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0. In [3] H. Zassenhaus has given a determination of the irreducible
representations of a nilpotent Lie algebra 8 over an algebraically closed
field K of characteristic p > 0 as follows. For each ordered set (λj, λ2, ,
\n) of elements of K, there exists one and only one equivalence class {U} of
irreducible representations of 8 such that λ* is the unique eigenvalue of
U(xt), where Xι,x2, xΛ is a regular base of 2. Recently, in [1], replacing
the set of scalars by the set (/Ί, ,/») of irreducible polynomials, C. W.
Curtis has proved that for each set (fu ,fn) there exists an equivalence
class {£/} of irreducible representations of S such that the minimal poly-
nomial of U(Xf.) is a power of fi} when K is an arbitrary field of character-
istic p > 0. But generally the uniqueness of the existence of the class does
not hold in Curtis' case. In this paper we shall give an answer to the
problem of the one-to-one correspondence in his case and at the same time
we consider this problem in the case of soluble Lie algebras over an
arbitrary field K of characteritic 0.

The author wishes to thank Professor T. Tannaka and Dr. C. W. Curtis.

1. We begin with some elementary results. Let S be a Lie algebra over
an arbitrary field K with a basis xλ, x^, . . . . , xn, and let 21 be the universal
enveloping algebra of 2. If we imbed the vector space 8 into %, we obtain
a basis x\Ύ x? tf*, et ;> 0 of 2ί over K, where x\x?z Λ£ = 1. Then we have
a natural one-to-one correspondence between the representations^ of S and
those of 2X, which is described as follows. To any representation U of 2,
we may correspond the representation Uf of 21 defined by Uf(pct) = U(Xt) and
Z7'(l) = E, i = 1, . . . . , n, where E is identity transformation. In the following
we identify U with U'.

Let U be an irreducible representation of sίl with the representation
space II. For any non-zero element u of U, we have u £7(21) = U. Let 3 be
the right ideal of % which consists of elements a such that u U(ά) = 0, then
we have the difference group 21 — 3 of 21 by the maximal right ideal 3 and
the right 2Ϊ-module 21 — 3 is of finite dimension over K. Let us denote by 9t
the set of all elements a € A such as 2lαcS. Then 9ΐ is the largest two-
sided ideal of 2ί contained in 3s- We shall call 9Ϊ the quotient of ξ$ relative
to 2ί.

These definitions give us

LEMMA 1. Let Qi and % be a right ideal of 2ί and its quotient relative
to 2ί, / = 1,2. If two %-modules 2ί — QΊ and 21—^2 are isomorphic, then
% = 9Ϊ2. Further, if % is a two-sided ideal, i = 1,2, then ^v = <$a.

1) In this paper we consider the representations of finite dimension only.
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LEMMA 2. If a right ideal 3 of % contains [2, 8], then $ is a two-sided
ideal and 31/3 is commutative ring.

PROOF. Let Xι,xif xr, ,jc»bea base of S such that xu — ,xr span
[8, 8]. We write (£ = [8, 8] 2X. Every element of (£ is expressed in the form

2 L i Xiaι> w h e r e <*t € 2ί. For j > r, x3 2 =i ^ C Σ -i X'*JA + 2 i - i to.*d M

cz S. This means 2ί(£ cz (£. Therefore S is a two-sided ideal and 91/S is com-
mutative ring. It is easy to see that Q is a two-sided ideal and 2l/3ί is
commutative. q. e. d.

LEMMA 3. Let 8 £g <z« n-dimensional Lie algebra over K. If the dimension
of [8, 8] is r, then the polynomial ring K[XX, , Xn-Λ and the ring 21/K are
isomorphic, where S is the two-sided ideal [8, 8] 21.

PROOF. Let xlf . . . . , xr, ,xn be the base of 8such that x1, ...., xr span

[2, 8]. Then a = 2 α<i β» **ί *£n i s contained in (£ if and only if for every
oLei...en =ί= 0, there exists the positive integer s^r such that £i = eλ = . . . . =
^ s_x = 0, and ^5 Φ 0. In fact, take monomials of the form xfι . . . Λf.r #£n,

/ < r, and suppose that for i <j<^r and 5 = 2&»ί e^^t — 1, we have straight-

ed the element #;*f« ^ Λ£» into the required canonical form. Then

in the case of s = t, we obtain XjXe

i{ xfr = XiXjύp-1 Λ:;» + 2 f c =i Tjί^fc^"1

Λ̂ « where 7^'s are structural constants of 8. Now here we may apply
the assumption of induction. Since every element of S is expressed in the

form 2 ί - i Xi ' ai> aι ^ S >̂ w e m a y r Pr^ve the necessary condition. The inverse
is trivial.

Now let 9 ? b e a homomorphism of K[Xh -,-Xn-J into 21 — & defined
"by φ{Xt) = ΛΓr+ί + S, i = 1, n — r. Then since every non-zero class modulo

S has such a representative as ^ocer^...enx^rff Λg», φ is onto-homomor-

phism. And it is easily seen that if for some f(Xτ, , Xn-r) € K[Xh ,
Xn-rl φ(f(Xl, , Xn-r)) € &, f{Xh , Xn-r) = 0. Thus φ IS OntO-lSOmOr-
phism. q. e. d.

The Corrollary of TheDrem 3 and Theorem 5 of [2] have the following
consequence.

LEMMA 4. If 2JΪ is a maximal ideal K [Xlt , Xs], there exists a chain
mλ c=2JΪ2 c . . . .cz Ws = 3K where 5K£ = » n ^ [ * . . . . , X ] ί's « maximal ideal
of K[Xι, ....,-Xi], / = 1.2, ....,s.

We shall call the chain 9}ί-chain associated with the maximal ideal 90ΐ.
Now we shall prove the lemma which is obtained from the proof of

Theorem 1 of Curtis [1].

LEMMA 5. Let 2 be a nilpotent Lie algebra over an arbitrary field K and
U and V be two irreducible representations of 8. If for each x £ 8, U{x) and
V(x) have the same eigenvalue <x(x), then these two representations are
.equivalent.
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PROOF. Let K be an algebraic closure of K and let U and V be the

scalar extensions of U and V from K to K, respectively. Let m and n be

the degrees of U and V. Then we have a representation Ί\x) = Z7(#) ® En

— Zs7Λ ® F(#)* where En and Z?m are identity matrices of degree m and nr

respectively, and V(xJ means the transpose of V(x). Let U and 33 be the

representation spaces of U and V, then there exist non-zero vectors u € Ilk

and υ € $£ such that uU(x) = WΛ(ΛΓ) and t;F(Λ)f = z α(Λr). Then we have

(u®v)f{x) ^{u®v) U(x) ® En -(u®v)Em® V{xJ = «£/(*) ® zΓ- w ® (t;F(*)f>

= 0. This means zero is an eigenvalue of T(x) and det T(#) = 0, for x G Lk

Since iΓ is infinite field, there exists a non-zero vector w € (£/> ® V~κ) = (ί/

® F)^: such that MJTXΛ) = 0 for all x € Sjv (cf. Proposition 2 of [1]). If we

write w = 2^ίλί, λ* € iζ where Wi ζ U ® 33 and λ? 's are linearly independent

over if, we have wΓO) = 2 ^^ T"(x)λι = 0, for all x € S, and hence wtT(x)
= 0.

Thus we may find a non-zero element to of U ® 93 such that wT{x) = 0, for

all Λ: £Ξ S. We write zi; = 2 (wi ® ^) (wii) where u's and z 's are bases of U

and 33. The simple calculation yeilds U{x) W — W V(x), for all x € S, where
W is the matrix (w^)- Since U and V are irreducible, U and V are equi-
valent, q. e. d.

2. In this section we shall consider a soluble Lie algebra S over an
arbitrary field K of characterestic 0. Let $ be a maximal right ideal of 91
such that the dimension of 9ί-module 91 — $ is finite. Then, since by Lie's
Theorem any irreducible representation of S is abelian, [S, S] cz 9i cz $ where
9Ϊ is the quotient of 3 relative to 9ί. So by Lemma 2 Q is a two-sided ideal
and 2ί/3? is a (commutive) field Kf which is finite (algebraic) extension over
K. Writing K = K if the irreducible representation £/ is trivial, we obtain
the field K! which is uniquely determined by the irreducible representation
U.

Then we have

PROPOSITION. Let 8 be a soluble Lie algebra over an arbitrary field K of
characteristic 0, let D be a derivation of 2, let x -> U(x) be an irreducible
representation of S with the representation space U such that U(D{2)) = 0,
and let f(X) be an irreducible polynomial in K'[X\ where K' is the field deter-
mined by U as mentioned above. Then, there exists exactly one equivalence
class {W} of irreducible representation of the semi-direct sum*> 2 + K D with
the representation space 2ΰ and a one-to-one linear transformation SofU intσ

2) The semi-direct sum L+K D is the Lie algebra whose underlying vector space is
the direct sum of vector spaces L and K D, and in which the bracket multiplication
is defined by the formula [x+ctD, x' + arD]=lx> xr]+atD(x)—Q}D(xf)7 x, x '€L,
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SB such that U(x) S = S W{x) for all xe2 and AX) is an irreducible factor of

the minimal polynomial of W(D) in K'[X].

PROOF. Let 2ί be the universal enveloping algebra of 2. If xlf x2, , xn

is a basis of 2, then the standard monomials x[ιx?* xfrD*, eι>0, </>:0
form a basis of the universal enveloping algebra 5Γ of 2 + K D. Let 3 be
the maximal right ideal of 2ί such that 2ί-module 91 — 3 induces U. We may
suppose that U = 3ί — 3 and U{x): u + 3 -> ux + 3, for x € 2. Then 32Γ is a
proper ideal of 2Γ. In fact, every element a of 2ί' can be expressed uniquely

in the form a = 2 * ' ^ *' ^ ^ where if a € 3 9ί', then <z{ € 3 If 32Γ =
SI', then the identity 1 is contained in 39ί' and 1 = 2 ««^> *« ^ θ There-
fore 1 = ao€ 3, contrary to the fact that 3 is proper ideal. From U(D(2))
= 0, we have D(2) c: 3 and [2 + A 2 + D] d 3 . By Lemma 2, 321' is a two-
sided ideal of 2ί' and 9ί//35ί/ is commutative. The mapping φ: 2 a D l +

031' ->φ(Σ a*D + 0 5ί') = 2 (*< + 0) ^ ' gives the isomorphism of 3ί' - 33ίr

onto (2ί — 3) [Ό] = K? ID]. Thus we have a one-to-one correspondence between
maximal ideals of 5f which contain 3 ^ and maximal ideals of K'[D]. Let
3 ' be a maximal ideal of 2ί snch that φffl) = (/(/))). It is easily seen that
the dimension of the SΓ-module 2173' over K is finite. Since 3 c: 3ϊί r c 3 r

5

3 c 3 7 fl 21. But 3 r Π 5ί is a proper ideal of 21 and 3 is maximal, 3 ' Π 2ί

Define 9S = Sί'/^ and W(x); w + $'-^wx+ Q'. Since Q* Π 3ί = 3, the
mapping S: w + 3 '^"^ + 3ί/ is a one-to-one linear transformation of II into
SB such that U(x) ~S = S W(x), for ΛΓ€ 2.

Since 3 r is the two-sided ideal of 21', the quotient 9ΐr of 3 ' relative to 2ί'
coincides with 3 ' Let fo(X) € -βTXl be the minimal polynomial of W(D).
Then /o(D) is the polynomial of the least degree in K[D] f| 3 ' Therfore
fo(D) = ^(/i(D) 4- 031') € (/(£>)) c: ^ [DJ, and f(D) is an irreducible factor of
fo(D) in ^[D] q. e. d.

By Lemmas 1, 3 and theorem of Lie, we have

THEOREM 1. Let 2 be a soluble Lie algebra over an arbitrary field K of
characteristic 0. Then there exists a one-to-one correspondence between equi-
valence classes of irreducible representations of 2 and maximal ideals of the
polynomial ring K[XX, :-..... Xs] where s is the dimension of 2/[2, 2] over K.

Further

THEOREM Γ. Let 2 be a soluble Lie algebra over an arbitrary field K of
characteristic 0, let x1} ,xs, . . .., x* be a base of 2 such that xs+1, ....,xn span
[2, 2J, and f{Xt) be an irreducible polynomial in Kι [X(] defined inductively such
as KΊ = K and K, = /£ -i [Xi-ι]/(fi-ι(Xi-ι)). Then there exists a one-to-one
correspondence between equivalence classes {U} of irreducible representations of
2 and such sets (f, , /,), and if U corresponds to (A, , fs), fi{X) is an
irreducible factor of the minimal polynomial of U(xt) in K[X]t i = 1, s.
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PROOF. Let Si be the ideal of S spanned by xu Xtt xs+ι, , Xn. Let 2ίf

be the universal enveloping algebra of 2ί, i = 1,2, . . . . , s. Then we may
suppose that 2i* c:2l,+1. By Lemma 3 we have an isomorphism φ of K[Xt,
. . . . , X] onto 21 - β such that φ(Xt) = Xι + <£ where & = [8, S] 31.

Let U be an irreducible representation of S and let 3 b e a maximal
right ideal of 2ί such that the 2l-module 21 — $ induces U. By Lemmas 1,2
and Lie's theorem, -3 is the two-sided ideal determined uniquely by the
equivalence class {£/} which contains U. We write 9JΪ = φ'KS)- Let 5Dii d 9)ΐ2 a
.... d 9Jis = 2Jί be 2JΪ-chain (cf. Lemma 4). Then we obtain a set (fu ...., /,)
as mentioned in the theorem. We prove this by induction. We write φ f =
5Qlr-i K[Xti , Xt], t = 2 , 3 — s. Let σr be the natural isomorphism of

K[X1} ....,X]/$r onto (ΛΓ[X, ....,X-i]/2R*-i)[X] defined by σt ( 2 β , X ί + %)

= 2 («* + 3R<-ι)X fo r OM € ΛΓ[XΊ, .., Xt-il t = 2, . . . . , s. At first we have
the irreducible polynomial fι(Xλ) € K[Xi] such that .(/Ί(.XΊ)) = 501̂  and let τi
be the identity automorphism of ΛΓι[XΊ]/(/ι(Λ!Ί)) = ̂ 2. Assume that we have
constructed the natural isomorphism τt of K[XU XtVΦi onto iζ[Xj and
the irreducible polynomial fi{Xt) such that τf(2Jl£) =/<(jfί)) for ί = 2,

/ — I. Then, let τt-\ be the induced isomorphism of K[Xh , Xt-iM^Ht-i
onto Kt-ι [Xt-i]/(ft-\(Xt-\)) = -Ki, and we have the required isomorphism

Tί = τr_ι<Γί of /?[Xτ, , X]/^βί onto ϋΓr[Xt] and the irreducible polynomial

ft(Xt) € Kt[Xt\ such that τt{Tlt) = (Λ(X)). The set (A,...., A) determined

uniquely by 2Jί is called 2Ji-set associated with 2JΪ. If 7Ϊ(X) = 2 α * J ̂ ; ̂  ^ M

is the minimal polynomial of U(Xt), i = 1, 2, , s, then /K̂ «) € 3- Therefore
φ'KMXt) + «) = Λ(X) ̂  3K Π K[Xl9 . . . . , X] = TO, and τ,f/7(X) + ?Jι) = /KX)
€ (fi(Xi)). This means that /i(-X̂ ) is an irreducible factor of the minimal
polynomial of U{od) in Kt[X\.

Conversely, for a given set (fx, , fs), there exists only one maximal
ideal 2Ji of K[Xh . . . . , X} whose 9Jί-set is the given (fu /,) (cf. Proof of
Proposition 1). Writing 3 = φ^ΰl), then we obtain a required equivalence
class of the irreducible representations of S which is induced by 21/$. q. e. d.

3. Let S be a nilpotent Lie algebra over an arbitrary field K of cha-

racterstic p > 0. It is well known that any nilpotent Lie algebra has a regular

base Xι, x2y ...., Xn such that, whenever i < j, [xi} Xj] £ 2 f c =i ^ * ^ n t m s sβcti011

we use a regular base only. There exists a positive integer r such that

yt = Λ^ is contained in the center of the universal enveloping algebra 21 of

S. We write 33 = K[y1} ,yn] and © = 2 (βi,....,en)ψo (mod p ^ ^ i . . . .aj where

(βi, ,e«)Φ0 (mod ̂ r) means that there exists i <Ξ w such that β< $ 0 (mod.
ίO Then we have 2ί = 33 + ©, S3 fl © = (0) and 33© = ©33 cz ©. Every element
« C 2ί has its unique expression α = Z*(α) + S(a), B(ά) € 33, S(β) € ©, where
B and S are linear transformations of 2ί onto 33 and © respectively. Then
we have
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LEMMA 6. For a maximal ideal ® of 33, there exists a maximal right ideal
S of % such that S f] S3 = ®.

PROOF. ®3ί =f= 31. In fact, if S 31 = 31, 1 = ^can where c* € S, at € 31.

Then 2 CM = 2 *βfo) + 2 *S(βί) = 1. Therefore, 1 = ^ctB(at) € ®,
•contrary to the fact that (£ is proper ideal of 33. Since the dimension of the
31-module 31 — &3ί is finite, there exists a maximal right ideal S such that
S ID S. On the other hand, since S does not contain 1, $ Π 33 is proper and

3 n » = e. q.e.d.
LEMMA 7. £e£ & be a maximal ideal of 33. // £/te/£ <zr£ /wo maximal right

ideals Si and S* of 3ί such that Si (] 33 = g, ι = 1, 2, ffte/i fM O %-modules 31 - 3,
«wfi? 3ί — $2 ere isomorphic.

PROOF. Let Ut be irreducible representations of 8 induced by 3I-module
31 - 3?,, for i = 1, 2. Since (33 -h Q) - 3f, ^ 33 - g, / = 1,2, the two represen-
tations £/*(»)!(» + 3?0 — 3i and *7*(33) | (23 + &) - $ 3 of 33 are equivalent,
where the notation | means restriction of UΊ to the submodule (33 + Si) — θ<

Όf 51 - cjf> i = i? 2. Let ^ be the algebraic closure of K. Then f/i(33)|((35 +
Si) - Sι)~κ is equivalent to £73(33)| ((33 + 3a) - $2)* where Ut and ((33 + Si)
— 3i)ΐc mean the scalar extensions of Ui and ((S3 + Si) — Sd from ϋΓ to /£

There exists indecomposable component 3Si of ((33 + Sύ — Sdk, i = 1,2, such
that ί/1(33)|3Sι is equivalent to Z%(33)|932. Then, for y € 33 we have the same
unique eigenvalue a(y) of £7iO0|33* ί = 1,2. (cf. Theorem 1 of [1]). The module
3Sί = 3S«L?i(3ί) is an invariant submodule of (31 - Si)k, i = 1,2. Since £τ7(33) is
central there exists a positive integer R such that \%Ui(W) (Ui(y) — a(y))E = 33#
{Uι{y) - a{y))R U(%) = 0, i = 1,2. Let TΓ«(3l) be an irreducible constituent of
Ui(%)\% with the representation space 2& which is a submodule of %.

Then SSBι(t7i(«,) - oKy^)''* = aft (ΪΛζyj) - α(Λ))κ = 0, for * = 1,2, and / = 1,

2, ....,«. This means that a(yι)pr is the same unique eigenvalue of

Z7i(#j)|2B<, z = 1, 2,y = 1, 2, , n. Since #1, , xn is a regular base of 8, by

Zassenhaus' theorem, CΛ(3ί)|3[Bι and ^(31) 13B2 are equivalent. Therefore for x

€ S, Uι(x) and C/2(ΛΓ) have the same eigenvalue. The application of the Lemma
•5 yields that these two irreducible representations are equivalent. q. e. d.

LEMMA 8. Let Si be a mamimal right ideal of 31 such that the %-module
31 — Si ^ of finite dimention, let & be a maximal ideal of 33 which contains
S\ Π 33 and let S* be a maximal right ideal of 31 which contains (£. Then two
%-moduϊes 2ί — 3Ί and 31 — S* are isomorphic.

REMARK. For the right ideal $i there exist (.(£ and S>i a s mentioned
above.

PROOF. Since (SB + &) - & s S - «$ι Π 33) and (33 + <Ja) - 3 2 s 33 - g,
•the representation £7Ί(33)|(33 + ^ I ) — θι has an irreducible constituent which
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is equivalent to Z72(33)|(23 + %) — 3a. Since irreducible constituents of inde-
composable 'component of £7i(33) | (33 + $0 — $ x are equivalent, there exists
a submodule 6 of (33 + $0 •- ^ such that tΛ(33)|<£ is equivalent to C/2(39)|(»
+ 3d — %• The argument which we have developed in the proof of Lemma

6 gives Lemma 7. q. e. d.
If 3f, and % are right ideals of SK such that 91 - % = ?ί - 3k, we have

9ίt = 9ΐ2 where % is the quotient of $« relative to 9ϊ (cf. Lemma 1). Since
5ΐ£ is the largest two-sided ideal of 91 contained in &, Si n S3 c (3* Π®) 91 c 9ΐ*
and 3fι fl 33 c % f| 33. But since % d & and 9lx = 9ί2, we have ^ Π 33 =
$ 2 Π 33.. Therefore applying the Lemma 8, we have

LEMMA 9. If S is a maximal right ideal of 2ί such that the dimension of
^[-module 3ί - 3 is finite, 3 f] 33 is a maximal ideal of 23.

The Lemmas 7 and 9 have the following consequence.

THEOREM 2. Let S be a n-dimensional nilpotent Lie algebra over an
arbitrary field of characterstic p > 0. There exists one-to-one correspondence
between equivalence classes of irreducible representations of S and maximal ideals
of polynomial ring K[XΎ, X2, .. .., X,].

Further

THEOREM 2'\ Let S be a nilpotent Lie algebra over an arbitrary field K
of characteristic p > 0, let xh x2, . . . ., xn be a regular base of S and let ft(Xt)
be an irreducible polynomial in Ki[Xt\ defined inductively such as Kι = K and
Kι = Ki-λ [-Xi-i]/(̂ -i(-Xi-i)) for i = 2, , /?. Tfow £&£/-£ exέsfs a one-to-one
correspondence between equivalence classes {U} of irreducible representations of
S and such sets (fu ,fs) and if U corresponds to (Λ, ,fs)3fi{X) is an

irreducible factor of the minimal polynomial of U(xf) in Ki[X] where r is a

positive integer such that xL

p is central in the enveloping algebra of 2.

PROOF. By Lemmas 6 and 7 we may consider maximal ideals of 35. The
argument which has been developed in the proof of the Theorem V runs in
this case, too. q. e. d.

Here is an example of two irreducible representations of Lie algebra
which are not equivalent and correspond to the same set of irreducible
polynomials in the sense of Curtis' Theorem 2 of [1].

EXAMPLE. Let K be a field which does not contain */% and let S = Kxx

+ Kxz be a two-dimensional abelian Lie algebra over K. Then two represen-

tations U(xι) = (J ly i = 1, 2 and V(X:) = g §), V&) = ( _ J ~" §) are ir-

reducible and not equivalent. The irreducible polynomial Xz — 2 is the

minimal polynomials of Ufa) and Vfa), i = 1, 2.
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