ON THE STRONG LAW OF LARGE NUMBERS

Shigeru Tsurumi

(Received September 12, 1955)

1. The purpose of this paper is to state an extension of Kolmogorov's theorem [3] which provides a necessary and sufficient condition for the validity of the strong law of large numbers for a sequence of independent, identically distributed random variables.

We consider the probability space (\boldsymbol{X}, P) such that \mathbf{X} is a space whose points are denoted by t and P is a probability measure. Then our extension is stated as follows.

Theorem. Let $\left\{X_{n}(t)\right\}$ be a sequence of independent random variables satisfying that
(1.1) there exists a positive constant K such that, for any positive integer m and for any extended real numbers ${ }^{1)} a_{1}, b_{1}, \ldots, a_{m}, b_{m}$,

$$
\begin{array}{r}
\lim _{n} \sup \frac{1}{n} \sum_{i=0}^{n-1} P\left\{t ; a_{1} \leqq X_{1+i}(t)<b_{1}, \ldots, a_{m} \leqq X_{m+i}(t)<b_{m}\right\} \\
\leqq K \cdot P\left\{t ; a_{1} \leqq X_{1}(t)<b_{1}, \ldots, a_{m} \leqq X_{m}(t)<b_{m}\right\} .
\end{array}
$$

Then the following (1.2) and (1.3) are equivalent.

$$
\begin{equation*}
\sum_{n=1}^{\infty} \int_{\left|X_{n}(t)\right| \epsilon \Lambda_{n}}\left|X_{n}(t)\right| d P<\infty \tag{1.2}
\end{equation*}
$$

for some Borel sets A_{1}, A_{2}, \ldots satisfying

$$
A_{i} \cap A_{j}=0 \quad(i \neq j), \quad \bigcup_{n=1}^{\infty} A_{n}=[0, \infty),
$$

where some of A_{n} 's may be empty.

$$
\begin{equation*}
P\left\{t ; \lim _{n} \frac{1}{n} \sum_{i=1}^{n} X_{i}(t)=c\right\}=1 \tag{1.3}
\end{equation*}
$$

for some constant c.
The proof appears in $\S 2$.
If $\left\{X_{n}(t)\right\}$ is identically distributed, (1.1) holds trivially and the sum in (1.2) is equal to the first absolute moment $E\left(\left|X_{1}\right|\right)$ common for all X_{n} 's, so that the theorem is reduced to Kolmogorov's.
2. To prove the theorem we need a lemma. Before stating this we must prepare several definitions and notations.

[^0]Let Ω be an infinite product space of real lines $\Omega_{n}(n=1,2, \ldots)$, that is, Ω be the set consists of all infinite sequences $\omega=\left(x_{1}, x_{2}, \ldots.\right)$ with $x_{n} \in \Omega_{n}$ ($n=1,2, \ldots$). If we put for any positive integer m and for any extended real numbers $a_{i}, b_{i}(i=1,2, \ldots, m)$

$$
\Lambda=\left\{\left(x_{1}, x_{2}, \ldots\right) ; a_{1} \leqq x_{1}<b_{1}, \ldots, a_{m} \leqq x_{m}<b_{m}\right\}
$$

then Λ is a subset of Ω. Let $(5$ be the class consists of all sets of the form above, \mathfrak{B}_{0} be the field consists of all finite unions of sets in $\mathfrak{5}$ and \mathfrak{B} be the Borel field generated by \mathfrak{B}_{0}. Further let T be the shift transformation of Ω onto itself defined by

$$
T\left(x_{1}, x_{2}, \ldots\right)=\left(x_{2}, x_{3}, \ldots\right)
$$

for every $\left(x_{1}, x_{2}, \ldots\right) \in \Omega$. Let \mathfrak{M} be the class consists of all sets Λ 's satisfying $T^{-1} \Lambda=\Lambda, \Lambda \in \mathfrak{B}$.

Then we have
Lemma. ${ }^{2)}$ Let α be a probability measure on \mathfrak{B} satisfying that (2.1) there exists a positive constant K such that, for every $\Lambda \in \mathfrak{B}_{0}$,

$$
\limsup _{n} \sum_{n} \sum_{i=0}^{n-1} \alpha\left(T^{-i} \Lambda\right) \leqq K \cdot \alpha(\Lambda) .
$$

Then there exists at least one probability measure γ on \mathfrak{B} such that

$$
\begin{array}{cc}
\gamma(\Lambda) \leqq K \cdot \alpha(\Lambda) & \text { for every } \Lambda \in \mathfrak{B}, \\
& \gamma\left(T^{-1} \Lambda\right)=\gamma(\Lambda) \\
\gamma(\Lambda)=\alpha(\Lambda) & \text { for every } \Lambda \in \mathfrak{B}, \\
\gamma(\Lambda) \geqq \lim \inf _{n} \frac{1}{n} \sum_{i=1}^{n-1} \alpha\left(T^{-i} \Lambda\right) & \text { for every } \Lambda \in \mathfrak{M}, \tag{2.5}\\
&
\end{array}
$$

Further with respect to such a measure γ it holds that, for every γ-integrable function $f(\omega), \lim _{n} \frac{1}{n} \sum_{i=0}^{n-1} f\left(T^{i} \omega\right)$ exists and is finite for α-almost every ω.

Proof. With respect to the constant K in (2.1) we put

$$
\mathfrak{F}=\left\{\Lambda ; \lim _{n} \sup \frac{1}{n} \sum_{i=0}^{n-1} \alpha\left(T^{-i} \Lambda\right) \leqq K \cdot \alpha(\Lambda), \quad \Lambda \in \mathfrak{B}\right\} .
$$

We have clearly $\mathfrak{B}_{0} \cup \mathfrak{M} \subset \mathfrak{F}$. Since $\left\{\frac{1}{n} \sum_{i=0}^{n-1} \alpha\left(T^{-i} \Lambda\right)\right\}$ is a bounded sequence for every $\Lambda \in \mathfrak{B}$, we can put

$$
\beta(\Lambda)=\operatorname{Lim}_{n} \frac{1}{n} \sum_{i=0}^{n-1} \alpha\left(T^{-t} \Lambda\right)
$$

for every $\Lambda \in \mathfrak{\mathcal { V }}$, where Lim_{n} denotes the Mazur-Banach limit [1: pp. 33-34]. Then by virtue of the properties of the Mazur-Banach limit we have that (2.6) β is non-negative, finitely additive on $\mathfrak{\gamma}$,

[^1]\[

$$
\begin{align*}
& \beta(\Lambda) \leqq K \cdot \alpha(\Lambda) \tag{2.7}\\
& \beta\left(T^{-1} \Lambda\right)=\beta(\Lambda) \tag{2.8}\\
& \beta(\Lambda)=\alpha(\Lambda) \\
& \beta(\Lambda) \geqq \lim _{n} \inf \frac{1}{n} \sum_{i=0}^{n-1} \alpha\left(T^{-i} \Lambda\right) \tag{2.10}
\end{align*}
$$
\]

$$
\text { for every } \Lambda \in \underset{\sim}{\mathfrak{F}}
$$

for every $\Lambda \in \mathfrak{F}$,
for every $\Lambda \in \mathfrak{R}$,

Thus, by (2.6) and (2.7), β is non-negative, countably additive on $\mathscr{F} \supset \mathfrak{B}_{0}$, so that there exists an unique extension γ such that γ is a probability measure on \mathfrak{B} and $\gamma(\Lambda)=\beta(\Lambda)$ for every $\Lambda \in \mathfrak{F}$. Then from (2.9) and (2.10) it follows that γ satisfies (2.4) and (2.5). If we now put $\mathfrak{F}=\left\{\Lambda ; \gamma\left(T^{-1} \Lambda\right)=\right.$ $\gamma(\Lambda), \Lambda \in \mathfrak{B}\}$, it follows from (2.8) that $\mathfrak{B}_{0} \subset \mathfrak{F} \subset \mathfrak{F}$. Let $\left\{\Lambda_{n}\right\}$ be any monotone sequence of sets in (5). Then $\gamma\left(T^{-1} \Lambda_{n}\right)=\gamma\left(\Lambda_{n}\right)$ for every n and hence $\gamma\left(T^{-1}\left(\lim _{n} \Lambda_{n}\right)\right)=\gamma\left(\lim _{n} \Lambda_{n}\right)$, so that $\lim _{n} \Lambda_{n} \in(\mathbb{G}$. By the monotone class theorem (see, for example [2: p. 599, Theorem 1.2]) it follows that (5) \supset (Minimal Borel extension of \mathfrak{B}_{0}) $=\mathfrak{B}$. This concludes that γ satisfies (2.3). It follows similarly by (2.7) that γ satisfies (2.2). Thus the first assertion is proved.

Let $f(\omega)$ now be any γ-integrable function. Then upon applying the individual ergodic theorem by virtue of (2.3) we deduce that $\lim _{n} \frac{1}{n} \sum_{i=0}^{n-1} f\left(T^{i} \omega\right)$ exists and is finite for γ-almost every ω. Since the set of all points at each of which the limit above does not exist belongs to \mathfrak{M}, we obtain the second assertion by virtue of (2.4). Thus the proof of the lemma is terminated.

Proof of the Theorem. We define Ω, $\mathfrak{C}, \mathfrak{B}_{0}$ and \mathfrak{B} as in the preceding and further define a transformation φ of \mathbf{X} into Ω by

$$
\varphi t=\left(X_{1}(t), X_{2}(t), \ldots\right)
$$

for every $t \in \mathbf{X}$. Let us now put

$$
\alpha(\Lambda)=P\left(\varphi^{-1} \Lambda\right)
$$

for every $\Lambda \in \mathfrak{B}_{0}$. Then α is a probability measure on \mathfrak{B}. By the assumption (1.1) α satisfies that the inequality in (2.1) of the lemma holds for every Λ $\in \mathfrak{C}$, while every set in \mathfrak{B}_{0} can be described as a finite union of disjoint sets in ${ }^{(5}$, so that (2.1) holds. Thus by the lemma there exists a probability measure γ on \mathfrak{B} satisfying (2.2)~(2.5).

For each positive integer n, let $x_{n}(\omega)$ be the coordinate function defined by

$$
x_{n}(\omega)=x_{n}
$$

for every $\omega=\left(x_{1}, x_{2}, \ldots\right) \in \Omega$. Then it is easy to see that if, for an arbitrary but fixed positive integer m, Φ is any Borel function in m-dimensional space, then

$$
\begin{align*}
\alpha\{\omega, a & \left.\leqq \Phi\left(x_{1}(\omega), \ldots, x_{m}(\omega)\right)<b\right\} \tag{2.11}\\
& =P\left\{t ; a \leqq \Phi\left(X_{1}(t), \ldots, \quad X_{m}(t)\right)<b\right\}
\end{align*}
$$

for any extended real numbers a, b (cf. [2: pp. 12-15]).

We are now in a position to prove the implication: (1.2) \rightarrow (1.3). Let us put $\Lambda_{n}=\left\{\omega ;\left|x_{n}(\omega)\right| \in A_{n}\right\}$ for each A_{n} of (1.2). Since $x_{n}(\omega)=x_{\mathrm{l}}\left(T^{n-1} \omega\right)$ for every n and $\omega \in \Omega$, it holds that

$$
T^{i-1} \Lambda_{i} \cap T^{j-1} \Lambda_{j}=0 \quad(i \neq j), \quad \bigcup_{n=1}^{\infty} T^{n-1} \Lambda_{n}=\Omega
$$

By (2.3), (2.2), (2.11) and (1.2) we have

$$
\begin{aligned}
\int_{\Omega}\left|x_{1}(\omega)\right| d \gamma & =\sum_{n=1}^{\infty} \int_{r^{n-1} \Lambda_{n}}\left|x_{1}(\omega)\right| d \gamma=\sum_{n=1}^{\infty} \int_{\Lambda_{n}}\left|x_{n}(\omega)\right| d \gamma \\
& \leqq K \sum_{n=1}^{\infty} \int_{\Lambda_{n}}\left|x_{n}(\omega)\right| d \alpha=K \sum_{n=1}^{\infty} \int_{\left|x_{n}(t)\right| \in A_{n}}\left|X_{n}(t)\right| d P<\infty,
\end{aligned}
$$

so that $x_{1}(\omega)$ is γ-integrable. Since $x_{i}(\omega)=x_{1}\left(T^{i-1} \omega\right)$ for every i and $\omega \in \Omega$, by the lemma it holds that $\lim _{n} \frac{1}{n} \sum_{i=1}^{n} x_{i}(\omega)$ exists and is finite for α-almost every ω. By (2.11) it follows that $\lim _{n} \frac{1}{n} \sum_{i=1}^{n} X_{i}(t)$ exists and is finite with probability 1. Since $\left\{X_{n}(t)\right\}$ is a sequence of independent random variables, we obtain (1.3) by virtue of the zero-one law.

Next we shall prove the implication : (1.3) \rightarrow (1.2). For each positive integer m, we put $\Lambda_{m}=\left\{\omega ; m-1 \leqq\left|x_{1}(\omega)\right|<m\right\}, \quad \Gamma_{0}=\Omega, \Gamma_{m}=\left\{\omega ; m \leqq\left|x_{m}(\omega)\right|\right\}$ and $\mathbf{C}_{m}=\left\{t ; m \leqq\left|X_{m}(t)\right|\right\}$. Then by (1.3) $X_{m} / m \rightarrow 0$ with probability 1 and hence $P\left(\lim _{m} \sup \mathbf{C}_{m}\right)=0$ so that $\sum_{n=1}^{\infty} P\left(\mathbf{C}_{m}\right)<\infty$ on account of the Borel-Cantelli lemma. Since $\Lambda_{m} \in \mathfrak{B}_{0}$ for every m, we have by (2.5)

$$
\begin{aligned}
\gamma\left(\Lambda_{m}\right) & \geqq \liminf _{n} \frac{1}{n} \sum_{i=0}^{n-1} \alpha\left(T^{-i} \Lambda_{m}\right) \\
& =\liminf \frac{1}{n} \sum_{i=1}^{n} \alpha\left\{\omega ; m-1 \leqq\left|x_{i}(\omega)\right|<m\right\}
\end{aligned}
$$

so that to each m there correspnds a positive integer $p(m)$ such that

$$
\begin{equation*}
\alpha\left\{\omega ; m-1 \leqq\left|x_{p(m)}(\omega)\right|<m\right\}<\gamma\left(\Lambda_{m}\right)+\frac{1}{2^{m} \cdot m} \tag{2.12}
\end{equation*}
$$

For each positive integer n we put

$$
A_{n}=\bigcup_{p(m)=n}[m-1, m),
$$

where $\underset{p(m)=n}{\cup}$ means that the union runs over all m 's with $p(m)=n$. Here we note that some of A_{n} 's may be empty. Then every A_{n} is a Borel set and further

$$
A_{i} \cap A_{j}=0 \quad(i \neq j), \quad \bigcup_{n=1}^{\infty} A_{n}=[0, \infty)
$$

Since, by (2.3), $\gamma\left(\Lambda_{m}\right)=\gamma\left\{\omega ; m-1 \leqq\left|x_{m}(\omega)\right|<m\right\}$ and $\gamma\{\omega ; m-1 \leqq$ $\left.\left|x_{m}(\omega)\right|\right\}=\gamma\left(\Gamma_{m-1}\right)$ for every m, we have by (2.11), (2.12) and (2.2) that

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \int_{\left|X_{n}(t)\right| \epsilon A_{n}}\left|X_{n}(t)\right| d P=\sum_{m=1}^{\infty} \int_{m-1 \leqq \mid}\left|X_{p(m)}(t)\right| d P \\
& =\sum_{m=1}^{\infty} \int_{m-1}\left|x_{p(m)}(t)\right|<m \\
& <\sum_{m=1} m \cdot\left[\gamma \left(\Lambda_{p(m)}(\omega) \mid<m\right.\right. \\
& \\
& \left.=1+\sum_{m=1}^{\infty} m \cdot \frac{1}{2^{m} \cdot m}\right]=1+\sum_{m=1}^{\infty} m \cdot \alpha\left\{\omega ; m-1 \leqq\left|x_{p(m)}(\omega)\right|<m\right\}\left\{\omega ; m-1 \leqq\left|x_{m}(\omega)\right|<m\right\} \\
& \left.\left.=1+m-1 \leqq\left|x_{m}(\omega)\right|\right\}-\gamma\left\{\omega ; m \leqq\left|x_{m}(\omega)\right|\right\}\right] \\
& =1+\sum_{m=1}^{\infty} m \cdot\left[\gamma\left(\Gamma_{m-1}\right)-\gamma\left(\Gamma_{m}\right)\right] \leqq 2+\sum_{m=1}^{\infty} \gamma\left(\Gamma_{m}\right) \\
& \leqq 2+K \sum_{m=1}^{\infty} \alpha\left(\mathrm{\Gamma}_{m}\right)=2+K \sum_{m=1}^{\infty} P\left(\mathbf{C}_{m}\right)<\infty,
\end{aligned}
$$

as was to be proved. Thus the theorem is completely proved.

References

[1] BANACH, S., Théorie des opérationes linéarres, Warszawa 1932.
[2] DOOB, J. L., Stochastic processes, New-York 1953.
[3] Kolmogorov, A., Grundbegriffe der Wahrscheinlichkeitsrechnung, Berlin 1933.
[4] Ryll-Nardzewski, C., On the ergodic theorems (I) (Generalized ergodic theorems), Studia Math., 12(1951) 65-73.
[5] Tsurumi, S., On the ergodic theorem, This Jour., 2nd ser., 6(1954) 53-68.
[6] Tsurumi, S., On general ergodic theorems, This Jour., 2nd ser., 6(1954) 264273.

Mathematical Institute, Tokyo Metropolitan University.

[^0]: 1) By an extended real number we mean either a usual real number or one of the symbols $+\infty$ and $-\infty$. In what follows we make the convention that when $a=$ $-\infty$, " $a \leqq$ " is replaced by " $a<$ ".
[^1]: 2) This lemma is reminiscent of C. Ryll-Nardzewski's result ([4], [5]) and shown essentially in the proof of Theorem 2 in [6] under the stronger assumption that the inequality in (2.1) holds for every set in a certain class wider than \mathfrak{F}_{0}.
