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H. Busemann [1] dealt with a metric space called a G-space. If a G-space
© is of dimension 2, then we can generally define an angular measure Ψ
[§ 1]. In this note, we define a function F on figures of © which will be
called the excess function [§ 2]. When the angular measure Ψ is continuous
and the function F is of bounded variation, we define the Gaussian curvature
in the general sense which will be called the generalized Gaussian curvature
of © [§ 2]. If © is a G-space with constant curvature in H. Busemann's sense,
then the angular measure φ is introduced [5], [§ 3]. If the excess function
F defined by means of the angular measure Φ is of bounded variation, then
(3 is a G-space with constant generalized Riemannian curvature [§4]. The
main purpose of this note is to show that Gauss-Bonnet's theorem holds in (3
and all G-spaces with constant curvature are divided into three classes ac-
cording as its generalized Riemannian curvature is positive, zero, or negative.

1. In a metric space points will be denoted by small roman letters and
the distance between two points x and y by xy. According to H. Busemann
[1 § 4] the axioms for a space S to be a G-space are the following :

A. @ is metric with distance xy.
B. ($ is finitely compact.
C. (S is convex metric.
D. Every point x of © has a neighborhood S(x, a(x)) ( = {y\xy < a(x)})

(a(x) > 0) such that for any positive number £ and any two points a and
b in S(x, a(x)) there exist positive numbers St(^β) (i = 1,2) for which a
point a± with da + άb = aφ and axa = δi and another point b\ with ab + bbi
= abt and bbi = δ2 exist and are unique.

For any two points x and y, the axioms A, B, and C guarantee the
existence of a segment T(x, y) from x to y (or T(y, x) from y to x) whose
length is equal to the distance xy. The prolongation of a segment is locally
possible and unique under the axiom D. The whole prolongation of a segment
is said to be an extremal. An extremal ι has a parametric representation
x(τ), — o o < τ < + o o , such that for every τ0 a positive number £(τ0)
exists such that xirMr-y) = |τ 2 — τL\ for \n — τo[ <Ξ £(τ0) (i = 1, 2). The ex-
tremal £ is said to be a straight line, if its parametric representations
have the property: #(TI)#(T2) = |τ 2 —τi | for any two real numbers τι and
τ2. If every extremal is a straight line, then (S is said to be a straight line
space.

In [1 § 4] the number ηκ(x) (λ i> 2) and the term "direction" were intro-
duced. ηx{x) is defined as the 1. u. b. of those β for which every segment
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with end points in S(x4 β) is a cocentral subsegment of a segment of length
\β. V\(x) is positive for every point x and every number λ not less than 2.
The number η{x) is defined as min(?7ΰ(Λr), 1). Then η[x) is regarded as a conti-
nuous function of a point x. The segment T(a, b) of length η(a) is said to
be a direction with the initial point a.

2. Let © be a G-space of dimension 2 and /> any point of ©. Let & and
ϊa be two different half extremals issuing from £ whose parametric represen-
tations are given by #i(τ), O g τ < + oo, and Λa(τ), 0 < r < + o°, respectively.

Then S(p, η{p)) is divided by the directions Xι{τ\ 0 <Ξ T <Ξ ^φ), and ΛΓa(τ), 0 2
T Ξ£ *?(£), into two sectors Di and Όt. Similarly S(p, 2η(p)) is divided by #i(τ),
0 ί j r <J 2η(β), and ΛΓ̂ T), 0 <; T < 2?7(/>), into two sectors D[ and D2. We assume
DiCzDKi^ 1,2). Then only one of D̂  and ZX contains all segments T(x,y)
with # € E[*i(τ), 0 £ τ £ ^( ί)] 0 and ^ € E[x£τ\ O g τ g *?(̂ L unless ι:x and ^
are opposite. Let Dx be such a sector. Then D[ is called a convex sector
andZ)2 a concave sector. The segments Xι(τ), O ^ T ^ ^ A are called the
legs of Di{i = 1, 2). S(^, η{p)) is said to be the normal neighborhood of p.

At a point >̂ an angular measure Ψp is defined as a function on the

set of all sectors of S(p, v(P)) which fulfills the following conditions 1°, 2°,
and 3°.

1. ΨP(D) > 0 for any sector D.
2. ΨP{D) = 7r, if and only if the two legs of D are opposite.
3. If two sectors DL and D2 have only one common leg but have no

common part, then Ψp{Dι) + ΨP(D2) = Ψp(Di + D2).
In such a way angular measure Ψj, is defined at every point p of ©.

Then we denote by Ψ the function ΨP. The function Ψ is said to be an angular
measure on (S. It is easy to see that Ψ{D) = 0, if and only if D is a segment.

Let p be a point of © and {/>„} any sequence of points which converges

to p. Let Dv be any sector of each S{pV) η{pv)) such that Fl̂ +oo Dv = D2). If
lim,,̂ +oo Ψ(DU) = ^(JD), then the angular measure ΛF is said continuous at £.

A triangle abc is said to be normal, if the vertices a, b, and c are not
collinear and the normal neighborhood of each of these vertices contains the

others. Let D be the convex sector of S(a, η'κd)) whose legs contain the
segments T(a, b) and T(a, c). Then Ψ(D) is called the inside angle of the

A A A A

triangle abc at a and denoted by bac (or cab). Similarly abc and acb are
defined. From the definition of normal triangles we see that each inside
angle is less than TΓ. It is also easily seen that the angle between two
segments Tip, a) and Tip, b) is defined. We denote it by apb.

To define the excess function F, we put
A A A

F{σ) = bac + cba + acb — π
for a normal triangle σ( = abc). Then F is a function on the set of all

1) E[xι{r)y O^T^ηip)] means the set of all points of the segment xi(τ), 05Ξr^
We use the same notation for half extremals and extremals.
2) Fl means the closed limit introduced by Hausdorίf [1], [4]
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normal triangles on ©. It is easy to see F(σ) < 2π for every normal triangle
on ©. We assume that F vanishes for empty set. The following property
of the function F is clear from the definition.

(2.1) If two normal triangles σλ and σ2 are non-overlapping, namely
•<τ\σz — σxσ\ = φ 3 ) and σ\ + <r2 is also a normal triangle σ3, then

F(σ-:) + F(<r2) - F(σ 3).

A set which is expressible as the sum of a finite number of non-overlap-
ping normal triangles is called a figure.

(2. 2) If a figure R is expressed as the sum of a finite number of normal

triangles in two ways 51 , <rt and 5 ! <r's, then the relation

i - l ί=l

holds and this common value is given by

F{R) = 2πX(R)'- πX(R') - X(π - Vi),

where R' is the boundary of R, X(R) and X(Rf) the Euler characteristics of
R and R respectively and vt the angle at each vertex at measured in R.

(2. 2) easily follows from a result obtained by S. Cohn-Vossen [2] for a 2-
dimensional Riemannian surface.

From the above the function F is regarded as a function on the set of
all figures on ©. F is said to be the excess function on ©. In a 2-dimensional
^Riemannian space F(R) is the total curvature of a figure R.

On a figure i? the upper and lower variations of the function F are

denoted by W(F R) and W\F; R) respectively. The total variation W(F; R)
+ \W(F; R)\ is denoted by W(F; R). If W(F; R)< +00 for any figure R on

©, then the function F is of bounded variation on © and we have by Jordan's
Decomposition Theorem

(2. 3) F(R) = W^F; i?) + ΪF(F; /?) for every figure R.

If © is a 2-dimensional Riemannian space, then by Gauss-Bonnet's Theorem
F is absolutely continuous.

(2. 4) THEOREM. If the angular measure Ψ is continuous and the excess
function F is of bounded variation on ©, then F is continuous at every point.

PROOF. At first we prove that the absolute variation W(F; R) is continu-
ous.

Suppose that W(F; R) is not continuous at a pointy. Then a positive
number £ and a sequence of normal triangles {σv} which tends to p exist
such that

W(F; σv)>£ for each v.
We shall show that it is possible to define a sequence of non-overlapping

figures {Rv} such that

3) The interior of a set X is denoted by X°.
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(2.5) p^Rv and \F{RV)\ > 6/2 for each v.

The normal triangle στ clealy CDntains a figure Rι such that \F(Rι)\ >
S/2. If Ri Ίϊp, the figure i?t satisfies the condition (2.5). If Rι ^ p, then by
choosing a suitable triangle σ[ we have a figure Rλ& σ[( = (Rι — c^)0) such-
that Rι θ σ j 3 /> and |F(/?iθσί)| > £/2 since the angular measure Ψ is
continnous. The figure Rι ( = (/?! θ σί)) satisfies the condition (2. 5).

Suppose that the figures Rι,R>, ...., and Rv have already been chosen-
and let σ\ be the first normal triangle of {σv} which does not overlap any
of the figures RL, R2, . . . . and Rv. In the same way as in the above we can
see that σ\ contains a figure Rv+ι which fulfills (2.5). Thus we have a.
sequence of figures as described in the above.

Let R be a figure such that RZDRV for each v. Then we have
n n

W(F; R) ̂  2 W(F; #") > 2 \F(Kv)\ > nε/2-

But this contradicts to the fact that the function F is of bounded variation.
From this it follows that the upper and lower variations are continuous..
Hence, by virtue of Jordan's Decomposition Theorem, (2. 4) is proved.

When the function F is of bounded variation, we denote by F* the-
additive function of a set induced by F. Then the following (2.6) is obvious-
(See [3 Chap. Ill, § 6]).

(2.6) Under the assumption of (2. 4) F*(R) = F*(R°) = F(R) for every figure-
R on ©.

For any subset X of © the 2-dimensional Hausdorff measure μ(X) is
defined0. We assume that the 2-dimensional Hausdorff measure of every
bounded set is finite. Then we have by Lebesgue Decomposition Theorem
and Radon-Nykodym's Theorem

F*(X) =

where A" is a Borel set, T* the function of singularities of F*, and 1/k an.
integrable function uniquely determined at almost all points on ©. Putting
T*(#) = T(R), we have by (2. 6)

F(R) = T(R) + J -j

The function 1/k will be said the generalized Gaussian curvature of ©. If
the function F is monotone, then F is non-decreasing or non-increasing:
according as F is non-negative or non-positive. Hence we have

1 Λ Λ Λ

—dμ(x) <Ξ hoc + cba + acb — π or

4) Let X be any subset of S and, for a given ε, Λ the class of all countable cover-
ings 2 (Xι-X) with diamXί<ε. Then the 2-dimensional Hausdorff measure μ(X)
is defined as (τr/4)lim{inf 2 (diam Xt)*}.
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\ A A A

— dμ{x) > bac + cba + acb — π
k

σ

ίor every normal triangle σ ( = abc) according as F is non-negative or
non-positive.

3. In this paragraph we study a G-space with constant curvature in
H. Busemann's sense. If in a G-space every point p has a spherical neighbor-
hood S(p, pip)) such that the bisector B(a, #')5) of any two distinct points a
and a! in Sip, p(p)) is linear6) in this neighborhood, then the space is said
to be with constant curvature.

In such a space ©, for every point p there exists a positive number 8(p)

>(5S(p) = S(p) < min(p(p), η(p)) which satisfies the following conditions [Ί § 15].
(1) The neighborhood Sip, Sip)) is homeomorphic to the interior of a

unite dimensional euclidean sphere (2) if the dimension of © is n (^> 2),
Sip, S(p))[]B(cι, d) {a, a! € Sip, hipj) is of dimension (n - 1) (we put Bp(a, a) =
Bia, a!) Π S(£, δ(£)) and call this a hyperplane) (3) Every sphere is strictly
.convex for 0 < a <; S{p) , (4) every point x of S(/>, δ(£)) has a unique foot / on
a hyperplane ## which intersects S(p, Sip)) (5) a mapping Ω,iBp) of S(£, δ(£)),
which is a motion, is defined as follows:

(a) x£liBP) = x for every point x€Bp, and
(b) if xζSip, Sip)) — Bp, the point x' ( = x£liBp)) is determined by Λ;/ = /Λ/

The mapping 12(2?*) is said to be the reflection of Sip, S(p)) with respect to
Bp. All G-spaces with constant curvature are divided into two classes as
follows [5]:

I. The class of G-spaces of Type I. If a G-space @ is of Type I, then
the universal covering space (S of (S has the following properties:

(1) Every extremal is closed (2) every extremal through a point p passes
through a unique point jf called the conjugate point of p every extremal
subarc from p to p' is a segment of constant length K (4) every sphere
with radius less than κ/2 is strictly convex (5) the bisector of any two
distinct points is linear and coincides with a sphere of radius κ/2.

II. The class of G-spaces of Type II. If a G-space & is of Type II, then

the universal covering space @ of 6) has the following properties:

(1) (S is a straight line space (2) every sphere is strictly convex (3)
the bisector of any two distinct points is linear and of dimension (n — 1).

On account of (5)i and (3)n, the bisector of two distinct points is said
to be a subspace of dimension (n — 1).

Let © be a G-space with constant curvature and of dimension 2. The
angular measure Φ is introduced as follows:

b) The bisector of two distinct points a and a' is defined as the set {x\ ax=a'x}.
6) A set E is said linear, if for any two points x and x' of E there exists a segment

T(x, x') contained in E.
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Let p be any point of © and a line7) qp through p intersect the circle
K(j?,δ(p)/2) at points a and ά'. The line Bp(a, a') is perpendicular8) to T(a,a')
at p. Let Bp(a, a') intersect K(p, B(p)/2) at points b and b'. Then the segments

T(a, a1) and T(b V) divide S(A δφ)/2) into four convex sectors <#£>, bpa',
a'pb', and £'/><2. For these sectors we put

ΦP(apb) = ΦP(bpά) = ΦP{dpU) = ΦP(Upa) = τr/4

Let J5p(β, £) intersect ϋΓ(£, δφ)/2) at points c and c' and £*>(</, 6) /£(£, δ(ί)/2)
at points d and GΓ. Then each of the above four sectors is divided by either
Bp(a, b) or BP{d, b) into two convex sectors. We denote these sectors by ape,
cpb, bpd', d'pd, dpd, c'pb', l/pd-snά dpa and put

Φp(apc) = . . . . = ΦP(dpa) = τr/8.

We continue this process. If we denote by A the set of points{<z, a' b, b' c, c'r
}, then the closure A coincides with the circle Kip, S(p)/2). For any sector

'apq, by taking a sequence of points {qv} {qv^A) which converges to q, ΦP (apq)

is defined as the limit of the sequence ΦP(apqv) (See [5] in details).
The function ΦP thus defined fulfills the conditions 1°, 2°, and 3° in § 2.

The definition of the function ΦP does not depend on any choice of the line
&,. In snch a way we define the function Φj, at every point p of ©. Then
we denote by Φ the function Φ ,̂. The angular measure Φ thus obtained is
invariant under the reflections with respect to lines.

In the remainder of this note, by means of the angular measure φ, we
study a G-space with constant curvature. For the angle between two segments

A

Tip, a) and T(p, b) we use the same notation apb as in § 2.
(3.1) THEOREM. The angular measure Φ is continuous.

PROOF. Let {pv} be a sequence of points which converges to a point p,
and put a = inf S(pv)/2. Then a is positive. Let Dv be any sector of each
S{pv, a) such that Fl Dv coincides with a sector D of Sip, a). Then the legs
Tw and Tλv of each Dv tends to the legs 7\ and T> of D respectively. Let
qiv be the end point of each Tίv and qι the end point of Ttii = 1, 2). Now we

prove linv>+oo qupvqlv = qφq*.
Obviously the sequences of points {#!„} and {_q2v} converge to the

points qλ and qλ respectively. Let each q!2v be a point on K{pv, a) such that
Λ A

QipppQ'iv = QiPQ-2- If w e choose suitably such points q'2v, then the sequence
of points {q'2v} converges to q2. Suppose that such points q'2v have been
chosen. Then there exists a positive integer N such that S(p, S(p))zDSipv, a)

A

for every v>N. Since the angles q'2ιpvqίV{v i> N) are invariant under the re-
flections with respect to lines which intersect S(p, 8{p)), it follows that, if

7) Let x and x' be two points on K(ρ,ί{p)). The open segment T(x,x')—x -x'
is said a line Qp.
8) A line Qp is said perpendicular to a set E a t a point /, if every point on gp
has / as a foot on E.
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for a positive number δ, N is sufficiently large, then (ί>vpvq2v < δ for every

v^N. Hence we have
Λ Λ

= \QWPVQ1V — Q\vPvQ'ιv\
Λ

^ QtvPvQiv < δ f o r every v^>N.

Thus the theorem is proved.
Making use of the angular measure Φ we define the excess function

F. Then, by (2. 4) and (3.1), we have the following :
(3. 2) If the excess function F is of bounded variation, then F is conti-

nuous.
Under the assumption of (3. 2), for any bounded subset X there exist a

positive integer M and a positive number δ0 such that every circular disk

S(p,y)(pζX, O < γ ^ δ o ) i s Covered by M Circular disks with radius 7/5.
Next we shall show this.

Let V be a bounded and connected open set which contains X. If we
put δ = inf B(x), then δ is positive. Let δ0 be a positive number not greater

J ί F

than δ. Let a line &> through p (€X) intersect a sphere K(p, 7) (0 < 7 < δ0)
at points a and d and Bp{a, d) K(p, 7) at points b and b'. Next divide T(a, d)
and Γ(£, £') into 24 parts of equal length adftk ( = W/24). If δ0 is sufficiently
small, then the lines perpendicular to T(a, d) and T(b,b') at points of the
subdivisions form the net composed of 24a quadrilaterals Pi {i = 1, 2,
242) such that each Pi is covered by a circular disk with radius 7/5. This is
clear from the continuity of the function F.

For any circular disk S(#, δ0) (q^X) there exists the combination of finite
number of reflections with respect to lines by which Sip, δ0) is carried onto
it. Hence if we put M = 24J, then M and δ0 are tae numbers which fulfill
the condition described above.

Let E b e a set contained in a neighborhood S(x, δ(#)). The parameter of

regularity y(E) of E is defined as the uppar bound of the number μ(E)/μ(S),

where S denotes any circular disk containing E. Let {Ev} be a sequence of

closed sets on <3 which tends to a point p. If there exists a positive number
a such that y(Ev) >: a(y = 1,2, ), then the sequence {£„} is said to be
regular.

Let g be a family of closed sets such that the parameter of regularity
of each set exceeds a fixed number a{ > 0) and for every point x of the set
X there exists in g a regular sequence of sets {Wv} (Wv^x) which tends to
x. Theu ^ contains a finite or countable sequence {Xv} of sets no two of
which have common points, such that

(3.3) 2
Next we prove (3. 3). To do this, we suppose that every set of tί can

be covered by a circular disk with radius not greater than δo/5.
Choose an arbitrary set Xx of % and suppose that the first λ sets Xu

X,, , Xx no two of which have common points have been Chosen. If X —
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2^-i X" = Φ> t ^ i e n the theorem is proved. If this is not so, we denote by
SK the upper bound of the diameters of all sets which have no common points
with 2/-i X" a n ί * c n o o s e a i* arbitrary set Xk+ι of those sets with diameter

exceeding δλ/2. If X—'Σ^Xv^Φ, then we continue this process.
Suppose that an infinite sequence of sets {Xv} has been chosen, and put

Y = X — 2 .i X It i s sufficient to show that, if μ(Y) > 0, then we arrive

at a contradiction. To do this, associate with each set Xv a circular disk

S", with radius yv such that Xvz2Sv and μ{Xv)/μ{Sv) > a/2, and let S^ be the

circular disk with the same center as Sv and the radius 5yv. We then have

(3. 4) "ΣμΦ'J < AfΣμίS,) ^ ίMa-i'ΣμίX,) < +

Hence a positive integer N exists such that 2^=^+1 M S,) < M^) From this

it follows that there exists a point #0(€X) not belonging to Σ ^ ^ + i ^ ' ^y

virtue of the assumption there must exist a set X' (Bx0) of $ such that Xfl-X'

= φ for z> = 1,2, , iV. From (3. 4) we see that the radius yv of Sv tends to
zero as i;-*4-oo. Hence X has common points with at least one of the sets Xv

(v > N). Let v0 be the smallest integer such that X'[\XV0 Φ φ. The diameter
of X does not exceed δt0_i ( < 4 yvo). Hence ΓcSV0 J which contradicts to the

assumption # 0 ^ 2 ^ v + i ^ Thus (3.3) is proved.

By use of (3. 3) it is easily proved that Vitali's Covering Theorem holds
on ®, i. e., if a set X is covered by a family $ of closed sets in the sense
of Vitali, there exists in 3* a finite or countable sequence {X} of sets no
two of which have common points such that (3. 3) holds. For any subset Z
there exists a (G)s set G such that ZczG and μ{Z) = μ(G). By virtue of this
property and Vitali's Covering Theorem it is easily seen that the additive
function of a set F* is derivable at almost all points [3]. Taking account
of the reflection with respect to lines, F is derivable at every point and its
derivative is equal to a constant number 1/k. Hence the excess function F
is derivable at every point, i.e., for any regular sequence of normal triangles
{σ,} which tends to a point p lim^+oo F(σv)jμ(σv) exists and is equal to l/k.

Next we prove the following

(3.5) THEOREM. If the excess function F is of bounded variation, then F is
absolutely continuous and its derivative is equal to a constant number l/k. For
any normal triangle σ{ = abc) the function F is given by

Λ A A

μ(σ)/k = bac + cba + acb — TΓ.
PROOF. It is sufficient to prove that the function T* of sigularities of F*

vanishes on ©. It is easy to see that the derivative of the function T* is
equal to zero at every point. We prove the theorem only in the case where
the function T* is non-negative, since its upper and lower variations are
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finite.
Let p be any point on @, and put mB = δ(p), where m is a positive

integer. Let a line QP through p intersect K(p, δ) at points a and a! and ΐ)P

and ^ be the supporting lines of K(p, δ) at a and ά respectively. Then QP

divides S(p, B(p)) into two domains. We denote by D one of these domains.
Let {pv} and {p'v} be the sequence of points in D such that pv€.E\§p\, p'v

GE[t)p], and apv = β'# = δ/2v for each v and ĝ ,,, the line which contains each
T(pv, p'v) as a subsegment. Then

(3.6) Op,vflflp = Φ for every *.

Next we subdivide the segment T(a,a') by points afp, af>, , afi as

follows:
Take on $P the point a™ such that aa^ = #£„ and let # 2 ) be the point at

which the line perpendicular to g*, at a™ intersects the line QP)V. Further take
on QP the point af* such that a^dp = ΛJ 1 ^^. Then we can determine the
point pf as above. If a^d ^ α j 1 ^ ^ , we end this process. If a^ά > a™p?\
then we continue this process. On account of (3.6), after finite steps we

arrive at a point aSp such that af}d^a^p^ and a^^E[T(a} a% Then we

take on ĝ  and QP)V the points af+ι) and ^ " + 1 ) in the same way as above
respectively.

Thus we have z7+l quadrilaterals a^a^ι)p^+l)p^\i = 0,1,2, ,) for
each v, where a^ = a. We denote by P « each quadrilateral a^a^+ι)p^+ι)

pw. By virtue of the CDntinuity of the function F, each inside angle of F*ϊ>
tends to 7r/2 as -̂> + 00. Hence it follows that for every point x of T(a, d)
there exists a regular sequence of quadrilaterals {P^}{P^iv)3x) tending to
x.

Now we prove that for an arbitrary positive number S there exists a
positive integer N such that

(3.7) T\PW) < Sμ(P^) for each v > N and each / ( O S t g iΓ).

If this is not so, then we should have a sequence of positive integers {λ}
{d-ίV}) such that

(3.8) T*(Pj?κ>)^Sμ(PJt>))

for each λ and a positive integer 4 (0 ̂  iλ ^ λ). Let f)P,\ be the line perpen-
dicular to ĝ  at the midpoint of the segment T(a, aiiK)). Then β(

λ

ίλ) Ω(b2>,\) = a.
Hence each quadrilateral P[\) is carried by O(f)P)λ) onto a quadrilateral P\
with the vertex a. The sequence of quadrilaterals {P^} is regular and
tends to a. Hence there exists a pDsitive integer N' sucli that

T*(Pί) < Sμ{P'λ) for every λ ^ N'.

Obviously T*(P<ίλ)) = T*(P^) and μ(P[ιλ)) = /A(JP )̂ for every λ, but this contra-
dicts to (3.8). Thus (3.7) is proved.

Between the lines gP and g ,̂̂  there exist ΪV"+ 1 quadrilaterals P^ }, P8-},

- . . . , and ptf> which fulfill the condition (3.7). We put
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(ί = 0,1, 2, . . . . , N).
Then it is easy to see that the two vertices of each ~P$ lie on the line
βίiΩ(0ίvv). Hence, in such a way, we get the figure R composed of a finite
number of non-overlapping quadrilaterals Pv such that S(p, 8(P))ZDRZDS(P, 8)
for a sufficiently large positive integer m and each Pv fulfills the condition
(3. 8). The figure R is expressed as the sum Σ Pv> From this it follows that

, 8)) < T*(R) = ΣΓ*(Λ)

, and

Therefore we conclude that T*(S(p, 8)) = 0, since £ is arbitrary. From this
we see that T1* vanishes on ©. Thus the theorem is proved.

4. Let (S be a G-space with constant curvature and of dimension Λ( ^
2) and @ the universal covering space of (S. In a subspace of dimension (n —
1) of (S the bisector of any two distinct points is linear and of dimension
(n — 2). We call this a subspace of dimension (n — 2). Repeating this, in a
subspace of dimension 2, the bisector of any two distinct points is an ex-
tremal [5J.

The generalized Gaussian curvature of every subspace of dimension 2
is equal to a constant number 1/k. If G is Riemannian, then the number
1/k is its Riemannian curvature. The number 1/k will be said the genera-
lized Riemannian curvature of (8.

(4.1) THEOREM. If the spaced is of type I, then its generalized Riemannian
curvature is positive.

PROOF. In ©, every subspace ® of dimension 2 is compact and covered
by a finite number of triangles σt(i = 1, 2, , m). From (2. 4) it tollows
that

m

2 F(σi) = 4τr
ί = l

since X(β) = 2. Therefore we have by (3. 5)

— 47Γ.

Since 2;™i Mσ*') = /*(©) > »̂ t n e number 1/k is positive. Thus the theorem

is proved.

On © the following properties can easily be proved by classical argu-
ments.

(4. 2) (i) Let abc be a rectangular triangle with acb = 7r/2 and m(<3, &) the
midpoint of the segment T(a,b). Then the distance between m(a,b) and
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E[Tφ, c)] is greater than the half of ac. (ii) Every equidistant curve to an
extremal ι turns its convexity toward £. (iii) For an extremal subarc x{τ),
a~<τ<k β, and an extremal ι, the function f(r) = x{τ)E[x] ( = mfx^j] x(τ)x)
is a concave function.

Next we prove the following

(4.3) THEOREM. If the space © is of Type II, then its generalized Rieman-
nian curvature is non-positive.

PROOF. It is sufficient to prove that, if 1/k is positive, we arrive at a
contradiction. Let ©' be a subspace of dimension 2 of @, and let p be any
point on S and/the foot of^on an extremal ι O/>). Further let x(τ), — oo
< T < -f- oo, be the parametric representation of £ such fhat x(0) = / and

τ0 a fixed positive number. Then, for any positive number τ( > τ0), we have
by putting x(τ) = b and x{ — T) = 6'

(4. 4) μ{pbb')/k = #>£' + £2'6 - (w - W )
> μ(paa')lk,

where #(T0) = a and #( — τ0) = d. We can easily see that, on ©, for any
positive number £ there exist two positive numbers a and β such that, for
any three points x,y and 2 which satisfy the conditions xy = xz — a and yz

;> 2α(l - β), the inequality ^ 2 ^ TΓ - 6/2 holds.
Assume that μ(paa') > kθ > 0, and put λ(τ) = pb ( = px(τ)) and 2/3 = δ.

The function /(T) = λ(τ) — r + 8τ is continuous on the interval τ0 ^ T < +°°,
and limT-̂ +oc f(τ) = +00. Hence/(r) attains its minimum at some value r on

To ^ T < -f°° and fulfills the condition

λ(τ + σ) - (? + σ) + δ(τ + σ) - {λ(τ) - ^ + δr} > 0 for σ > 0.
Therefore

(4. 5) λ(τ + σ) - λ(τ) > σ(l - δ).

Put c = x{τ) and c' = x( — r), and let d and £ be the points on Tip, c) and
on the prolongation of the segment T(f, c) respectively such that cd = ce =
α. If we put σ = α i n (4. 5), we then have

de ^ 2 α(l - /3)

since de — a> λ(τ + α) — λ(τj. Hence we see pcd ;> 7r — 6/2. Let cP be the
point on the prolongation of the segment T(f, c') such that c'd = a. Then

we see pc'd' = 7r — 6/2 since on © the bisector property holds in the large.

On the other hand ΊΓ — cpc' ^ 0 is obvious. Hence we see from (4. 4)

μ(paa')/k < μ(pcc;)/k S Pccf + pc'c

= (TΓ -pcd) + (TΓ -pdd)

< 6/2 + £/2 = ε,

which contradicts to the assumption 0 < ke < μ<φad). Thus the theorem is*
proved.

If the number 1/k is equal to zero, then © has the same property as a
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eucJidean plane, i.e., the theorem in plane geometry holds on ©. We can
introduce Lebesgue measure which coincides with Hausdorff measure μ. If
1/k < 0, then the following properties of © is also easily proved by classical
arguments.

(4. 6) (i) Let abc be a rectangular triangle with acb = 7r/2 and m{a, b) the
midpoint of the segment T(a3b). Then the distance between m(a,b) and
E[T(b, c)] is less than the half of ac. (ii) Every equidistant curve to an ex-
tremal i turns its concavity toward £. (iii) For an extremal subarc x{τ), a <;
τ<Lβ, and an extremal ϊ the function /(T) = x{τ)E[ic\ is a convex function.

In virtue of (3.5), (4.1), (4. 2), (4. 3) and (4. 6), if © is a G-space with con-
stant curvature and the excess function is of bounded variation, the space
(§ is of Type I or Type II according as its constant generalized Riemannian
.curvature is positive or non-positive. Specially, if 1/'k = 0, the space @ is
regarded as an w-dimensional euclidean space.
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