CONDITIONAL EXPECTATION IN AN OPERATOR ALGEBRA, II

HISAHARU UMEGAKI

(Received January 25, 1956)

1. Introduction. The theory of integration on a measure space has been generalized to a W^* -algebra by Segal [10] and Dixmier [2] as a noncommutative extension of it. Applying their theory, some parts of the probability theory may be described in a certain W^* -algebra. In the paper of Dixmier [2], he has proved the existence of a mapping $x \rightarrow x^e$ defined on a semi-finite W^* -algebra A acting on a Hilbert space H into its W^* -subalgebra A_1 with the similar properties of the Dixmier's trace (= natural mapping) in the finite W^* -algebra, A being semi-finite provided every non-zero projection in A contains a non-zero finite projection in A (cf. [5]). In the previous paper [11], we have discussed for a σ -finite finite W*-algebra A (with the faithful normal trace μ with $\mu(I) = 1$) that the mapping $x \to x^e$ is defined on $L^{1}(A)$ and valued on $L^{1}(A_{1})$ and it has the likewise properties with the conditional expectation in the usual probability space, and we have also c lled it the conditional expectation relative to the W^* -subalgebra A_1 , where $L^{(A)}$ being a Banach space of all integrable operators on H in the sense of Segal (cf. [10]) which coincides with that in the sense of Dixmier (cf. [2]) as Banach space. Nakamura-Turumaru have also given a very simple proof of the characterization theorem of the conditional expectation in A (cf. [8]).

If A is a commutative W^* -algebra with a faithful normal trace μ , then there exists a probability space $(\Omega, \mathbf{B}, \nu)$ such that, considering the space B of all bounded random variables as the multiplication algebra on a Hilbert space $L^2(\Omega, \mathbf{B}, \nu)$, B is isomorphic with A by the canonical mapping ϕ satis-

living $\mu(x) = \int_{\Omega} (\phi^{-1}(x))(\omega) d\nu(\omega)$ for every $x \in A$. Conversely, let $(\Omega, \mathbf{B}, \nu)$ be

a probability space. Then the multiplication algebra B is a W^* -algebra on $L^2(\Omega, \mathbf{B}, \nu)$ and μ , defined by the above equation, is a faithful normal trace on it. Furthermore, the canonical mapping ϕ defines an isomorphism between L(A) and $L^r(\Omega, \mathbf{B}, \nu)$ as Banach spaces $(r \ge 1)$, $L^r(A)$ being the Banach space defined by Dixmier (cf. [2]). For any W^* -subalgebra A_1 of A, there corresponds a σ -subfield \mathbf{B}_1 of \mathbf{B} , and A_1 , $L^r(A_1)$ are isomorphic with B_1 , $L^r(\Omega,$ $\mathbf{B}_1, \nu)$ respectively, where B_1 being the multiplication algebra of the bounded random variables on $(\Omega, \mathbf{B}_1, \nu)$. The conditional expectation defined for the commutative algebra A (relative to the A_1) is transformed to the one defined for the corresponding probability space $(\Omega, \mathbf{B}, \nu)$ (relative to the \mathbf{B}_1) by the canonical mapping (cf. [7] and [11]).

In the probability theory, the martingales have been investigated by many authors, particularly by Doob, Lévy and Ville (cf. [3]), which is defined by a linear system of the conditional expectations. The concept of the martingale can be extended to a non-commutative W^* -algebra as the generalized conditional expectation.

In the present paper, we shall begin with a characterization theorem of the Dixmier mapping in a semi-finite W^* -algebra (cf. Theorem 1 of §2). This is a generalization of the characterization theorem of the conditional expectation of Moy (cf. Theorem 3 of [7], also cf. Nakamura-Turumaru [8]), and we shall call the Dixmier mapping to be the conditional expectation (cf. 2 below). In § 3, we shall give the definition of the *M*-net in a semi-finite or finite W*-algebra A with respect to a given gage μ (cf. [10] or [2], and cf. §2 below). If A is commutative and μ is a faithful normal trace, then any *M*-net is transformed to a martingale in the corresponding probability space $(\Omega, \mathbf{B}, \mathbf{v})$. In Theorem 2 and its Corollary, for a σ -finite finite W*-algebra A with a faithful normal trace μ we shall prove that for an M-net to be simple (cf. Def. in § 3) and to converge in L^1 -mean, are equivalent to the weak* conditional compactness of it, or to the uniform μ -integrabilities of the real and imaginary parts and L^1 -uniform boundedness, and moreover that if an M-net is uniformly bounded then it is simple and converges strongly to a bounded operator in A. If the directed set D is decreasing (cf. \S 3), then any M-net with finite integral in semi-finite A necessarily converges strongly, and if the *M*-net belongs to $L^2(A)$ then it converges in the L^2 -mean. These facts can be applied to a convergence of a sequence of bounded operators (cf. In I_{∞} or II_{∞} -factor, Theorem 6 of [9]), which was introduced by von Neumann and we can show that it is a simple M-net. I want to thank Mr. Sakai for his valuable remarks.

2. Let A be a semi-finite W^* -algebra on a Hilbert space H with a regular gage μ in the sense of Segal (cf. [10]) which is considered as the "normale, fidèle, éssentielle et maximale" trace in the sense of Dixmier (cf. [2]). Let $L^1(A)$ and $L^2(A)$ be the space of all integrable and square integrable operators with respect to μ in the sense of Segal respectively (cf. [10] and [2]). Denote the set of all μ -integrable operators belonging to A by J which is a two-sided ideal of A and is dense in $L^1(A)$ and $L^2(A)$ relative to the respective norm $\|\cdot\|_1 (= L^1$ -norm) and $\|\cdot\|_2 (= L^2$ -norm). Dixmier has proved the following theorem (cf. Théorème 8 of [2]).

THEOREM D. ¹⁾ Let A_1 be a W*-subalgebra of A. Then there exist a maximal central projection p_{μ} in A_1 and a linear mapping $x \to x^e$ from A into itself such that the range $A^e = p_{\mu}A_1$ and for all $x \in A$

(D.1) $|x^e|_{\infty} \leq |x|_{\infty}$, $|x|_{\infty}$ being operator bound.

(D.2) $x^{ee} = x^e$ and $x^{*e}x^e \leq (x^*x)^e$.

¹⁾ Dixmier has proved more strict conditions i.e. (D.8)': $||x^e||_r \leq ||x||_r$, for $x \in J_{1,r}$ $(r \geq 1)$ and (D.9)': (D.9) holds for $x \in J^{1/r_1}$ and $y \in (J \cap A_1)^{1/r_2}$ $(1/r_1+1/r_2=1)$, where the power 1/r and the norm $||\cdot||_r$ are notations of him (cf. [2]). But we can see their equivalences such as (D.9) implies (D.8)', (D.8)' implies (D.9)' (by (D.5) and by Hölder's inequality of Dixmier, (cf. [2] and Proposition 5 of [2]), and (D.9)' implies (D.9) by (D.7).

(D.3) $x \ge 0$ implies $x^e \ge 0$. (D.3') $x^{*e} = x^{e*}$.

(D. 4) $x \ge 0$ and $x^e = 0$ imply $p_\mu x p_\mu = 0$.

(D.5) $(yx^ey') = yx^ey'$ and $(p_\mu xp_\mu)^e = x^e$ for $y, y' \in A_1$.

 $(D. 6) (xy)^e = (yx)^e$ for every $y \in A \cap A'_1$.

(D.7) The mapping $x \rightarrow x^e$ is strongest and weakest continuous.

 $(D.8) ||x^{e}||_{1} \leq ||x||_{1} \text{ and } ||x^{e}||_{2} \leq ||x||_{2} \text{ for every } x \in J.$

(D.9) $\mu(xy^e) = \mu(x^e y)$ for every $x \in A$ and $y \in J$.

It is clear that $I^e = p_{\mu}$, and the mapping $x \to x^e$ is extensible uniquely onto $L^1(A)$ and $L^2(A)$ by (D.8). In the case that the gage μ is finite, regular and normal i. e. $\mu(I) = 1$ (we shall call such a μ to be a faithful normal trace), the Dixmier's mapping $x \to x^e$ satisfies $I^e = I$. In the previous paper [11], we called such a mapping $x \to x^e$ from $L^1(A)$ into $L^1(A_1)$ with respect to the faithful normal trace μ to be a conditional expectation relative to A_1 . If A is commutative, it coincides with the conditional expectation in the usual probability sense on the corresponding probability space $(\Omega, \mathbf{B}, \nu)$. In the present paper, we shall also call the Dixmier's mapping $x \to x^e$ from $L^1(A)$ (or $L^2(A)$) into itself to be a conditional expectation relative to A_1 , and x^e denotes it.

Firstly we shall prove a characterization theorem of the conditional expectation in the semi-finite case. Let A be a semi-finite W^* -algebra and let μ be a regular gage on A. Then

THEOREM 1. Let $x \to x^{\epsilon}$ be a linear mapping from A into itself satisfying the conditions (D.2), (D.3), (D.9) and $I^{\epsilon} \leq I$. Then for any $x \in A$, x^{ϵ} coincides with the conditional expectation x^{ϵ} relative to the W*-subalgebra A_1 which is the direct sum of $A^{\epsilon} = \{x^{\epsilon}; x \in A\}$ and $\{\lambda(I - I^{\epsilon}): \lambda \text{ complex numbers}\}$.

PROOF. The linearity of x^{ϵ} and (D. 3) imply obviously (D. 3'). Since for any $x \in A$, $0 \leq x^{*}x \leq |x^{*}x|_{\infty} I$, by (D. 2), (D. 3) we have

(1)
$$0 \leq x^{*\epsilon} x^{\epsilon} \leq (x^* x)^{\epsilon} \leq |x^* x|_{\infty} I^{\epsilon} \leq |x|_{\infty}^2 I$$

and $||x^e||_{\infty} \leq |I^e||_{\infty}^{-2} ||x||_{\infty} \leq ||x||_{\infty}$, so we have (D. 1). Let $\{x_r\}_D \subset A$ be a uniformly $|| |_{\infty}$ -bounded directed set converging weakly to $x \in A$, D being a directed set, then $\mu(x_r y) \rightarrow \mu(xy)$ for any $y \in J$. By (D.9), $J^e \subset J$ and

(2)
$$\mu(x_{\gamma}^{\epsilon}y) = \mu(x_{\gamma}y^{\epsilon}) \to \mu(xy^{\epsilon}) = \mu(x^{\epsilon}y)$$

for every $y \in J$. Since $\{x_{\gamma}^{\epsilon}\}$ is uniformly $\| \|_{\infty}$ -bounded, (2) implies the weak convergence of x_{γ}^{ϵ} to x^{ϵ} on H by Dixmier's Theorem (cf. Corollary 2 of [2]).

We shall now prove that A^{ϵ} is a weakly closed self-adjoit subalgebra^{*}) of A. If $x \in A$ then $x^{\epsilon*} = x^{*\epsilon} \in A^{\epsilon}$, i.e. A^{ϵ} and similarly J^{ϵ} are self-adjoint. While, by (D.2), for any $x \in J^{\epsilon}$

$$(3) x^*x = x^{*\epsilon}x^{\epsilon} \leq (x^*x)^{\epsilon}.$$

As
$$I^{e} \leq I$$
, for any $x \in J^{+2}$

^{*)} In this paper, by a weakly closed self-adjoint algebra we mean a *-algebra which is closed in the weak operator topology, not necessarily having the identity operator; and by a W*-algebra we mean a weakly closed *-algebra which has the identity operator.

(4)
$$\mu(x^{\epsilon}) = \mu(xI^{\epsilon}) \leq \mu(x).$$

Therefore, putting $y = (x^*x)^e - x^*x$, since $y \in J^+$ and by (3), (4)

$$0 \leq \mu(y) = \mu((x^*x)^{\epsilon}) - \mu(x^*x) \leq 0.$$

This implies y = 0 and $x^*x = (x^*x)^e$ which belongs to J^e . For any $x, y \in J^e$, xy can be expressed by $\sum_{j=1}^{4} \lambda_j z_j^* z_j$ for some $z_j \in J^e$ and complex numbers λ_j (j = 1, 2, 3, 4). Consequently,

$$(xy)^{\epsilon} = \sum_{j=1}^{4} \lambda_j (z_j^* z_j)^{\epsilon} = \sum_{j=1}^{4} \lambda_j z_j^* z_j = xy$$

and $xy \in J^{\epsilon}$. Therefore J^{ϵ} is a self-adjoint subalgebra of A. Next we shall prove $A^{\epsilon} = \overline{J^{\epsilon}}^{2}$. For $x \in \overline{J^{\epsilon}}$, there is $\{x_{\gamma}\}_{D} \subset J^{\epsilon}$ such that $\|x_{\gamma}\|_{\infty} \leq \|x\|_{\infty}$ and x_{γ} converges weakly to x by a Kaplansky's Theorem (cf. [6]). Hence $x_{\gamma} = x^{\epsilon}_{\gamma}$ converges weakly to $x = x^{\epsilon}$ and $x \in A^{\epsilon}$, i.e. $\overline{J^{\epsilon}} \subset A^{\epsilon}$. Conversely, since $\overline{J} = A$, for $x \in A^{\epsilon}$ we can take $\{x_{\gamma}\}_{D} \subset J$ converging weakly to x and $\|x_{\gamma}\|_{\infty} \leq \|x\|_{\infty}$, and obtain that x^{ϵ}_{γ} converges weakly to $x^{\epsilon} = x$, i.e. $x \in J^{\epsilon}$. Therefore $A^{\epsilon} = \overline{J}^{\epsilon}$, and A^{ϵ} is a self-adjoint weakly closed subalgebra of A.

Further, we prove that I^{ϵ} is a self-adjoint unit element in the algebra A^{ϵ} . For any $x \in J^{\epsilon}$ and $y \in A^{\epsilon}$, since $xy \in J$ by the above fact,

(5)
$$\mu(yxI^{\epsilon}) = \mu((yx)^{\epsilon}I) = \mu(yx).$$

Hence, for any complex number λ and for any $y \in A^{\epsilon}$,

$$\mu((y + \lambda I)xI^{\epsilon}) = \mu((y + \lambda I)x)$$

This implies $\mu(zxI^i) = \mu(zx)$ for every $x \in J^e$ and $z \in A_1$. Therefore we have $x I^e = x$ and similarly $= I^e x$ for every $x \in J^e$. Since $I^{e*} = I^e$ is clear and since $A^e = J^i$, I^e is a self-adjoint unit element in A^e . Consequently A_1 is the direct sum of A^e and $\{\lambda(I - I^e); \lambda \text{ complex numbers}\}$, and I^e is a maximal central projection in A_1 .

Finally, in order to prove $x^{\epsilon} = x^{\epsilon}$ for all $x \in A, x^{\epsilon}$ being the conditional expectation relative to A_1 , we show $J^{\epsilon} = J \cap A_1$. Each $x \in J \cap A_1$ is expressed by $x' + \lambda(I - I^{\epsilon})$ for some $x' \in J^{\epsilon}$ and λ , and hence for every $y \in J^{\epsilon}$

$$\mu(xy) = \mu((x' + \lambda(I - I^{\epsilon}))y) = \mu(x'y) + \lambda\mu((I - I^{\epsilon})y) = \mu(x'y).$$

Since $x \in J$ and $x' \in J$, $\mu(x(y + \lambda'I)) = \mu(x'(y + \lambda'I))$ for every $y \in J$ and complex numbers λ' . This implies easily $\mu(xz) = \mu(x'z)$ for all $z \in A_1$ and x = x' which belongs to J^i . Since $J^i \subset J \cap A_1$ is clear, we obtain $J^i = J \cap A_1$. Therefore, for every $x \in A$ and $y \in J \cap A_1$ (= J^i),

$$\mu(x^{\epsilon}y) = \mu(xy^{\epsilon}) = \mu(xy) = \mu(x^{e}y),$$

i. e. $x^e = x^e$ for all $x \in A$.

Using a method of Nakamura and Turumaru (cf. Cor. of [8]), the

²⁾ For any subset S in A, \overline{S} denote the weak closure (as operator on H) of S which coincides with the strong closure when S is convex, S⁺ denotes the set of all non-negative operators in S.

H UMEGAKI

conditional expectation satisfying the condition $I^e = I$ can be characterized as the following:

COROLLARY 1.1. Let $x \to x^{\epsilon}$ be a linear mapping from A into itself satisfying $(D.2), (D.3), l^{\epsilon} = I$ and

(6) $\mu(x^{\circ}y) \leq \mu(xy^{\circ}) < +\infty \text{ for every } x \in A^{+}and y \in J^{+}.$

Then the range A^{ϵ} is a W*-subalgebra and x^{ϵ} coincides with the conditional expectation relative to A^{ϵ} .

PROOF. Taking $y \in J^+$ such that $\mu(y^e) = 1$ and putting $\sigma_y(x) = \mu(xy^e)$ for $x \in A$, then by (6) and (D.2) $\sigma_y(x^e) \leq \sigma_y(x)$ for every $x \in A^+$. Since $I^e = I$ and $\sigma_y(I) = \mu(y^e) = 1$, by the proof of the Nakamura-Turumaru's Theorem we have that $\sigma_y(x^e) = \sigma_y(x)$ for every $x \in A$. This implies that $\mu(x^*y) = \mu(xy^e)$ for every $y \in J^+$ and hence for every $y \in J$. Further, since the strong continuity of x^e (on bounded part) is followed from (b) (cf. Remark 1.2 below), and since (D.9) holds for $x, y \in J$ (by(6)), we obtain (4) and complete the proof.

REMARK 1.1. We shall give in the last section (cf. § 4) an example of the conditonal expectation satisfying $I^{s} = I$ in a semi-finite W^{*} -algebra. When μ is a faithful normal trace, i.e. A is a σ -finite, finite W^{*} -algebra, Theorem 1 holds and Corollary 1.1 also characterizes the conditional expectation. These characterizations are analytical and somewhat simple when compared with the Theorem 2 in the preceding paper (cf. [11])³.

REMARK 1.2. In Corollary 1.1, if $I^{\epsilon} \leq I$ then $x \to x^{\epsilon}$ is strongly continuous on the unit sphere of A and A^{ϵ} is a self-adjoint weakly closed subalgebra of A. The first part will follow from the fact that $J^{\epsilon} \subset J$ (by (6)) and for every $x \in A$ and $y \in J$

(7)
$$||x^{\epsilon}y||_{2}^{2} = \mu(y^{*}x^{*\epsilon}x^{\epsilon}y) \leq \mu(y^{*}(x^{*}x)^{\epsilon}y) = \mu((x^{*}x)^{\epsilon}yy^{*}) \leq \mu((x^{*}x)(yy^{*})^{\epsilon}).$$

The second part follows by the similar way of the proof of Theorem 1. Further we remark that if μ is a faithful normal trace and the mapping $x \to x^{\epsilon}$ satisfies $I^{\epsilon} = I$ and a weaker condition than (6):

(8)
$$\mu(x^{\epsilon}) \leq \mu(x)$$
 for every $x \in A^+$,

then A^{ϵ} is a W*-subalgebra of A. Indeed, for the present A and μ , J = A and

 $\|x^{\epsilon}\|_{2} = \mu(x^{*\epsilon}x^{\epsilon}) \leq \mu((x^{*}x)^{\epsilon}) \leq \mu(x^{*}x) = \|x\|_{2}^{2} \qquad \text{for every } x \in A.$

This implies the strong continuity of $x \to x^e$ on the unit sphere, and hence by the similar way of the first part in this Remark, we obtain the required ones.

Let A be again a semi-finite W^* -algebra and let μ be a regular gage on A. For any W^* -subalgebra A_1 of A, we shall also denote the contracted gage on A_1 by μ . Then the space $L^r(A_1)$ is considered as a closed subspace of $L^r(A)$, r = 1, 2. For any self-adjoint operator x in $L^r(A)$ (r = 1,

³⁾ In this case we have assumed (D.3)' and (D.5) but not (D.3).

2), let $x = \int \lambda \, dE_{\lambda}(x)$ be the spectral resolution of x. Then each $E_{\lambda}(x)$ belongs to A. Denote by W(x) the W^* -subalgebra of A generated by $\{E_{\lambda}(x); \lambda\}$. If x is not self-adjoint, then it can be uniquely expressed by $x = x^{(1)} + ix^{(2)}$ where $x^{(1)}$ and $x^{(2)}$ are the real and imaginary parts respectively. Then there correspond the W^* -subalgebras $W(x^{(1)})$ and $W(x^{(2)})$ to $x^{(1)}$ and $x^{(2)}$ respectively. Let W(x) be the W^* -subalgebra generated by $W(x^{(1)})$ and $W(x^{(2)})$. Then W(x) is a minimal W^* -subalgebra of A containing the resolutions of identities $E_{\lambda}(x^{(1)})$ and $E_{\lambda}(x^{(2)})$ of $x^{(1)}$ and $x^{(2)}$ respectively. Under these notations we have

PROPOSITION. For any subset S of $L^r(A)$ (r = 1 or 2 resp.) there corresponds uniquely a minimal W*-subalgebra W(S) of A such that $S \subset L^r(W(S))$. The operation $S \to W(S)$ has the properties that, $W(L^r(W(S))) = W(S)$; $S \subset A$ implies $W(S) = S'^{(4)}$; $S_1 \subset S_2$ implies $W(S_1) \subset W(S_2)$; and further for S_1 and S_2 having the same closed linear hull in $L^r(A)$ (r = 1, or 2 resp.), $W(S_1) = W(S_2)$.

PROOF. Let $S \subset L^r(A)$ (r = 1 or 2 resp.) and let W(S) be a W^* -subalgebra of A generated by $\{W(x); x \in S\}$. Since for any $x \in S x^{(1)}, x^{(2)} \in L^r(A)$ and the projections $E_{\lambda}(x^{(1)}), E_{\lambda}(x^{(2)})$ belongs to $W(S), x^{(1)}$ and $x^{(2)}$ are measurable with respect to W(S) in the sense of Segal (cf. [10]) and hence they belong to $L^r(W(S))$. For a W*-subalgebra W of A such that $S \subset L^r(W), W(S) \subset W$ follows from [10]. Hence W(S) is minimal and uniquely determined by S. Now we prove $W(L^r(W(S))) = W(S)$. Since $S \subset L^r(W(S)), W(S) \subset W(L^r(W(S)))$ (because $S_1 \subset S_2$ implies clearly $W(S_1) \subset W(S_2)$). Conversely, for $x = x^*$ in $L^r(W(S)), E_{\lambda}(x) \in W(S)$ and hence $W(L^r(W(S))) \subset W(S)$. The other parts in this proposition will easily follow from these facts.

The following corollary contains a generalization of a half part of a theorem of Bahadur (cf. [1]).

COROLLARY 1.2. (1°) Let A be a semi-finite W*-algebra with a regular gage μ , and put $L = L^2(A)$. Let $x \to x^{\epsilon}$ be a projection in L such that $x^{*\epsilon} = x^{\epsilon*}$. Then the following conditions are equivalent:

(1') $x \rightarrow x^{*}$ coincides with a conditional expectation x^{*} (on L) relative to a certain W^{*} -subalgebra A_{1} of A.

(2') $L^{\epsilon} = L^2(W(L^{\epsilon})).$

(2°) If μ is a faithful normal trace, then (1') and (2') are equivalent to the following each condition:

(3') L^{ϵ} contains a self-adjoint subalgebra B of A such that $I \in B$ and B is L^2 -dense in L^{ϵ} .

 $(4') A^{\epsilon} = W(L^{\epsilon}).$

PROOF. (1°). (1') \rightarrow (2'): Since $L^e = L^2(A_1)$ and J^e is dense in L^e , by Theorem 1, $J^e = J \cap A_1 \supset J \cap W(J^e) \supset J^e$ and $J^e = J \cap W(J^e)$. Further, by the preceding Proposition, $W(J^e) = W(L^e)$. Hence we obtain $L^e = L^2(W(L^e))$ and (2') holds.

⁴⁾ For any subset S of bounded operators on H, S' denotes the set of all bounded operators on H which with all operators in e S. S'' denotes (S')'. S'' is a W*-algebra generated by S.

H. UMEGAKI

 $(2') \rightarrow (1'): <, >$ denotes the inner product in L. Since $x \rightarrow x^e$ is a projection in L, for $x, y \in L$

$$\mu(x^{\epsilon}y) = \langle x^{\epsilon}, y^{*} \rangle = \langle x, y^{*\epsilon} \rangle = \langle x, y^{\epsilon} \rangle = \mu(xy^{\epsilon}).$$

Let x^{e} be the conditional expectation relative to $W(L^{e})$. Then, for every $x \in L$, $x^{ee} = x^{e}$ and $x^{ee} = x^{e}$, and for every $y \in J$

(9) $\mu(x^{\epsilon}y) = \mu(x^{\epsilon}y) = \mu(x^{\epsilon}y) = \mu(xy^{\epsilon}) = \mu(xy^{\epsilon}) = \mu(xy^{\epsilon}).$

This implies that $x^{i} = x^{e}$ for every $x \in L$. (2°) will be followed immediately from (1°) as its corollary.

By a slight modification of the proof of Cor. 1. 2 it also holds that : In Cor. 1. 2, (1°), put $L = L^{1}(A)$, and let $x \to x^{\epsilon}$ be a bounded linear mapping from L into itself satisfying $x^{\epsilon} = x^{\epsilon}$ and (D. 9) for every $x, y \in J$. Then the condition (1') is equivalent to

(2") $L^{\epsilon} = L^{1}(W(L^{\epsilon}))$ and $J^{\epsilon} \subset A$.

3. As the preceding section we shall consider a semi-finite W^* -algebra A on a Hilbert space H, with a regular gage μ . Let $\{x_{\alpha}, \alpha \in D\}$ be a family of operators in A (or $L^1(A)$ or $L^2(A)$ resp.), D being directed set. Let A_{α} be W^* -subalgebra of A generated by $\{W(x_{\gamma}); \gamma \leq \alpha\}$, $W(x_{\gamma})$ being the W^* -subalgebra given in the Proposition in §2. Then $A_{\alpha} \subseteq A_{\beta}$ if and only if $\alpha \leq \beta$. If $\{x_{\alpha}, \alpha \in D\}$ satisfies the conditions $x_{\alpha} = x_{\beta}^{*\alpha}$ for every $\alpha, \beta \in D$ ($\alpha \leq \beta$), where $x^{\circ_{\alpha}}$ denotes the conditional expectation relative to A_{α} , then we shall call the family of operators $\{x_{\alpha}, \alpha \in D\}$ to be an *M*-net (with respect to the gage μ), and $\{A_{\alpha}, \alpha \in D\}$ the family of W*-subalgebras associated to the M-net. We shall call an M-net to be increasing or decreasing, whenever : for any $\alpha, \beta \in D$ there exists $\gamma \in D$ such that $\alpha, \beta \leq \gamma$ or $\gamma \leq \alpha, \beta$ respectively.

An example of *M*-net is given such as: Let $\{B_{\alpha}, \alpha \in D\}$ be a family of *W**-subalgebras of *A* and suppose that $B_{\alpha} \subset B_{\beta}$ if and only if $\alpha \leq \beta$. Let $\{x_{\alpha}, \alpha \in D\}$ be a family of operators in $L^{1}(A)$ or $L^{2}(A)$ such that

(10) $x_{\alpha} = x_{\beta}^{\epsilon \alpha}$ for every $\alpha, \beta \in D \ (\alpha \leq \beta)$

where $x^{\epsilon_{\alpha}}$ denotes the conditional expectation relative to B_{α} . Then $\{x_{\alpha}, \alpha \in D\}$ is an *M*-net⁵). We denote such an *M*-net by $\{x_{\alpha}, B_{\alpha}, \alpha \in D\}$. Further, for any $x \in L^{1}(A)$ or $L^{2}(A)$ putting $x_{\alpha} = x^{\epsilon_{\alpha}} (\alpha \in D), \{x_{\alpha}, B_{\alpha}, \alpha \in D\}$ is also an *M*-net. Such an *M*-net $\{x_{\alpha}, B_{\alpha}, \alpha \in D\}$ is called to be *simple*. Any finite *M*-net is clearly simple. The sequence of bounded operators in I_{∞} or II_{∞} -factor given by von Neumann (cf. p. 118 of [9] and cf. § 4 in this paper) is an example of simple *M*-net.

If A is a σ -finite commutative W*-algebra with faithful normal trace μ , then any M-net $\{x_{\alpha}, \alpha \in D\}$ in $L^{1}(A)$ is transformed to a martingale on the corresponding probability space by the canonical mapping.

By the definition of M-net and the properties of the conditional expectations the following conditions are equivalent for a given family of operators

⁵⁾ That is, taking the corresponding family of W*-subalgebras $\{A_{\alpha}, \alpha \in D\}$, it satisfies that $x_{\alpha} = x_{\alpha}^{*} \alpha$ for every $\alpha, \beta \in D$ ($\alpha \leq \beta$).

 $\{x_{\alpha}, \alpha \in D\}$ in $L^{1}(A)$ or $L^{2}(A)$:

(i) $\{x_{\alpha}, \alpha \in D\}$ is an *M*-net.

(ii) $\mu(yx_{\alpha}) = \mu(yx_{\beta})$ for every α , $\beta \in D$ ($\alpha \leq \beta$) and $y \in J \cap A_{\alpha}$, A_{α} being the W*-subalgebra given at the first paragraph in this section.

(iii) $x_{\alpha} = x_{\beta}^{e(\gamma,\alpha)}$ for every $\alpha, \beta, \gamma \in D$ such that $\gamma \leq \alpha \leq \beta$, where $e(\gamma, \alpha)$ denotes the conditional expectation relative to the W*-subalgebra $W(x_{\gamma}, x_{\alpha})$.

If $\{x_{\alpha}, A_{\alpha}, \alpha \in D\}$ and $\{y_{\alpha}, A_{\alpha}, \alpha \in D\}$ are *M*-nets, then $\{x_{\alpha}^{*}, A_{\alpha}, \alpha \in D\}$, $\{\lambda x_{\alpha}, A_{\alpha}, \alpha \in D\}$ and $\{x_{\alpha} + y_{\alpha}, A_{\alpha}, \alpha \in D\}$ are also *M*-nets, λ being any complex number. We shall say an *M*-net $\{x_{\alpha}, \alpha \in D\}$ to be *real* or *positive* if $x_{\alpha}^{*} = x_{\alpha}$ for every $\alpha \in D$ or $x_{\alpha} \geq 0$ for every $\alpha \in D$. Any *M*-net $\{x_{\alpha}, \alpha \in D\}$ can be decomposed into two real *M*-nets in an obvious way, that is, $\{x_{\alpha}^{(1)}, \alpha \in D\}$ and $\{x_{\alpha}^{(2)}, \alpha \in D\}$ where $x_{\alpha}^{(1)} = \frac{1}{2}(x_{\alpha} + x_{\alpha}^{*})$ and $x_{\alpha}^{(2)} = \frac{1}{2i}(x_{\alpha} - x_{\alpha}^{*})$.

In an *M*-net $\{x_{\alpha}, \alpha \in D\}$, for any directed subset *D'* of *D*, $\{x_{\alpha}, \alpha \in D'\}$ is also an *M*-net.

Besides, we shall define a subset $S \subset L^1(A)$ to be uniformly μ -integrable if for any $\varepsilon > 0$ there is a positive number $\delta > 0$ such that $\mu(p) < \delta$ (p being projection in $L^1(A)$) implies $\mu(p|x|) < \varepsilon$ for all $x \in S$.

With these terminologies, we shall prove

THEOREM 2.⁶⁾ Let A be a σ -finite, finite W*-algebra on a Hilbert space H with a faithful normal trace μ , and let D be an increasing directed set. Then, for a given M-net $\{x_{\alpha}, \alpha \in D\}$, the following conditions are equivalent:

(2.1) Both $\{x_{\alpha}^{(1)}, \alpha \in D\}$, and $\{x_{\alpha}^{(2)}, \alpha \in D\}$ are uniformly μ -integrable and uniformly bounded in L^{1} -norm.

(2.2) $\{x_{\alpha}, \alpha \in D\}$ is weakly* conditional compact in $L^{\iota}(A)$.

(2.3) $\{x_{\alpha}, \alpha \in D\}$ is simple.

(2.4) There exists $x \in L^{1}(A)$ such that $||x_{\alpha} - x||_{1} \rightarrow 0$.

PROOF. If the *M*-net $\{x_{\alpha}, \alpha \in D\}$ is finite, the proof is trivial. Hence we consider the case that it is infinite. Let $\{A_{\alpha}, \alpha \in D\}$ be the family of the *W**-subalgebras of *A* associated to $\{x_{\alpha}, \alpha \in D\}$. Let $A_0 = \bigcup_{\alpha \in D} A_{\alpha}$ and let

 A_1 be the weak closure of A_0 . Let $z^{e\alpha}$ be the conditional expectation of $z \in L^1(A)$ relative to A^{α} .

Firstly we prove that $(2, 1) \rightarrow (2, 2)$: Each $x_{\alpha}^{(1)}$ is uniquely expressed by $x'_{\alpha} - x''_{\alpha}$ such that x'_{α} , $x''_{\alpha} \in L^{1}(A)$, x'_{α} , $x''_{\alpha} \ge 0$ and $x'_{\alpha}x''_{\alpha} = 0$ for every $\alpha \in D$. Since $\{x^{(1)}_{\alpha}, \alpha \in D\}$ is uniformly μ -integrable and $|x^{(1)}_{\alpha}| = x'_{\alpha} + x''_{\alpha}$, for any $\varepsilon > 0$ there exists a $\delta > 0$ such that $\mu(p) < \delta$ implies for all $\alpha \in D$

(11) $\mu(px'_{\alpha}) + \mu(px''_{\alpha}) = \mu(p(x'_{\alpha} + x''_{\alpha})) = \mu(p|x_{\alpha}|) < \varepsilon/2.$

Since $\mu(px'_{\alpha}), \mu(px''_{\alpha}) \ge 0$, both $< \varepsilon/2$ for all $\alpha \in D$, and hence $\{x'_{\alpha}, \alpha \in D\}$ and $\{x''_{\alpha}, \alpha \in D\}$ are uniformly μ -integrable. Putting $\sigma'_{\alpha}(y) = \mu(yx'_{\alpha})$ and $\sigma''_{\alpha}(y) = \mu(yx'_{\alpha})$ for all $y \in A$ and $\alpha \in D$, σ'_{α} and σ''_{α} belong to the conjugate

⁶⁾ This theorem contains a generalization of L^1 -mean convergence of a martingale in a probability space (cf. Theorem 1.4 of [3]).

H. UMEGAKI

Banach space A^{\wedge} of A. Let T' and T'' be the weak closures of $\{\sigma_{\alpha}, \alpha \in D\}$ and $\{\sigma''_{\alpha}, \alpha \in D\}$ as functional on A respectively. Let $\sigma \in T'$ be a limiting point of $\{\sigma'_{\alpha}, \alpha \in D\}$ which is a positive linear functional on A. We take a sequence of projections $\{p_j, j = 1, 2, ...\}$ in A such that $p_j \perp p_k$ $(j \neq k)$. For $\varepsilon > 0$, taking $\delta > 0$ as (11), there exists an integer $k_0 > 0$ such that $\mu\left(\sum_{j=k_0}^{\infty} p_j\right)$

< δ , and since $\sum_{j=k_0}^{\infty} p_j$ is a projection in A, by (11)

$$r'_{\alpha}\left(\sum_{j=k_0}^{\infty} p_j\right) = \mu\left(\left(\sum_{j=k_0}^{\infty} p_j\right) x'_{\alpha}\right) < \varepsilon/2.$$

Choosing σ'_{α} such that

$$\sigma'\left(\sum_{j=k_0}^{\infty} p_j\right) - \sigma'_{\alpha}\left(\sum_{j=k_0}^{\infty} p_j\right) \Big| < \varepsilon/2,$$

then for any integer $k \ge k_0$

$$\sigma'\left(\sum_{j=k}^{\infty} p_{j}\right) \leq \sigma'\left(\sum_{j=k_{0}}^{\infty} p_{j}\right) \leq \left|\sigma'\left(\sum_{j=k_{0}}^{\infty} p_{j}\right) - \sigma'_{\alpha}\left(\sum_{j=k_{0}}^{\infty} p_{j}\right)\right| + \sigma'_{\alpha}\left(\sum_{j=k_{0}}^{\infty} p_{j}\right)$$
$$< \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

Therefore σ is countably additive and by Dye-Radon-Nikodym's Theorem (cf. [4]), there exists $x' \in L^1(A)$ such that $x' \ge 0$ and

(12)
$$\sigma'(y) = \mu(yx') \quad \text{for all } y \in A.$$

Hence every σ' in T' (and similarly every σ'' in T'') are represented as (12) (and $\sigma''(y) = \mu(yx'')$ for some $x'' \in L^1(A)$). x' and x'' are uniquely determined by σ' and σ'' in $L^1(A)$ respectively. Therefore the weak* closures of $\{x_{\alpha}, \alpha \in D\}$ and $\{x_{\alpha}', \alpha \in D\}$ in $L^1(A)$ are weak* compact in $L^1(A)$ and so is the weak* closure of $\{x_{\alpha}' - x_{\alpha}', \alpha \in D\}$, i.e. $\{x_{\alpha}^{(1)}, \alpha \in D\}$ is weakly* conditionally compact. Since for $\{x_{\alpha}^{(2)}, \alpha \in D\}$ the same fact can be proved by the same way and $x_{\alpha} = x_{\alpha}^{(1)} + ix_{\alpha}^{(2)}, \{x_{\alpha}, \alpha \in D\}$ is weakly* conditionally compact.

Secondly we prove that $(2, 2) \rightarrow (2, 3)$: Put $S = \{\sigma_{\alpha}, \alpha \in D\}$ $\sigma_{\alpha}(y) = \mu(yx_{\alpha})$, and S^{γ_1} and S^{γ_0} the weak* closures in A_1^{\wedge} of S with respect to A_1 and A_0 respectively, that is, the closures with respect to the weak* topologies on $L^1(A_1)$ defined by the neighborhoods:

$$U(x_0; z_1, \ldots, z_n, \varepsilon > 0) = \{x \in L^1(A_1); |\mu((x_0 - x)z_j)| < \varepsilon, j = 1, 2, \ldots, n\},\$$

 z_j belonging to A_1 or A_0 respectively. Then by (2.2) S^{i_1} is weakly* compact. Since the weak* topology on $L^1(A_1)$ with respect to A_1 is stronger than the one with respect to A_0 , the canonical mapping from S^{i_1} to S^{i_0} is continuous, and it is also one-to-one. For, since A_0 is strongly dense in A_1 (as operator on H), $\mu(x_1z) = \mu(x_2z)$ for x_1 , $x_2 \in L^1(A_1)$ and for all $z \in A_0$ thus a fortiori, for all $z \in A_1$. Therefore S^{i_1} is compact (and hence closed) in S^{i_0} , and $S \subset S^{i_1}$ mplies $S^{v_0} \subset S^{v_1v_0} = S^{v_1}$. Further, by the definition of the *M*-net, $\lim_{\alpha} \mu(yx_{\alpha})$ (= $\sigma(y)$ say) always exists for every $y \in A_0$, which belongs to S^{v_0} and hence S^{v_1} . Consequently, there is an $x \in L^1(A_1)$ such that $\sigma(y) = \mu(yx)$ for every $y \in A_0$. Since $\mu(yx) = \lim_{\alpha} \mu(yx_{\alpha})$ for every $y \in A_0$, for any fixed $\alpha \in D$ and for any $y \in A_{\alpha}$,

$$\mu(\mathbf{y}\mathbf{x}) = \lim_{\beta} \mu(\mathbf{y}\mathbf{x}_{\beta}) = \lim_{\beta} \mu(\mathbf{y}\mathbf{x}_{\beta}^{*\alpha}) \ (\alpha \leq \beta) = \mu(\mathbf{y}\mathbf{x}_{\alpha}).$$

Hence we obtain $x_{\alpha} = x^{e_{\alpha}}$ for every $\alpha \in D$.

Next we shall show the equivalence of (2.3) and (2.4). Assume (2.3). For any $z \in A$, putting $z_{\alpha} = z^{e_{\alpha}}$ for all $\alpha \in D$ and $z_1 = z^{e_1}$, $\{z_{\alpha}, \alpha \in D\}$ is a simple *M*-net satisfying $||z^{e_{\alpha}}||_2 \leq ||z^{e_1}||_2$ and

(14)
$$z_{\alpha} - z_1 \frac{2}{2} = \mu(z_1^* z_1) - \mu(z_1^* z_{\alpha}) \xrightarrow{\sim} 0$$

and hence $|z_{\alpha} - z_1|_1 \leq |z_{\alpha} - z_1|_2 \rightarrow 0$. Let $x \in L^1(A)$ be $x_{\alpha} = x^{e_{\alpha}}$ $(\alpha \in D)$ and take $\{z_n\} \subset A_1$ such that $||x^{e_1} - z_n||_1 < 1/3n$ (n = 1, 2, ...). Moreover for each n taking $\alpha_n \in D$ such that $||z_n - z_n^{e_{\alpha}}|_1 < 1/3n$ for all $\alpha \in D$, $(\alpha_n \leq \alpha)$,

$$\|x^{e_1} - x_{lpha}\|_1 \leq \|x^{e_1} - z_n\|_1 + \|z_n - z^{e_n lpha}_n\|_1 + \|(z_n - x)^{e lpha}\|_1 < 1/n$$

and $|x^{e_1} - x_{\alpha}|_1 \to 0$. This implies (2.4). Conversely, assuming (2.4), $\lim_{\alpha} \mu(yx_{\alpha}) = \mu(yx)$ for all $y \in A$, and if $y \in A_{\alpha_0}$ then $\mu(yx_{\alpha_0}) = \mu(yx_{\alpha})$ for all $\alpha \in D$ ($\alpha_0 \leq \alpha$). These facts imply that $\mu(yx_{\alpha_0}) = \mu(yx)$ for all $y \in A_{\alpha_0}$.

Finally we shall prove that (2.3) and (2.4) imply (2.1). Let $x \in L^{1}(A)$ be $x_{\alpha} = x^{e_{\alpha}}$ and $|x_{\alpha} - x_{1}| \xrightarrow{\rightarrow} 0$. The expressions $x = x^{(1)} + ix^{(2)}$ and $x^{(1)} = x' - x''(x', x') \ge 0$ and x'x'' = 0) are unique. Putting $x'_{\alpha} = x'^{e_{\alpha}}$ and $x''_{\alpha} = x''^{e_{\alpha}}$ ($\alpha \in D$), $x^{(1)}_{\alpha} = x'_{\alpha} - x''_{\alpha}$ and $\{x'_{\alpha}, \alpha \in D\}$ and $\{x'_{\alpha}, \alpha \in D\}$ are positive simple *M*-sets satisfying $|x'_{\alpha} - x'|_{1}, |x'_{\alpha} - x''|_{1} \to 0$. If $\{x^{(1)}_{\alpha}, \alpha \in D\}$ is not uniformly μ -integrable, then so is at least one $\{x'_{\alpha}, \alpha \in D\}$ or $\{x'_{\alpha}, \alpha \in D\}$. Indeed, if both are uniformly μ -integrable, then let $|x_{\alpha}| = v_{\alpha}x$ being canonical decomposition, v_{α} being partially isometric operator,

$$\begin{split} \mu(p | x_{\alpha}^{(1)} |) &= \mu(p v_{\alpha} x_{\alpha}^{(1)}) = \mu(p v_{\alpha} x_{\alpha}^{'}) - \mu(p v_{\alpha} x_{\alpha}^{''}) \\ &\leq \mu(p x_{\alpha}^{'})^{1/2} \mu(v_{\alpha}^{*} v_{\alpha} x_{\alpha}^{'})^{1/2} + \mu(p x_{\alpha}^{''})^{1/2} \mu(v_{\alpha}^{*} v_{\alpha} x_{\alpha}^{''})^{1/2} \\ &\leq \| x' \|_{1}^{1/2} \ \mu(p x_{\alpha}^{'}) + \| x'' \|_{1}^{1/2} \ \mu(p x_{\alpha}^{'})^{1/2}, \end{split}$$

because $x'_{\alpha} = x''_{\alpha}$ and $x''_{\alpha} = x''^{e_{\alpha}}$. This implies the uniformly μ -integrability of $\{x_{\alpha}, \alpha \in D\}$. Now if $\{x'_{\alpha}, \alpha \in D\}$ is not uniformly μ -integrable, then there exist an $\varepsilon > 0$, sequences of projections $\{p_n\} \subset A$ and indices $\{\alpha_n\} \subset D$ such that $\mu(p_n) < 1/n$, $\mu(p_n x')$ and $\alpha_n \leq \alpha_{n+1}$ (n = 1, 2, ...). Let B be a W*-subalgebra of A generated by $\{A_{\alpha_n}, n = 1, 2, ...\}$ and let x'^{ϵ} be the conditional expectation of x' relative to B. Then $\|x'_{\alpha_n} - x'^{\epsilon}\|_1 \to 0$ $(n \to \infty)$. Therefore

 $\mathcal{E} < \mu(p_n x'^n) \leq |\mu(p_n(x'_{\alpha_n} - x'^e))| + \mu(p_n x'^e)) \leq ||x'_{\alpha_n} - x'^e||_1 + \mu(p_n x'^e) \rightarrow 0 (n \to \infty).$ This is a contradiction. The uniform μ -integrability of $\{x^{(2)}_{\alpha}, \alpha \in D\}$ also follows in the same way as for case of $\{x^{(1)}_{\alpha}, \alpha \in D\}$. Q. E. D.

For the *M*-nets in $L^2(A)$ and *A* we have the following:

COROLLARY 2.1. Let A and μ have the same meanings as Theorem 2. Let

H UMEGAKI

 $\{x_{\alpha}, \alpha \in D\}$ be an increasing M-net in $L^2(A)$ (in A, resp.). Then the following three conditions are equivalent:

(2.1)' $\{x_{\alpha}, \alpha \in D\}$ is uniformly bounded in L²-norm ($|\cdot||_{\infty}$ -norm resp.).

(2.3)' $\{x_{\alpha}, \alpha \in D\}$ is simple for $x \in L^2(A)$ (for $x \in A$ resp.).

(2.4)' There exists an $x \in L^2(A)$ ($x \in A$ resp.) such that x_{α} converges to x in the L²-mean (in the strong operator topology on H resp.).

In the proof of this corollary, we shall use the notations in the proof of Theorem 1.

PROOF FOR THE $L^2(A)$ -CASE. $(2, 1)' \rightarrow (2, 3)'$: Since $||x_{\alpha}||_2^2 = ||x_{\alpha}^{(1)}||_2^2 + ||x_{\alpha}^{(2)}||_2^2$ $(\alpha \in D)$ and for any projection $p \in A$

$$\mu(p \mid x_{\alpha}^{(j)} \mid) \leq \mu(p)^{1/2} \mu(x_{\alpha}^{(j)} * x_{\alpha}^{(j)})^{1/2} \leq \mu(p)^{1/2} \mid x_{\alpha}^{(j)} \mid_{2} (j = 1, 2),$$

Theorem 1 (2.1) is satisfied. Hence $\{x_{\alpha}^{(j)}, \alpha \in D\}$ are simple in $L^{1}(A)$, i.e. $x_{\alpha}^{(j)} = x^{(j)e_{\alpha}}$ and $\|x_{\alpha}^{(j)} - x^{(j)}\|_{1} \to 0$ for some $x^{(j)} \in L^{1}(A)$, and

$$|\mu(yx_{\alpha}^{(j)})| \leq \mu(y^*y)^{1/2} \mu(x_{\alpha}^{(j)})^{1/2*} x_{\alpha}^{(j)}) \leq \|x_{\alpha}^{(j)}\|_{2} \|y\|_{2}$$

for every $y \in A$. Consequently, $|\mu(yx^{(j)})| \leq \sup_{\alpha} ||x^{(j)}||_2 ||y||_2$ and $x^{(j)} \in L^2(A)$

(j = 1, 2). $(2, 3)' \rightarrow (2, 4)'$: As in the proof of Theorem 2 (cf. the part $(2, 3) \rightarrow$ (2, 4)), taking $\{z_{\alpha}, \alpha \in D\} \subset A$ and $z_1 \in A$, (2, 4)' holds (see (14)). Since A is dense in $L^2(A)$, we can show $||x_{\alpha} - x^{e_1}|_2 \rightarrow 0$ by the same method of the proof of Theorem 1, if we take the L^2 -norm instead of L^1 -norm. $(2, 4)' \rightarrow (2, 3)'$ and $(2, 3)' \rightarrow (2, 1)'$ are obvious by Theorem 1 and by the fact that the x belonging to $L^2(A)$.

PROOF FOR THE A-CASE. $(2, 1)' \rightarrow (2, 3)'$: Since $\mu(x_{\alpha}^* x_{\alpha}) \leq ||x_{\alpha}||_{\infty}^2$, (2, 1)' holds for L^2 -norm and (2, 3)' holds for $x \in L^2(A)$. Hence, by Cor. 2.1. (2, 4)', for every $y \in A$

$$\|xy\|_{2}^{2} = \mu(x^{*}x\,yy^{*}) = \lim \ \mu(x^{*}x\,yy^{*}) \leq \sup \|x_{\alpha}\|_{\infty}^{2} \|y\|_{2}^{2}$$

and $x \in A$. $(2,3)' \to (2,4)'$: We can assume that $x \in A$ satisfies $x_{\alpha} = x_{\alpha}^{*}$ and $||x_{\alpha} - x_{2}|| \to 0$. Whence for any $y \in A ||(x_{\alpha} - x)y||_{2} \to 0$. Since $||x_{\alpha}||_{\infty} \leq ||x||_{\infty}$ and A is dense in $L^{2}(A)$, $x_{\alpha} \to x$ strongly on the Hilbert space $L^{2}(A)$. This fact implies the strong convergence of x_{α} to x on H. It is clear that $(2,4)' \to (2,3)'$ and $(2,3)' \to (2,1)'$ for A.

REMARK 2.1. In Theorem 1, the condition (2.1) implies (2.2) for arbitrary set S in $L^{1}(A)$ and the converse case holds for S consisting of positive operators in $L^{1}(A)$. Indeed, the former follows from the proof of Theorem 1, and the latter will be obtained by the last part of its proof, because we can take the weak* convergence in the place of the L^{1} -mean convergence in that part of the proof.

As the final part in this section, we shall discuss a decreasing *M*-nets in a semi-finite W^* -algebra A on H with a regular gage μ :

THEOREM 3. Let $\{x_{\alpha}, \alpha \in D\}$ be a decreasing M-net in $L^2(A)$ (in $L^2(A) \cap A$ resp.). Then x_{α} converges to an operator $x \in L^2(A)$ (in $L^2(A) \cap A$ resp.) in L^2 -mean (strongly as operator on H resp.). In particular, if A is σ -finite finite

and μ is a faithful normal trace and $\{x_{\alpha}, \alpha \in D\} \subset L^{1}(A)$, then x_{α} converges to an $x \in L^{1}(A)$ in L^{1} -mean.

PROOF. Let $\{A_{\alpha}, \alpha \in D\}$ be the family of the W^* -subalgebras associated to $\{x_{\alpha}, \alpha \in D\}$ (cf. The first paragraph of §3). Let $A_1 = \bigcap_{\alpha \in D} A_{\alpha}$ which is a W^* -subalgebra of A and let y^{ε_1} be the conditional expectation of y relative to A_1 .

L²-CASE: Since for any α , $\beta \in D$ ($\alpha \leq \beta$), $0 \leq x_{\alpha}^* x_{\alpha} = x_{\beta}^{*\circ\alpha} x_{\beta}^{*\alpha} \leq (x_{\beta}^* x_{\beta})^{e_{\alpha}}$, $0 \leq \mu(x_{\alpha}^* x_{\alpha}) \leq \mu((x_{\beta}^* x_{\beta})^{e_{\alpha}}) \leq \mu(x_{\beta}^* x_{\beta})$

and $\lim \mu(x_{\alpha}^*x_{\alpha})$ exists (uniquely, $=\lambda$ say). Therefore

 $\|x_{\alpha} - x_{\beta}\|_{2} = \mu((x_{\alpha} - x_{\beta})^{*}(x_{\alpha} - x_{\beta})) = \mu(x_{\beta}^{*}x_{\beta}) - \mu(x_{\alpha}^{*}x_{\alpha}) \rightarrow \lambda - \lambda = 0,$ and there exists an $x \in L^{2}(A)$ such that $\|x_{\alpha} - x\|_{2} \rightarrow 0.$

 $L^2 \cap A$ -CASE: Since $\{x_{\alpha}, \alpha \in D\} \subset L^2(A)$, it converges to $x \in L^2(A)$ in the L^2 -mean. While for any $y \in J$ and any fixed $\alpha_0 \in D$, $|\mu(xy)| = |\lim_{\alpha \leq \alpha_0} |\mu(x_{\alpha}y)| \leq ||x_{\alpha_0}||_{\infty} ||y||_1$, which implies $x \in A$. Hence $x \in L^2(A) \cap A$ and $||(x_{\alpha} - x)y||_2 \leq ||y||_{\infty} ||x_{\alpha} - x||_2 \to 0$ for every $y \in J$, and $||(x_{\alpha} - x)y||_2 \to 0$ for every $y \in L^2(A)$, because J is dense in $L^2(A)$. Therefore x_{α} converges strongly to x on H.

Finally we prove the last part. For fixed $\alpha_0 \in D$, taking $\{y_n\} \subset A_{\alpha_0}$ such that $||y_n - x_{\alpha_0}|| \to 0$ $(n \to \infty)$,

$$\|y_n^{e\alpha}-y_n^{e\beta}\|_1\leq \|y_n^{e\alpha}-y_n^{e\beta}\|_2\rightarrow 0$$

and

$$\|y_n^{e\alpha} - x_{\alpha}\|_1 \leq \|y_n - x_{\alpha_0}\|_1 \to 0 \qquad (n \to \infty, \ \alpha \leq \alpha_0)$$

Therefore for any $\mathcal{E} > 0$ there are α_{ϵ} and *n* such that for every $\alpha, \beta \leq \alpha_{\epsilon}, \alpha_{0}$

 $\|x_{\alpha}-x_{\beta}\|_{1} \leq \|x_{\alpha}-y_{n}^{e\alpha}\|_{1} + \|y_{n}^{e\alpha}-y_{n}^{e\beta}\|_{1} + \|y_{n}^{e\beta}-x_{\beta}\|_{1} < \varepsilon$

and x_{α} converges to some $x \in L^{1}(A)$ in the L¹-mean.

REMARK 2.2. In the above proof, each limit operator belongs to $L^2(A_1)$, $L^2(A) \cap A_1$ or $L^1(A_1)$ respectively. For, let x be the limit operator, then by the above proof, we find $\mu(yx) = \mu(yx_{\alpha})$ for every $y \in J \cap A_1$ and for every $\alpha \in D$.

4. In this section we shall show that a sequence of bounded operators defined by von Neumann (cf. p. 118 of [9]) is a simple M-set, and apply the preceding consideration to the convergence theorem of it (cf. Theorem 6 of [9]). Firstly, we show a lemma:

LEMMA 1. (Misonou). Let W be a W*-algebra on H and let p be a projection in W. For any $x \in W$, put

(15)
$$x^{|p|} = pxp + (1-p)x(1-p)^{(1)}.$$

Then the range $W^{|p}$ of the mapping $x \to x^{|p}$ is a W*-subalgebra of W and the mapping is linear and satisfies the conditions (D.1) - (D.5), (D.7) (in

⁷⁾ These notations were introduced by von Neumann (cf. [9;p. 118]).

Theorem D) and $I^e = I$.

PROOF. We prove only (D.5), since the others are almost obvious. For any $x, y \in W$

(16) $(x^{|p}y)^{|p} = ((pxp + (1-p)x(1-p))y)^{|p} = pxpyp + (1-p)x(1-p)y(1-p)$ and $x^{|p}y^{|p} = (pxp + (1-p)x(1-p))(pyp + (1-p)y(1-p))$ which equals to the right side of (16). This implies $(x^{|p}y)^{|p} = x^{|p}y^{|p}$ and similarly $= (xy^{|p})^{|p}$. Since $y^{|p} = y$ for every $y \in W^{|p}$, $(yxy')^{|p} = y(xy')^{|p} = yx^{|p}y'$ for $y, y' \in W^{|p}$.

For any projections in W of finite number p_1, \ldots, p_n , we denote $(x^{|p_1||p_2}, ((x^{|p_1||p_2})^{|p_3}) \text{ and } ((\ldots, ((x^{|p_1||p_2})^{|p_2}) \ldots)^{|p_n} \text{ by } x^{|p_1||p_2}, x^{|p_1||p_2||p_3}, \text{ and } x^{|p_1||p_2\dots|p_n}$ respectively.

LEMMA 2 (von Neumann [9]). If the projections p_1, \ldots, p_n in W commute with each others, then for any permutation $(1', 2', \ldots, n')$ of $(1, 2, \ldots, n)$ $\mathbf{x}^{|\mathbf{p}_1'||\mathbf{p}_2'\ldots|\mathbf{p}_n'} = \mathbf{x}^{|\mathbf{p}_1\cdot||\mathbf{p}_2|\ldots||\mathbf{p}_n}$.

This lemma was proved by von Neumann for the I_{∞} or II_{∞} factor (cf. [9]), which is valid for the present case.

Let W = A be a semi-finite W^* -algebra on H and let μ be a regular gage. Let $\{p_n\}$ be a finite or infinite sequence of projections in S commuting with each others. For any $x \in A$, put

(17) $x^{e_n} = x^{|p_1| | p_2 \dots | p_n}$ $n = 1, 2 \dots$

Under these notations we obtain

THEOREM 4. $A_{-n} = \{x^{\epsilon_n}; x \in A\}$ is a W*-subalgebra of A for each n = 1, 2, ..., and the mapping $x \to x^{\epsilon_n}$ transforms A onto A_{-n} and is the conditional expectation relative to A_{-n} satisfying $I^{\epsilon_n} = I$. Putting $x_{-n} = x^{\epsilon_n}$ for each $n, \{x_{-n}, n = 1, 2, ...\}$ is a decreasing simple M-net.

PROOF. By Lemmas 1 and 2, each A_{-n} is obviously a W^* -subalgebra satisfying

 $(18) A_{-1} \supset A_{-2} \supset \ldots \supset A_{-n} \supset \ldots$

For any fixed projection $p \in A$ and for $x \in J$, $x^{|p|}$ belongs to $J \cap A$ and satisfying

(19) $\mu(x^{p}) = \mu(pxp + (1-p)x(1-p)) = \mu(px) + \mu((1-p)x) = \mu(x).$

Hence by Lemma 1 $\mu(y^{|p}x) = \mu((y^{|p}x)^{|p}) = \mu((yx^{|p})^{|p}) = \mu(yx^{|p})$ for every $y \in A$ and $x \in J$, and by Theorem 1 the mapping $x \to x^{|p}$ is the conditional expectation relative to $A^{|p}$. Similarly, $\mu(x^{|p_1|p_2}) = \mu(x)$ and by Lemmas 1 and 2 $(x^{|p_1|p_2}y)^{|p_1|p_2} = x^{|p_1|p_2}y^{|p_1|p_2}$ holds. Hence by the same way for $x^{|p}$, the mapping $x \to x^{|p_1|p_2}$ is the conditional expectation relative to $A^{|p_1|p_2}(=A_{-2})$. By the inductive method and by (18) these facts hold for every \mathcal{E}_n . It follows from the definition of *M*-net and $I^{e_n} = I$ that $\{x_{-n}, n = 1, 2, \ldots\}$ is a decreasing simple, *M*-set.

For $x \in L^2(A) \cap A$ and each $n = 1, 2, \ldots,$

$$\mu(x_{-n}^*x_{-n}) = \mu(x^{*e_n}x^{e_n}) \leq \mu((x^*x)^{e_n}) = \mu((x^*x))$$

and hence $x_{-n} \in L^2(A) \cap A_{-n}$. Then by Theorems 3 and 4, x_{-n} converges strongly to an operator $x_{-\infty}$ in $L^2(A) \cap A_{-\infty}$ which is also a limit in L^2 -mean,

where $A_{-\infty} = \bigcap_{n=1}^{\infty} A_{-n}$. This implies the Theorem of von Neumann:

THEOREM 5. For any $x \in L^2(A) \cap A$, $\{x^{\epsilon_n}\}$ belongs to $L_2(A) \cap A_{-n}$, and converges strongly as operator on H and in L^2 -mean to an operator $x_{-\infty}$ in $L^2(A) \cap A_{-\infty}$.

Put $x^{\epsilon} = x_{-\infty}$ for $x \in L^2(A) \cap A$. Since $||x^{\epsilon_n}||_2 = ||x_{-n}||_2 \leq ||x||_2$, we have (20) $||x^{\epsilon}||_2 \leq ||x||_2$ for every $x \in L^2(A) \cap A$. While for every $x, y \in L^2(A) \cap A$, $x^{*\epsilon} = \lim x^{*\epsilon_n} = \lim x^{\epsilon_n*} = x^{\epsilon*}$ and

$$(x^{\epsilon}y)^{\epsilon} = \lim_{n \to \infty} (x^{\epsilon}y)^{\epsilon_n} = \lim_{n \to \infty} x^{\epsilon}y^{\epsilon_n} = x^{\epsilon}y^{\epsilon} = \lim_{n \to \infty} x^{\epsilon_n}y^{\epsilon} = (xy^{\epsilon})^{\epsilon},$$

where the limit is that with respect to the weak operator topology, and for every $x, y \in J$

$$\mu(x^{\mathbf{e}}y) = \lim_{n \to \infty} \mu(x^{\mathbf{e}_n}y) = \lim_{n \to \infty} \mu(xy^{\mathbf{e}_n}) = \mu(xy^{\mathbf{e}_n}).$$

The linearity and idempotency $(x^{\epsilon\epsilon} = x^{\epsilon})$ of the mapping $x \to x^{\epsilon}$ (defined on $L^2(A) \cap A$) are clear. Since $L^2(A) \cap A$ is dense in $L^2(A)$, by (20) it is uniquely extended on the whole space $L^2(A)$. Further, 'since $x^{\epsilon} = x$ for every $x \in L^2(A) \cap A_{-\infty}$, $x \to x^{\epsilon}$ satisfies the condition (2') in Corollary 1.2. Therefore, we obtain

COROLLARY 5.1 The mapping $x \to x_{-\infty}$ ($x \in L^2(A) \cap A$) is uniquely extended to the conditional expectation $x \to x^e$ relative to $A_{-\infty}$.

From Theorem 5 and this Corollary it follows that for every $x \in A$, $I^e x_{-n}$ converges weakly to the x^e , I^e being the maximal central projection in the W^* -subalgebra $A_{-\infty}$ of A.

References

- R. R. BAHADUR, Measurable subspaces and subalgebras, Proc. of Amer. Math. Soc., 6 (1955), 565–670.
- [2] J. DIXMIER, Formes linéaires sur un anneau d'opérateurs, Bull. de la Soc. Math. de France (1953), 6-39.
- [3] J.L DOOB, Stochastic processes, New York, 1953.
- [4] H A. Dye, The Randon-Nikodym theorem for finite rings of operators, Trans. Amer. Math. Soc., 72(1952), 234-280.
- [5] E. L. GRIFFIN, Some contributions to the theory of rings of operators, Trans. Amer. Math. Soc., 76(1954), 471-504.
- [6] I. KAPLANSKY, A theorem on rings of operators, Pacific. Journ. of Math., 1(1951), 227-232.
- [7] S.C. MOY, Characterizations of conditional expectation as a transformation on function spaces, Pacific Journ. of Math., 4(1954), 47-65.
- [8] M. NAKAMURA AND T. TURUMARU, Expectations in an operator algebra, Tôhoku Math. Journ., 6(1954), 182-188.
- [9] J. VON NEUMANN, On rings operators, III, Ann. of Math., 41(1949), 94-161.
- [10] I.E. SEGAL, A non-commutative extension of abstract integration, Ann. of

Math., 57(1953), 401-457. [11] H. UMEGAKI, Conditional expectation in an operator algebra, Tôhoku Math Journ., 6(1954), 177-181.