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1. Introduction. The theory of integration on a measure space has-
been generalized to a P7*-algebra by Segal [10] and Dixmier [2] as a non-
commutative extension of it. Applying their theory, some parts of the
probability theory may be described in a certain PP*-algebra. In the paper
of Dixmier [2], he has proved the existence of a mapping x—>xe defined on a
semi-finite TF*-algebra A acting on a Hubert space H into its TF*-subalgebra
Ai with the similar properties of the Dixmier's trace (= natural mapping)
in the finite TF*-algebra, A being semi-finite provided every non-zero proje-
ction in A contains a non-zero finite projection in A (cf. [5]). In the previous
paper [11], we have discussed for a σ-finϊte finite PF*-algebra A (with the
faithful normal trace μ with μ(ϊ) = 1) that the mapping x-ϊtf is defined on
LV(A) and valued on Lι(Aλ) and it has the likewise properties with the
conditional expectation in the usual probability space, and we have also
called it the conditional expectation relative to the TF*-subalgebra Au where
Lι(A) being a Banach space of all integrable operators on H in the sense
of Segal (cf. [10]) which coincides with that in the sense of Dixmier (cf. [2])
as Banach space. Nakamura-Turumaru have also given a very simple proof
of the characterization theorem of the conditional expectation in A (cf. [8]).

If A is a commutative Wr*-algebra with a faithful normal trace μ, then
there exists a probability space (12, B, v) such that, considering the space B
of all bounded random variables as the multiplication algebra on a Hubert
space £2(ί2, B, v), B is isomorphic with A by the canonical mapping φ satis-

Ifying μ{x) = / (φ-\x))(ω)dv{ω) for every x € A. Conversely, let (ί2,B,^)be
Ω

a probability space. Then the multiplication algebra B is a TΓ*-algebra oa
£2(ί2, B, v) and μ, defined by the above equation, is a faithful normal trace
on it. Furthermore, the canonical mapping φ defines an isomorphism between
L\A) and Lr(Ω,B,v) as Banach spaces (r ^ 1), Lr(A) being the Banach space
defined by Dixmier (cf. [2]). For any JF*-subalgebra Ax of A, there corres-
ponds a cr-subfield Bi of B, and Aλ, Lr(Aτ) are isomorphic with Bx, Lr(Ω,
Bi, v) respectively, where Bλ being the multiplication algebra of the bounded
random variables on (ί2, Bi, v). The conditional expectation defined for the
commutative algebra A (relative to the Aλ) is transformed to the one
defined for the corresponding probability space (ί2, B, v) (relative to the Bx)
by the canonical mapping (cf. [7] and [11]).

In the probability theory, the martingales have been investigated by
many authors, particularly by Doob, Levy and Ville (cf. [3]), which is defined
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by a linear system of the conditional expectations. The concept of the
martingale can be extended to a non-commutative TF*-algebra as the gene-
ralized conditional expectation.

In the present paper, we shall begin with a characterization theorem
of the Dixmier mapping in a semi-finite TF*-algebra (cf. Theorem 1 of §2).
This is a generalization of the characterization theorem of the conditional
expectation of Moy (cf. Theorem 3 of [7], also cf. Nakamura-Turumaru [8]),
and we shall call the Dixmier mapping to be the conditional expectation (cf.
§2 below). In §3, we shall give the definition of the Λf-net in a semi-finite
or finite TF*-algebra A with respect to a given gage μ (cf. [10] or [2], and
cf. § 2 below). If A is commutative and μ is a faithful normal trace, then
any Λf-net is transformed to a martingale in the corresponding probability
space (Ω, B, v). In Theorem 2 and its Corollary, for a cr-finite finite W*-algebra
A with a faithful normal trace μ we shall prove that for an M-net to be
simple (cf. Def. in § 3) and to converge in Z^-mean, are equivalent to the
weak* conditional compactness of it, or to the uniform μ-integrabilities of the
real and imaginary parts and ./^-uniform boundedness, and moreover that
if an M-net is uniformly bounded then it is simple and converges strongly
to a bounded operator in A. If the directed set D is decreasing (cf. § 3).
then any M-net with finite integral in semi-finite A necessarily converges
strongly, and if the M-net belongs to L\A) then it converges in the Z2-mean.
These facts can be applied to a convergence of a sequence of bounded
operators (cf. In loo or Πoo-factor, Theorem 6 of [9]), which was introduced
by von Neumann and we can show that it is a simple M-net. I want to thank
Mr. Sakai for his valuable remarks.

2. Let A be a semi-finite W*-algebra on a Hubert space H with a
regular gage μ in the sense of Segal (cf. [10]) which is considered as the
"normale, fidele, essentielle et maximale" trace in the sense of Dixmier (cf.
[2]). Let Lι(A) and L%A) be the space of all integrable and square integrable
operators with respect to μ in the sense of Segal respectively (cf. [10] and
[2]). Denote the set of all /^-integrable operators belonging to A by J which
is a two-sided ideal of A and is dense in Lι(A) and L2(A) relative to the
respective norm ( lίi ( = Z^-norm) and | j 2 ( = ZΛnorm). Dixmier has proved
the following theorem (cf. Theoreme 8 of [2]).

THEOREM D. *> Let Ax be a W*-subάlgebra of A. Then there exist a maximal
central projection pμ. in Aι and a linear mapping x->x? from A into itself
such that the range Ae = pμAι and for all x€z A

(D. 1) j x? Deo <i I) x iiβ., ]| x !L being operator bound.
(D. 2) tfe = x? and

1) Dixmier has proved more strict conditions i. e. (D. 8)': [j xe |JrSΞ |J x \\r for x 6
J\r ( r ^ l ) and (D.9/ : (D.9) holds for x 6 J1'7^ and y € (Jfi Ai)1^ (l/ri4-l/r2=l),
where the-power 1/r and the norm || |[r are notations of him (cf. [2]). But we can see
their equivalences such as (D. 9) implies (D. 8)', (D. 8)' implies (D. 9)' (by (D. 5) and by
Holder's inequality of Dixmier, (cf. [2] and Proposition 5 of [2]), and (D. 9)' implies
(D. 9) by (D. 7).
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(Zλ 3) x^ 0 implies # ^ 0. (Zλ 3') x*' = ***.
(Zλ 4) #;> 0 αwtf #* = 0 imply pμxpμ = 0.
(D. 5) (yxy*) = ̂ y αwcΓ ( f c ^ y = tf/br ^ y € A,.
(Zλ 6) (#y)β = (jy*)' /or m w :y € A f] A\.
(D.7) The mapping x-^x6 is strongest and weakest continuous.
(Zλ 8) j| Λ d ̂  || x\\ i αwrf | *< ;|2 S II xh for every x€j.
(D. 9) μ(xf) = /A(^) for every x € A αwtf ^ € / .
It is clear that I6 == pμ, and the mapping #->Λ? is extensible uniquely onto

and Z2(A) by (D. 8). In the case that the gage μ is finite, regular and
normal i. e. μ(ΐ) = 1 (we shall call such a μ, to be a faithful normal trace),
the Dixmier's mapping x~±x? satisfies F = 7. In the previous paper [11], we
called such a mapping x-±x? from Lι(A) into ^(Ai) with respect to the
faithful normal trace μ to be a conditional expectation relative to Ax. If
A is commutative, it coincides with the conditional expectation in the usual
probability sense on the corresponding probability space (Ω, B, v). In the
present paper, we shall also call the Dixmier's mapping x-+tf from L\A)
(or L\A)) into itself to be a conditional expectation relative to Al3 and x?
denotes it.

Firstly we shall prove a characterization theorem of the conditional
expectation in the semi-finite case. Let A be a semi-finite W*-algebra and
let μ be a regular gage on A. Then

THEOREM 1. Let x-+x* be a linear mapping from A into itself satisfying
the conditions (D. 2), (D. 3), (Zλ9) and Γ <J-7. Then for any x € A, AΓC coincides
with the conditional expectation x? relative to the W*-subalgebra Ax which is
the direct sum of A6 = {#%• x € A} and {\{I — P): λ complex numbers}.

PROOF. The linearity of Xs and (D. 3) imply obviously (D. 3'). Since for
any x € A, 0 <Ξ x*x^ ,| **#;!« 7, by (D. 2), (D. 3) we have

(l) o

and JIΛ^JOOS (T ĵfi ί|Λτίίcô ;|Λ:[oo, so we have (D.I). Let {xΫ}DaA be a uni-
formly II I*, -bounded directed set converging weakly to x € A, D being a
directed set, then μ(Xγy)-+μ(xy) for any y € /. By (D.9), / d / and

v
(2) /A(Λy) = ̂ (.Yŷ ) ̂ ^(Λy6) = μ(xey)
for every ^ € / . Since {^} is uniformly (| j!«»-bounded3 (2) implies the weak
convergence of Λ£ to Λ;6 on ^ by Dixmier's Theorem (cf. Corollary 2 of [2]).

We shall now prove that A* is a weakly closed self^adjoit subalgebrά*)
of A. If x € A then #6* = #*6 € Ae, i. e. Ae and similarly /€ are self-adjoint.
While, by (D. 2), for any x € 7e

(3) y*x =
As 7*^7, for any

*) In this paper, by s weskly closed self-adjoint algebra we mean a *-algebra which
is closed in the weak operator topology, not necessarily having the identity operator;
and by a W*-algebra we mean a weakly closed *-Σ'.lgebra which has the identity
operator.
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Therefore, putting y = (x*x)e — x*x, since y € / + and by (3), (4)

0 ^ μ(y) = μ((ti*x)*) - μ(X*x) S 0.

This implies y = 0 and #*# = (x*x)e which belongs to /«. For any χ,y £•/*, xy

can be expressed by 2 ^JZ*ZJ ^ o r s o m e *3 ̂  J€ and complex numbers \j (j =

1,2,3,4). Consequently,
4 4

and *y € 7e. Therefore / e is a self-adjoint subalgebra of A. Next we shall
prove Ae = J* . For x € /e, there is {#y}z> c /e such that (xΊ « <Ξ ]| # jΌo and #y

•converges weakly to xby a Kaplansky's Theorem (cf. [6]). Hence xy = x* con-

verges weakly to x ~ x* and x € Ae, i.e. / Γ c A e . CDnversely, since /"= A,

for Λ: € Ae we can take {ΛV}D C: / converging weakly to x and j Λry I:«> S ίi ̂  I1-,

and obtain that xε

y converges weakly to xe = x} i. e. x € /*. Therefore Ae = Je,
and A6 is a self-adjoint weakly closed subalgebra of A.

Further, we prove that Γ is a self-adjoint unit element in the algebra
A€. For any # € / ' and jy € A6, sinca xy € / by the above fact,

(5) M.)>χΓ6) = M(^)€/) = μiyxl
Hence, for any complex number λ and for any y € A6,

μ((y + \i)χie) = /̂ (Cv + \i)χ).

This implies μ'zxί ) = μ'2#) for every x €L Je and z ^ Ai. Therefore we have
#/6 = Λ: and similarly = Γx for every x € 7s. Since /eie = Ie is clear and since

A€ = /% /e is a self-adjoint unit element in Ae. Consequently Ai is the
direct sum of Ae and {λ(/ — / c ); λ complex numbers}, and F is a maximal
central projection in A\.

Finally, in order to prove x~ = x* for all x €z A,x? being the conditional
expectation relative to Au we show Js = / Π Ai. Each x € J Π AL is expressed
by x + λ(/ — /e) for some xt € /• and λ, and hence for every y € Je

μ(xy) = μ((xf + λ(7 - 7*)).y) = / i (^) + λ^((7 - P)y) = M ^ )
Since # € / and Λ' € /, /̂ (Λ:(̂  + V/)) = μ{x\y + λ'/)) for every y ^ / and complex
numbers λ'. This implies easily μ{xz) = /xCΛr'-ε) for all z € Ai and x — x' which
belongs to ]\ Since J" aj f] Ax is clear, we obtain J£ = / Π A:. Therefore,
for every Λ: € A and j ; e / 0, Aλ (=/),

μ(ΛT̂ ) = /x(ΛΓVθ = μ{xy) = /Lt(^),

i. e. x€ = Λβ for all * € A.
Using a method of Nakamura and Turumaru (cf. Cor. of [8]), the

2) For any subset S in 4̂, "5 denote the weak closure (as operator on H) of S
which coincides with the strong closure when S is convex, S+ denotes the set of all
non-negative operators in S.
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conditional expectation satisfying the condition F = / can be characterized
as the following:

COROLLARY 1.1. Let x-*x€ be a linear mapping from A into itself satisfying
(D. 2), (D. 3), 1*^1 and

(6) μ(xy) S μ{xye)< + °° for every x € A+and y € / + .
Then the range A6 is a W*-subalgebra and xe coincides with the conditional
expectation relative to A6.

PROOF. Taking y € 7+ such that μ(ye) = 1 and putting σy(x) = μ(xye) for
x€-.A, then by (6) and (D. 2) σy{xe)<σy{x) for every x € A+. Since Ie = /
and σy(I) = μ(3>ε) = 1, by the proof of the Nakamura-Turumaru's Theorem
we have that σy{xe) = σy{x) for every # € A. This implies that μ(xy) = μ(-τye)
for every y ζj+ and hence for every jy € / Further, since the strong con-
tinuity of xe (on bounded part) is followed from (b) (cf. Remark 1.2 below),
and since (D. 9) holds for x, y ζ J (by(6)), we obtain (4) and complete the
proof.

REMARK 1.1. We shall give in the last section (cf. § 4) an example of the
conditonal expectation satisfying I6!'= / in a semi-finite PΓ*-aϊgebra. When
μ is a faithful normal trace, i. e. A is a σ-finite, finite Wr*-algebraJ Theorem
1 holds and Corollary 1.1 also characterizes the conditional expectation.
These characterizations are analytical and somewhat simple when compared
with the Theorem 2 in the preceding paper (cf.

REMARK 1. 2. In Corollary 1.1, if Ie<-I then x-> x€ is strongly continuous
on the unit sphere of A and A€ is a self-adjoint weakly closed subalgebr a of A.
The first part will follow from the fact that JeczJ (by (6)) and for every
x € A and y € /

(7) I χ*y |g = μ(y*x**xy) < μjcy*(x*xyy) = μUjPxYyy*) ^ μ((x*χXyy*ϊY

The second part follows by the similar way of the proof of Theorem 1.
Further we remark that if μ is a faithful normal trace and the mapping x -> xe

satisfies Ie = / and a weaker condition than (6):

(8) μ(Λf) ^ μ{x) for every x e A+,

then Ae is a W*-subalgebra of A. Indeed, for the present A and μ, J' = A
and

|| x*ija = μ(x*€xe) < μ((x*x)e) ^ μ(x*x) = || x % for every x e A.

This implies the strong continuity of x~-> Xs on the unit sphere, and hence
by the similar way of the first part in this Remark, we obtain the required
ones.

Let A be again a semi-finite TΓ*-algebra and let μ be a regular gage on
A. For any W*- subalgebr a Ax of A, we shall also denote the contracted
gage on Ai by μ. Then the space Lr(Aι) is considered as a closed
subspace of Lr(A), r == 1,2. For any self-adjoint operator x in Lr(A) (r = 1,

3) In this case we have assumed (D. 3)' and (D. 5) but not (D. 3).
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2), let •#= I \dEλ(x) be the spectral resolution of x. Then each Eκ(x)

belongs to A Denote by W(x) the W^-subalgebra of A generated by
{Eχ{x) λ}. If x is not self-adjoint, then it can be uniquely expressed by x =
# ( 1 ) 4- z#(2) where # ( 1 ) and # ( 2 ) are the real and imaginary parts respectively.
Then there correspond the TF*-subalgebras W(#(1)) and W(x^) to ΛΓ(1) and
ΛΓ(2) respectively. Let W(#) be the TF*-subalgebra generated by W(xω) and
W(#(2)). Then W(x) is a minimal ίF*-subalgebra of A containing the reso-
lutions of identities £\O(1)) and Eλ(#(2)) of x^ and #C2) respectively. Under
these notations we have

PROPOSITION. For any subset S of Lr(A) (r = 1 or 2 r£Ŝ >.) ίfer^ corresponds
uniquely a minimal W*-subalg?bra W{S) of A such that S c Lr(W(S)). The
operations-* W(S) has the properties that, W(Lr(W(S))) = W(S) S aΆ implies
W(S) = S'/4> Si cz S2 ίrn^tos TF(Si) c TF(S2) , and further for Sι and S2 having
the same closed linear hull in L%A) (r - 1, or 2 r ^ . ) , W(SX) = W(S2).

PROOF. Let S c: Zr(A) (r = 1 or 2 resp.) and let W(S) be a TF*-subalgebra
of A generated by {W(x) x € S}. Since for any ΛΓ € S x^, x™ € Lr(A) and
the projections Eλ(Λ:(1)), Ek(x^) belongs to W(S), ΛΓ(1) and x^ are measurable
with respect to W(S) in the sense of Segal (cf. [10]) and hence they belong
to Lr(W(S)). For a W*-subalgebra W of A such that SczLr(W), W(S)aW
follows from [10]. Hence W(S) is minimal and uniquely determined by S.
Now we prove W(L\W(S))) = W{S). Since S c /,'XT7(S)), TΓ(S) c TF(^(W(S)))
(because S! d S2 implies clearly W(Sι) a W(S>)). Conversely, for x = x* in
^'(W(S)), Eλ(Λτ) € W(S) and hence PΓ(Z' (T7(S))) c: W(S). The other parts in this
proposition will easily follow from these facts.

The following corollary contains a generalization of a half part of a
theorem of Bahadur (cf. [1]).

COROLLARY 1.2. (1°) Let A be a semi-finite W*-algebra with a regular
gaga μ, and put L = L*(A). Let x-+xς be a projection in L such that x*e = x**.
Then the following conditions are equivalent:

(V) x-+xι coincides with a conditional expectation_x"j ion L) relative to a
certain W*-subalgebra Ax of A.

(20 U = L\W(L*%
(2°) // μ is a faithful normal trace, then (10 and (20 are equivalent to the

following each condition:
(30 L€ contains a self-adjoint subalgebra B of A such that I € B and B is

L2-dense in L\
(40 Λ e

PROOF. (1°). (10~>(20: Since Le = L%AL) and/rf is dense in Le, by Theorem
l,Jβ=J[)AιZDj-Γ\ W(Je) ZDJ* and Je = J f] W(Jβ). Further, by the preceding
Proposition, W(Je) = W{L% Hence we obtain D = L\W(Le)) and (20 holds.

4) For any subset *S* of bounded operators on H, S' denotes the set of all bounded
operators on H which with all operators in e S. S" denotes {S')'. S" is a W*-algebra
generated by S.
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(2')->(l'): <,, > denotes the inner product in L. Since #->#eis a proje-
ction in L, for x, y € L

μ(xy) = <χ<,y* > = < x,y*e > = < ΛΓ^* > = μ(xysl

Let #β be the conditional expectation relative to W(L€). Then, for every x €
L, xee = ΛΓ and #*e = #*, and for every y € /

This implies that x* = #β for every x € £. (2°) will be followed immediately
from (1°) as its corollary.

By a slight modification of the proof of Cor. 1. 2 it also holds that :,In Cor.
1.2, (1°), put £ = Lι(A)3 and let x->xe be a bounded linear mapping from
Z into itself satisfying x- = #e and (D. 9) for every x,y €zj. Then the condition
(Γ) is equivalent to

(2") L* = £J( W£6)) and /* c A.

3. As the preceding section we shall consider a semi-finite PF*-algebra
A on a Hubert space H, with a regular gage μ. Let {#«, α: € D} be a family
of operators in A (or Lι(A) or Z/J(A) resp.), D being directed set. Let A»
be T7*-subalgebra of A generated by {W{xy) y ^ a}, W(xy) being the W*-
subalgebra given in the Proposition in § 2. Then i4« ϋ A^ if and only if a ^
yβ. If {#*, ct€D} satisfies the conditions xa = ^ | Λ for every a, β ^ D (a ^
β), where JV5* denotes the conditional expectation relative to A*, then we
shall call the family of operators {x*} a € D} to be an M-net {with respect
to the gage μ), and {AΛ) a € D} the family of W*-subalgebras associated to
the M-net. We shall call an M-net to be increasing or decreasing, whenever:
for any a, β €ί D there exists y €ί D such that ct, β <Ξ y or y ^ a, β respe-
ctively.

An example of Λf-net is given such as: Let {BΛ} a € D} be a family of
Ty*-subalgebras of A and suppose that BΛczBβ if and only if.a^-β. Let
{Xa,a € D} be a family of operators in Z2(A) or Za(A) such that
(10) xΛ = ΛΓ|* for every a, β € D {a ^ £)
where ΛΓeαf denotes the conditional expectation relative to Ba. Then {A:*, a €
Z)} is an M-net5). We denote such an M-net by {xa, BΛ) a €i D}. Further,
for any x € Lι{A) or L\A) putting xa = x** {a €D), {xa, B«, a € D} is also
an M-net. Such an M-net {#*, .B ,̂ a € £>} is called to be simple. Any finite M-
net is clearly simple. The sequence of bounded operators in I^ or Πoo-factor
given by von Neumann (cf. p. 118 of [9] and cf. § 4 in this paper) is an example
of simple M-net.

If A is a σ-finite commutative W*-algebra with faithful normal trace μ,
then any M-net {xΛ, a € D} in Lι(A) is transformed to a martingale on the
corresponding probability space by the canonical mapping.

By the definition of M-net and the properties of the conditional expec-
tations the following conditions are equivalent for a given family of operators

5) That is, taking the corresponding family of lV*-subalgebras {Aα, α € D}, it
satisfies that xa = & a for every a, β 6 D (α ̂  β).
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{x«, a€D}m L\A) or

(i) {xa, a € D} is an ΛΓ-net
(ii) μ(yxa) = /LO#/0 for every a, β€D (a<^β) and y € / Π A*, Aa being

the PF*-subalgebra given at the first paragraph in this section.
(iii) xΛ = Λ£C*Λ) for every α,β, 7 € D such that y^a^β, where e(y3a)

denotes the conditional expectation relative to the T7*-subalgebra W(Xy, xa).
If {xa, Aa} a^D} and {yΛ) AU} a <Ξ D} are M-nets, then {x%, A«, a € D}}

{\Xa, AΛ) a £ D} and {x« -f ^Λ, A*, a € D} are also M-nets, λ being any com-
plex number. We shall say an iW-net {xΛ, a € D} to be razZ or positive
if Λ;* = ΛΓΛ for every a ζ D or xa^>0 for every a ζ D. Any Λf-net {Λ:ΛJ α: €
D} can be decomposed into two real Λf-nets in an obvious way, that is,

{xS\ aeD} and {xg\ a € D} where *£> = ^ (ΛΓΛ + x*) and Λ:(J> = -^(ΛΓ* - ΛΓJ).

In an M-net {Λ:*, Λ C !>}, for any directed subset Π of D, {xΛ, a ^ Dr} is
also an M-net.

Besides, we shall define a subset S c ZX(A) to be uniformly μ-integrable
if for any 6 > 0 there is a positive number 8 > 0 such that μ,(/>) < δ (p being
projection in /^(A)) implies μ(p\x\)< £ for all x € &

With these terminologies, we shall prove

THEOREM 2.6> Z£f A be a σ-finite, finite W*-algebra on a Hubert space H
with a faithful normal trace μ} and let D be an increasing directed set. Then,
for a given M-net {xa, a ^ D}, the following conditions are equivalent:

(2.1) Both {x£\ a € D}, and {x^, a £= D} are uniformly μ-integrable and
uniformly bounded in Lι-norm.

(2.2) {Xcc, a ^ D} is weakly* conditional compact in L\A).
(2. 3) {Xx, a^D} is simple.
(2.4) There exists x € Lι{A) such that [ xa - x |x -> 0.

PROOF. If the M-net {xΛ, a^D}Ίs finite, the proof is trivial. Hence we
consider the case that it is infinite. Let {Aα, a € D} be the family of the

W*-subalgebras of A associated to {xa, a € D}. Let Ao = \J Aa and let
cCeD

Aι be the weak closure of AQ. Let zeoc be the conditional expectation of z €
L\A) relative to A".

Firstly we prove that (2.1) -> (2.2): Each x$> is uniquely expressed by
X'Λ — x'« s u c n t n a t α̂̂  x» ^ ^(-Aλ ^«, ^ ' ^ 0 and Λ^^' = 0 for every a € D.
Since {̂ <J>, a € D} is uniformly μ-integrable and |#£>| = x'Λ + <', for any
£ > 0 there exists a δ > 0 such that μ(J>) < δ implies for all a € D

(11) μ{px'Λ) + /χ(ί<) = /^(X + O ) = MίI χ *I)< «/2.

Since μ(pxr

Λ\ μfpx'ά) ^ 0, both < 6/2 for all α: € D, and hence {ΛΓ;, a € £>}
and {Λ:̂ , α € I>} are uniformly μ-integrable. Putting σ'a(y) = μ(yxa) and σ̂ 'Cv)
= μ(yx'ά) for all jV € A and a € D, σ'a and σ^ belong to the conjugate

6) This theorem contains a generalization of ZΛmean convergence of a martingale
in a probability space (cf. Theorem 1. 4 of [3]).
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Banach space AΛ of A. Let T and T" be the weak closures of {σ*, a € D}
and {σ'ά, a € D} as functional on A respectively. Let σ € T' be a limiting
point of {σ> a ζ D} which is a positive linear functional on A. We take

a sequence of projections {pj}j = 1,2, } in A such that pj±pτc (j 4= &)• For

£ > 0, taking δ > 0 as (11), there exists an integer k0 > 0 such that μ f *Σpj )

< δ, and since 2 PJ ^S a projection in A, by (11)

Choosing σ* such that

then for anyi. integer k^

< £/2 + 6/2 = £.

Therefore σ is countably additive and by Dye-Radon-NikodynVs Theorem
(cf. [4]), there exists x' € L\A) such that %' > 0 and

(12) *•'(JO = ^ ( ^ 0 for all y € A.
Hence every σr in T' (and similarily every σ" in Tr/) are represented as
(12) (and σ"(y) = μ(yx") for some x" e Lι{A)). x' and x" are uniquely deter-
mined by σf and σ" in Z:(A) respectively. Therefore the weak* closures of
{x'cc, a € D} and {x^, a € D} in £:(A) are weak* compact in L\A) and so is
the weak* closure of {xΛ — x'J, a € D}, i. e. {x^, a € Z)} is weakly* conditio-
nally compact. Since for {x™, a € D} the same fact can be proved by the
same way and xΛ = ^ ] ) + ix£\ {x*, a € D} is weakly* conditionally compact.

Secondly we prove that (2. 2) -> (2. 3): Put S = {σ<*} a € D} σ»(y) = /χίŷ «),
and S';l and S''0 the weak* closures in Af of S with respect to Aγ and Ao

respectively, that is, the closures with respect to the weak* topologies on
Z2(Ai) denned by the neighborhoods .

U(x0 zi, zn,ε >0)^{xe& {Ad; \μ{{Xo - x)zj)\ <A i = 1,2, ...., Λ},

.̂ belonging to Ax or Ao respectively. Then by (2.2) S;;i is weakly* compact.
Since the weak* topology on Lι(Aλ) with respect to Aτ is stronger than the
one with respect to Ao, the canonical mapping from S';i to S'° is continuous,
and it is also one-to-one. For, since Ao is strongly dense in Ai (as operator
on H), μ(x\Z) = μ(x->z) for Xι, x% € ^(AO and for all 2 ^ Ao thus a fortiori, for
all z € Aι. Therefore S ; i is compact (and hence closed) in S\ and.ScS* 1
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mplies Sϋ0 a S'lh° = Sδl. Further, by the definition of the M-net, lim μ(yx«)

( = σ(y) say) always exists for every y € Ao> which belongs to S)o and hence
S;l. Consequently, there is an x € Lι(Aι) such that σ(y) = μίyx) for every
y ^ Ao. Since /zθ>#) = lim μ(yxa) for every y <Ξ Aΰt for any fixed a €: D and
for any jy <Ξ AΛ,

μ(yx) = lim μ(j>%) = lim /*Cy#|") ( α ^ i 8 ) = μ{yx*).
β β

Hence we obtain xΛ = tf?« for every a ^ D.
Next we shall show the equivalence of (2. 3) and (2. 4). Assume (2. 3).

For any z ^ A, putting za = zδ« for all a ζ D and 2L = 2βl, {2*, Λ € /)} is a
simple M-net satisfying ;| ze<* ||2 <; | zei |2 and
(14) zΛ - zλ * = A6(φ 1) - /z(2%) -> 0

and hence [ zΛ — zx \x <z\zΛ— zx [> -> 0. Let Λ: € Lι(A) be ΛΓα> = xe<* (a € -D) and
take {zn} c: ^ ! such that j| A^1 — zn j < 1/3/2 (w = 1,2, ). Moreover for each
n taking ccn € D such that \] zn — zfr \t < l/3n for all a ζ D, (an < Λ),

I | 1 + !! Zn - 2fr* ύ + I (2fn - XY* !|ι

and xei — ΛΓα; 1 -> 0. This implies (2. 4). Conversely, assuming (2. 4), lim μ(yxa)
a

= μ(yx) for all y € A, and if jy c A«Q then /Λζy^o) = ^(^«) for all a
Λ). These facts imply that μfyxΛo) = ^ Λ : ) for all jy € AΛo

Finally we shall prove that (2.3) and (2. 4) imply (2.1). Let # € £L(A) be
#* = x?* and j ΛΓ« — xγ \ ~> 0. The expressions x = x^ + ix^ and Λ^0 = xr — x" (xf,

xf' > 0 and # V = 0) are unique. Putting x'Λ = Λ̂ β* and j £ = Λ;//βΛ (^ ^ /)), ^ 1 }

= ^ a — x'Λ' and {^, α € Z)} and {^, α: € £>} are positive simple M-sets
satisfying \ xa — x' x, | x'Λ — Λ;/r 11 ->0. If {x%\ a € D} is not uniformly μ-inte-
grable, then so is at least one {xΛ) a € D} or {JC, α € -D}. Indeed, if both
are uniformly μ-integrable, then let | xΛ \ = v*x being canonical decomposition,
Va being partially isometric operator,

μ(P I *£1} I) = ι4pΌΛχ$>) = /X(^Z;ΛΛ:Λ)

xW* +
+ I Λ̂

because ΛΓ; = #'£ and ^ ' = x"e«. This implies the uniformly μ-integrability
of {Xco, a € D}. Now if {^, a ^ D} is not uniformly /z-integrable, then there
exist an S > 0, sequences of projections {^} c: A and indices {#w} a D such
that μ(£n) < IIn, μ{pnx') and α:w g aa+ι (n = 1,2, . . . . ) • Let 5 be a T^*-subal-
gebra of A generated by {A*n, n = 1,2, } and let #/e be the conditional
expectation of #' relative to B. Then |Λ^/} —xfe\\-±0 (w->oo). Therefore

<? < μ(pn%'n) S l ^ ί ^ n ~ ^' e))| + μ(PnX
fe)) ^ [| Λ,, - X'* ||, + K W H » ( » "+ °°)

This is a contradiction. The uniform μ integrability of {xg\ a € D} also
follows in the same way as for case of {x^, a € D}. Q. E. D.

For the M-nets in L\A) and A we have the following:

COROLLARY 2.1. Let A and μ have the same meanings as Theorem 2. Lei
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{xa, a € D} be an increasing M-net in L\A) {in A, resp.). Then the following
three conditions are equivalent:

(2.1)' {Xc6, a £ D} is uniformly bounded in Lz-norm ( {^-norrn resp.).
(2. 3/ {Xcc, ae D} is simple for x € LKA) (for x € A resp.).
(2. 4)' There exists an x € L2(A) {x € A resp.) such that x« converges to x

in the U-mean {in the strong operator topology on H resp.}.

In the proof of this corollary, we shall use the notations in the proof of
Theorem 1.

PROOF FOR THE £2(A)-CASE. (2.1)' ->(2. 3)': Since ^xa\j = \\x™\% + x™ ί|
(a € D) and for any projection p € A

μ(p\xί»\)^ μ{py/2μ(X^^Jψ2 ^ μ(P)l/2 iX<P U (/' = 1, 2),

Theorem 1 (2.1) is satisfied. Hence {x(j\ a ^ D} are simple in Ẑ K-Aλ i e .
40 = Λ C )̂̂  and Λ#> - Λ;^ d ~>0 for some χ<» ζ LKA), and

for every y ζ A. Consequenly, \μ(yxω)\ ^ sup 'jχV> \:'3 |jy [|3 and ΛΓU) ^

( ;= 1,2). (2.3)r->(2.4y: As in the proof of Theorem 2(cf. the part (2.3)->
(2.4)), taking {*«, α: ̂  D} c= A and 2, € A, (2.4)' holds (see (14)). Since A is
dense in L2(A), we can show |! xa — xei 12 -> 0 by the same method of the proof
of Theorem 1, if we take the Z/^norm instead of Z^-norm. (2.4)' -)• (2. 3)' and
(2,3)' -> (2. l)r are obvious by Theorem 1 and by the fact that the x belonging
to LKA).

PROOF FOR THE A-CASE. (2.1)' -> (2.3)': Since μ(x%x«) ^ || x<* |[L (2.1)' holds
for ZΛnorm and (2.3)' holds for x € L%A). Hence, by Cor. 2.1. (2.4)', for every
ye A

11 #y [| = ^(Λ;**:^*) = lim ^(Λ:*Λ;^*) S sup ί xa )i [y Jg

and # € A. (2.3/ -> (2.4)': We can assume that x e A satisfies xΛ = x% and
II Xoc ~ ΛΓ2!I -> 0. Whence for any ^ € A )] (̂ « — Λ̂ V iίa -> 0. Since jj xΛ |U 5Ξ ί ΛΓ [;'«, and
A is dense in Z2(A), xa~>x strongly on the Hubert space LKA). This fact
implies the strong convergence of xa to x on H. It is clear that (2.4/ -* (2.3)'
and (2. 3)'-> (2.1)' for A.

REMARK 2.1. In Theorem 1, the condition (2.1) implies (2.2) for arbitrary
set S in LHA) and the converse case holds for S consisting of positive
operators in L\A). Indeed, the former follows from the proof of Theorem 1,
and the latter will be obtained by the last part of its proof, because we
can take the weak* convergence in the place of the Z^-mean convergence in
that part of the proof.

As the final part in this section, we shall discuss a decreasing M-nets
in a semi-finite W*-algebra A on H with a regular gage μ:

THEOREM 3. Let {xΛ, a € D} be a decreasing M-net in L2{A) {in L\A) f]
A resp.). Then xa converges to an operator x € L\A) {in LKA) Π A resp.) in
L^-mean {strongly as operator on H resp.). In particular, if A is σ-finite finite
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and μ is a faithful normal trace and {xa, a ζ D} a Lι{A), then xa converges
to an x € L\(A) in Lι-mean.

PROOF. Let {Aa, a € D} be the family of the TF*-subalgebras associated
to {Xcc, a € D} (cf. The first paragraph of § 3). Let Ax = ΓUez> Aa which is a
W*-subalgebra of A and let y61 be the conditional expectation of y relative
to Aι.

L2-CASE : Since for any a, β € D (a < β), 0 <; x*xa = x%* xfr*

0 ^ /*(*£*,) ̂  iMsίfaY*) S M*?*β)
and lim μ(x*Xa) exists (uniquely, = λ say). Therefore

a

I ^ — Λβ |[2 = /<U« - Λζs)*(^ - Xβ)) = M ^ β ) — μ(X*x») "-> λ — λ =
and there exists a n ^ € ^2(A) such that H^ — #j[2-»0.

£3 Γl A CASE : Since {ΛΓΛ, α: € D} c: Z2(A), it converges to x € -t2(A) in the
£2-mean. While for any yζj and any fixed a0 € D, \μ(xy)\ = |lim^(Λ;α^)|

^ !l ̂ «o =0 ]y Hi, which implies x € A. Hence Λ: ̂  Z^2(A) Π A and || (jtΛ — x)y (2 ^
ίl^ I co I xa — x i:a -> 0 for every ^ € /, and || (xa — Λ;)^ ||a -> 0 for every y € £2(A),
because / is dense in LZ(A). Therefore xa converges strongly to x on H.

Finally we prove the last part. For fixed a0 € D, taking {yn} cz A«o such
that \\yn — ΛΓΛO I' -> 0 (w -• 00),

and

! i^ Λ ~ x* I,i ^ [[.Vn - ΛΓ«,J|I -^0 (w -> 00, α: ^ α0).

Therefore for any £ > 0 there are ae and n such that for every a, β <Ξ α e j

ί(*« - ^ (ii ̂  \χ» ~yen ill + IIX05 - ^ in + lix^ - Xβ Hi < £

and Λ;Λ converges to some # ^ ^ ](A) in the

REMARK 2.2. In the above proof, each limit operator belongs to L\Aι),
Lλ(A) Π Ai or &{Aχ) respectively. For, let x be the limit operator, then by
the above proof, we find μ(yx) = μ{yxa) for every y € / Π Aτ and for every

4. In this section we shall show that a sequence of bounded operators
defined by von Neumann (cf. p. 118 of [9]) is a simple M-set, and apply the
preceding consideration to the convergence theorem of it (cf. Theorem 6
of [9]). Firstly, we show a lemma:

LEMMA 1. (Misonou). Let W be a W*-algebra on H and let p be a projection
in W. For any x € W, put
(15) * 1* = pxp + (1 - p)x(l -p ) 7 >.

Then the range WlP of the mapping x-^x^ is a W*-subalgebra of W and
the mapping is linear and satisfies the conditions (D. 1) — (Zλ 5), (D. 7) (in

7) These notations were introduced by von Neumann (cf. [9; p. 118]).
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Theorem D) and P = /.

PROOF. We prove only (D. 5), since the others are almost obvious. For
any x, y € W

(16) (xW = ((fixp + (1 -p)x(l -p))y)Xp = pxpyp + (1 -P)x(l -PW -P)
and x^y\p = (£#/> + (1 -p)x(l -p))(pyp + (1 - £ ) X 1 -/>)) which equals to the
right side of (16). This implies (*ι*y)l* = xlPy{p and similarly = (xylP)lP. Since
y\p = j ; for every y € JF1* ( W P - y(xy')]p = J>*ljy for .y,y € W|p.

For any projections in W of finite number pu — , p n , we denote
(χ\pι)\P2f ((x\pι)\P2)\p* a n d ( ( . . . .((#ι*01 1 3 2) l J P a) VPn b y x™**, ^ " ^ i ^ a n d ^IΛIΛI... |pn

respectively.

LEMMA 2 (e ow Neumann [9]). // ί/te projections pu — p n in W commute
with each others, then for any permutation (Γ, 2', — , ri) of (1, 2, , w)

^Dl' |Pa ' . . . |P n ' — χ\Pl \P2l . \Pnt

This lemma was proved by von Neumann for the I«> or Πoβ factor (cf.
[9]), which is valid for the present case.

Let W = A be a semi-finite W*-algebra on H and let μ be a regular
gage. Let {pn} be a finite or infinite sequence of projections in S commuting
with each others. For any x ^ A, put

(17) x*n = χ\*ι\**..\pn n = 1,2....

Under these notations we obtain

THEOREM 4. A-Λ = {x€n x ξ~ A} is a W*-subalgebra of A for each n =
1,2, — , and the mapping x ~> xen transforms A onto A-n and is the condi-
tional expectation relative to A-n satisfying Γn = 7. Putting #_n = xe» for each
n, {x-n, n = 1,2, — } is a decreasing simple M-net.

PROOF. By Lemmas 1 and 2, each A~n is obviously a W*-subalgebra
satisfying

(18) i4-iZ3A- ar3....=Dil-w=5

For any fixed projection p € A and for x€J, xlP belongs to J f] A and
satisfying

(19) /*(*!*) = ^ Λ φ + (1 - P)X(1 - ί ) ) = ̂ ΛΓ) + /χ((l - )̂3t) = μiX).

Hence by Lemma 1 μty»x) = /Lt((ypΛr)ίiJ) = /X(CVΛ:II?)IP) = μ(yxlP) for every j^ € Λ
and ΛΓ€/ , and by Theorem 1 the mapping #-»#l2> is the conditional ex-
pectation relative to A |p. Similarly, μ(x^Pl^p*) = μ,(#) and by Lemmas 1 and 2
(aiPitΛjfliPiiJ* - l̂iΊiPayî iî  holds. Hence by the same way for χi», the mapping
x-*χi*>ι\p* is the conditional expectation relative to A> ι l2 )2( = A-2). By the
inductive method and by (18) these facts hold for every £». It follows from
the definition of Λf-net and /*» = I that {#_„, n = 1,2, > is a decreasing
simple, ilf-set.

For x € Z2(A) Π A and each n = 1,2 4....,
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and hence x~n € L2(A) Π A~w. Then by Theorems 3 and 4, x~n converges
strongly to an operator #««» in L2(A) Π A-cc which is also a limit in Z/*-mean,

where A_oo = / \ i 4 _ n . This implies the Theorem of von Neumann:

THEOREM 5. For any x € L\A) (] A, {xe»} belongs to L^A) f] A_w, and
converges strongly as operator on H and in Lιmean to an operator X-*> in
L\A) Π A . . .

Put xe = ΛΓ_OO for # € £2(A) ΓΊ A. Since (x** |!2 = |( x.n ί 2 ^ || x ;(2, we have

(20) II sβ ]ja S iί x Px for every Λ: € £2(A) Π A.

While for every x, y € £2(A) Π A> ̂ *β = lim x*€n = lim #e«* = Λ:6* and

= lim (^) e « = lim xeyΈn = Λ : ^ = lim x^y*

where the limit is that with respect to the weak operator topology, and
for every x, y €j

μ(xey) = lim μ(x*ny) = lim μ{xy^n) = /^(Λ^).

The linearity and idempotency (xe€ = Λ?) of the mapping Λ:—>X* (defined on
L\A) Π A) are clear. Since Z2(A) Π A is dense in £2(A), by (20) it is uniquely
extended on the whole space L2(A). Further, 'since Xs = x for every x € £2(A)
Π A.eo, jt->JCe satisfies the condition (20 in Corollary 1.2. Therefore, we
obtain

COROLLARY 5.1 The mapping x-+X-*>(xξ. L2(A) f] A) is uniquely extended
to the conditional expectation x->xe relative to A -00.

From Theorem 5 and this Corollary it follows that for every x € A, Iβx~n

-converges weakly to the x6, F being the maximal central projection in the
W* subalgebra A-00 of A.
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