1. 3) -> (1. 2). For each positive integer
m, we put Λm = {CD m-l^ \Xι(ω)\ < m}, Γ0 = Ω, ΓTO = {ω; m ̂  |ΛΓm (ω)|>

and Cm = {/; m^ |X,»(/)|}. Then by (1.3) Xm/m-+Q with probability 1 and

hence P(3im sup C^) = 0 so that 2 P(Gm) < oo on account of the Borel-Cantelli
ίίl

lemma. Since Λm^S0 for every m, we have by (2. 5)
1 n-i

7(AW) > lim inf - - 2 ^(^-'Λ^)
w n t-o

1 n

= lim inf — 2 {̂̂  »" w "" ^ S l^(«)l < w},n Λ i-i
so that to each m there correspnds a positive integer p(m) such that

(2. 12) a{ω m - 1 ̂  I ̂ (^(ω) | < m} < 7(Λm) + ^~^

For each positive integer 72 we put

A M = U [m — I,m\
i?(ra) =w

where U means that the union runs over all m's with p(m) = n. Here
p(m)=w

we note that some of A;t's may be empty. Then every An is a Borel set
and further

At Π A; = 0 (f Φ /), Aw = [0, oo).
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Since, by (2. 3), γ(Λ™) = j{ω -, m ~-l^\xm(ω)\ < m} and γ{ω m - 1 ̂

\xm(ω)\y = 7(ΓOT-ι) for every w, we have by (2.11), (2.12) and (2.2) that

2 J |X,(/)|dP=2 / I *,<„)(*) I AP
= ' )(ί)| <m

^ - 1 S I^P(mX«)| < mj
Λ

/

m

2 »» E7(Γ»-ι) - 7(Γ
Wi = 1

CX3 CO

=S 2 + ΛΓ2 «(Γ») = 2 + #
m = l w

as was to be proved. Thus the theorem is completely proved.
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