ON ANGULAR MEASURE IN A METRIC SPACE

Yasuo Nasu

(Received July 15, 1955)

Abstract

H. Busemann [1] dealt with a metric space called a G-space. If a G-space § is of dimension 2 , then we can generally define an angular measure Ψ [§1]. In this note, we define a function F on figures of \subseteq which will be called the excess function [$\$ 2$]. When the angular measure Ψ is continuous and the function F is of bounded variation, we define the Gaussian curvature in the general sense which will be called the generalized Gaussian curvature of $\subseteq[\S 2]$. If (5) is a G-space with constant curvature in H. Busemann's sense, then the angular measure Φ is introduced [5], [§3]. If the excess function F defined by means of the angular measure Φ is of bounded variation, then (5) is a G-space with constant generalized Riemannian curvature [§4]. The main purpose of this note is to show that Gauss-Bonnet's theorem holds in (5) and all G-spaces with constant curvature are divided into three classes according as its generalized Riemannian curvature is positive, zero, or negative.

1. In a metric space points will be denoted by small roman letters and the distance between two points x and y by $x y$. According to H. Busemann $[1 ; \S 4]$ the axioms for a space (5) to be a G-space are the following:
A. \mathscr{E} is metric with distance $x y$.
B. (S) is finitely compact.
C. \mathscr{E} is convex metric.
D. Every point x of \mathfrak{G} has a neighborhood $S(x, \alpha(x))(=\{y \mid x y<\alpha(x)\})$ $(\alpha(x)>0)$ such that for any positive number ε and any two points a and b in $S(x, \alpha(x))$ there exist positive numbers $\delta_{i}(\leqq \varepsilon)(i=1,2)$ for which a point a_{1} with $a_{1} a+a b=a_{1} b$ and $a_{1} a=\delta_{1}$ and another point b_{1} with $a b+b b_{1}$ $=a b_{1}$ and $b b_{1}=\delta_{2}$ exist and are unique.

For any two points x and y, the axioms A, B, and C guarantee the existence of a segment $T(x, y)$ from x to y (or $T(y, x)$ from y to x) whose length is equal to the distance $x y$. The prolongation of a segment is locally possible and unique under the axiom D. The whole prolongation of a segment is said to be an extremal. An extremal \mathfrak{x} has a parametric repesentation $x(\tau),-\infty<\tau<+\infty$, such that for every τ_{0} a positive number $\varepsilon\left(\tau_{0}\right)$ exists such that $x\left(\tau_{1}\right) x\left(\tau_{2}\right)=\left|\tau_{2}-\tau_{i}\right|$ for $\left|\tau_{i}-\tau_{0}\right| \leqq \varepsilon\left(\tau_{0}\right)(i=1,2)$. The extremal \mathfrak{x} is said to be a straight line, if its parametric representations have the property: $x\left(\tau_{1}\right) x\left(\tau_{2}\right)=\left|\tau_{2}-\tau_{1}\right|$ for any two real numbers τ_{1} and τ_{2}. If every extremal is a straight line, then \mathscr{F} is said to be a straight line space.

In $[1 ; \S 4]$ the number $\eta_{\lambda}(x)(\lambda \geqq 2)$ and the term "direction" were introduced. $\eta_{\lambda}(x)$ is defined as the $1 . u$.b. of those β for which every segment
with end points in $S(x, \beta)$ is a cocentral subsegment of a segment of length $\lambda \beta$. $\eta_{\lambda}(x)$ is positive for every point x and every number λ not less than 2. The number $\eta^{\prime}(x)$ is defined as $\min \left(\eta_{0}(x), 1\right)$. Then $\left.\eta^{\prime} x\right)$ is regarded as a continuous function of a point x. The segment $T(a, b)$ of length $\eta(a)$ is said to be a direction with the initial point a.
2. Let \mathbb{S} be a G-space of dimension 2 and p any point of \subseteq. Let \mathfrak{x}_{1} and x_{2} be two different half extremals issuing from p whose parametric representations are given by $x_{1}(\tau), 0 \leqq \tau<+\infty$, and $x_{i}(\tau), 0 \leqq \tau<+\infty$, respectively. Then $\overline{S(p, \eta(p))}$ is divided by the directions $x_{1}(\tau), 0 \leqq \tau \leqq \eta^{\prime}(p)$, and $x_{2}(\tau), 0 \leqq$ $\tau \leqq \eta(p)$, into two sectors D_{1} and D_{2}. Similarly $S(p, 2 \eta(p))$ is divided by $x_{1}(\tau)$, $0 \leqq \tau \leqq 2 \eta(p)$, and $x_{s}(\tau), 0 \leqq \tau \leqq 2 \eta^{\prime}(p)$, into two sectors D_{1}^{\prime} and D_{2}^{\prime}. We assume $D_{i} \subset D_{i}^{\prime}(i=1,2)$. Then only one of D_{1}^{\prime} and D_{2}^{\prime} contains all segments $T(x, y)$ with $x \in E\left[x_{1}(\tau), 0 \leqq \tau \leqq \eta(p)\right]^{1)}$ and $y \in E\left[x_{2}(\tau), 0 \leqq \tau \leqq \eta(\boldsymbol{p}]\right.$, unless \underline{r}_{1} and \mathfrak{r}_{2} are opposite. Let D_{1}^{\prime} be such a sector. Then D_{1}^{\prime} is called a convex sector and D_{2} a concave sector. The segments $x_{i}(\tau), 0 \leqq \tau \leqq \eta(p)$, are called the legs of $D_{i}(i=1,2)$. $S\left(p, \eta^{\prime} p\right)$) is said to be the normal neighborhood of p.

At a point p an angular measure Ψ_{p} is defined as a function on the set of all sectors of $\overline{S(p, \eta(p))}$ which fulfills the following conditions $1^{\circ}, 2^{\circ}$, and 3°.

1. $\Psi_{p}(D) \geqq 0$ for any sector D.
2. $\Psi_{p}(D)=\pi$, if and only if the two legs of D are opposite.
3. If two sectors D_{1} and D_{2} have only one common leg but have no common part, then $\Psi_{p}\left(D_{1}\right)+\Psi_{p}\left(D_{\mathrm{z}}\right)=\Psi_{p}\left(D_{1}+D_{2}\right)$.

In such a way angular measure Ψ_{p} is defined at every point p of \mathbb{S}. Then we denote by Ψ the function Ψ_{p}. The function Ψ is said to be an angular measure on \mathbb{G}. It is easy to see that $\Psi(D)=0$, if and only if D is a segment.

Let p be a point of \mathbb{S} and $\left\{p_{\nu}\right\}$ any sequence of points which converges to p. Let D_{ν} be any sector of each $\overline{S\left(p_{\nu}, \eta\left(p_{\nu}\right)\right)}$ such that $\mathrm{Fl}_{\nu \rightarrow+\infty} D_{\nu}=D^{2)}$. If $\lim _{\nu \rightarrow+\infty} \Psi\left(D_{v}\right)=\Psi(D)$, then the angular measure Ψ is said continuous at p.

A triangle $a b c$ is said to be normal, if the vertices a, b, and c are not collinear and the normal neighborhood of each of these vertices contains the others. Let D be the convex sector of $\bar{S}\left(\overline{a, \eta^{\prime} \cdot a}\right)$) whose legs contain the segments $T(a, b)$ and $T(a, c)$. Then $\Psi(D)$ is called the inside angle of the triangle $a b c$ at a and denoted by $\hat{b a c}$ (or $\hat{c a b}$). Similarly $a \hat{b} c$ and $\hat{a c b}$ are defined. From the definition of normal triangles we see that each inside angle is less than π. It is also easily seen that the angle between two segments $T(p, a)$ and $T(p, b)$ is defined. We denote it by $a \hat{p} b$.

To define the excess function F, we put

$$
F(\sigma)=\hat{b a c}+c \hat{b} a+\hat{a c b}-\pi
$$

for a normal triangle $\sigma(=a b c)$. Then F is a function on the set of all

[^0]normal triangles on \subseteq. It is easy to see $F(\sigma)<2 \pi$ for every normal triangle on ©. We assume that F vanishes for empty set. The following property of the function F is clear from the definition.
(2.1) If two normal triangles σ_{1} and σ_{2} are non-overlapping, namely $\sigma_{1}^{\circ} \sigma_{2}=\sigma_{1} \sigma_{2}^{\circ}=\phi^{3)}$ and $\sigma_{1}+\sigma_{2}$ is also a normal triangle σ_{3}, then
$$
F\left(\sigma_{1}\right)+F\left(\sigma_{2}\right)=F\left(\sigma_{3}\right) .
$$

A set which is expressible as the sum of a finite number of non-overlapping normal triangles is called a figure.
(2.2) If a figure R is expressed as the sum of a finite number of normal triangles in two ways $\sum_{i=1}^{m} \sigma_{i}$ and $\sum_{i=1}^{n} \sigma_{i}^{\prime}$, then the relation

$$
\sum_{i=1}^{m} F\left(\sigma_{i}\right)=\sum_{i=1}^{n} F\left(\sigma_{i}^{\prime}\right)
$$

holds and this common value is given by

$$
F(R)=2 \pi \chi(R)-\pi \chi\left(R^{\prime}\right)-\Sigma\left(\pi-v_{i}\right),
$$

where R^{\prime} is the boundary of $R, \mathcal{X}(R)$ and $\mathcal{X}\left(R^{\prime}\right)$ the Euler characteristics of R and R^{\prime} respectively and v_{i} the angle at each vertex a_{i} measured in R.
(2.2) easily follows from a result obtained by S. Cohn-Vossen [2] for a 2 dimensional Riemannian surface.

From the above the function F is regarded as a function on the set of all figures on \subseteq. F is said to be the excess function on \subseteq. In a 2-dimensional Riemannian space $F(R)$ is the total curvature of a figure R.

On a figure R the upper and lower variations of the function F are denoted by $\bar{W}(F ; R)$ and $W(F ; R)$ respectively. The total variation $\bar{W}(F ; R)$ $+|\underline{W}(F ; R)|$ is denoted by $W(F ; R)$. If $W(F ; R)<+\infty$ for any figure R on ©, then the function F is of bounded variation on \subseteq and we have by Jordan's Decomposition Theorem

$$
\begin{equation*}
F(R)=\bar{W}(F ; R)+\underline{W}(F ; R) \quad \text { for every figure } R . \tag{2.3}
\end{equation*}
$$

If \mathbb{S} is a 2 -dimensional Riemannian space, then by Gauss-Bonnet's Theorem F is absolutely continuous.
(2.4) Theorem. If the angular measure Ψ is continuous and the excess function F is of bounded variation on \mathcal{S}, then F is continuous at every point.

Proof. At first we prove that the absolute variation $W(F ; R)$ is continuous.

Suppose that $W(F ; R)$ is not continuous at a point p. Then a positive number ε and a sequence of normal triangles $\left\{\sigma_{\nu}\right\}$ which tends to p exist such that

$$
W\left(F ; \sigma_{\nu}\right)>\varepsilon \quad \text { for each } \nu .
$$

We shall show that it is possible to define a sequence of non-overlapping figures $\left\{R_{\nu}\right\}$ such that

[^1]\[

$$
\begin{equation*}
p \in R_{\nu} \text { and }\left|F\left(R_{\nu}\right)\right|>\varepsilon / 2 \text { for each } \nu . \tag{2.5}
\end{equation*}
$$

\]

The normal triangle σ_{1} clealy contains a figure R_{1} such that $\left|F\left(R_{1}\right)\right|>$ $\varepsilon / 2$. If $R_{1} \ni p$, the figure R_{t} satisfies the condition (2.5). If $R_{1} \ni p$, then by choosing a suitable triangle σ_{1}^{\prime} we have a figure $R_{1} \ominus \sigma_{1}^{\prime}\left(=\left(\overline{R_{1}-\sigma_{1}^{\prime}}\right)^{\circ}\right)$ such. that $R_{1} \ominus \sigma_{1}^{\prime} \ni p$ and $\left|F\left(R_{1} \ominus \sigma_{1}^{\prime}\right)\right|>\varepsilon / 2$ since the angular measure Ψ is. continnous. The figure $R_{1}\left(=\left(R_{1} \ominus \sigma_{1}^{\prime}\right)\right)$ satisfies the condition (2.5).

Suppose that the figures $R_{\mathrm{l}}, R_{\nu}, \ldots \ldots$, and R_{ν} have already been chosen and let σ_{λ} be the first normal triangle of $\left\{\sigma_{\nu}\right\}$ which does not overlap any of the figures R_{1}, R_{2}, \ldots and R_{v}. In the same way as in the above we can. see that σ_{λ} contains a figure $R_{\nu+1}$ which fulfills (2.5). Thus we have a. sequence of figures as described in the above.

Let R be a figure such that $R \supset R_{\nu}$ for each ν. Then we have

$$
W(F ; R) \geqq \sum_{\nu=1}^{n} W\left(F ; R_{\nu}\right)>\sum_{\nu=1}^{n}\left|F\left(R_{\nu}\right)\right|>n \varepsilon / 2 .
$$

But this contradicts to the fact that the function F is of bounded variation. From this it follows that the upper and lower variations are continuous. Hence, by virtue of Jordan's Decomposition Theorem, (2.4) is proved.

When the function F is of bounded variation, we denote by F^{*} theadditive function of a set induced by F. Then the following (2.6) is obvious. (See [3; Chap. III, § 6]).
(2.6) Under the assumption of (2.4) $F^{*}(R)=F^{*}\left(R^{\circ}\right)=F(R)$ for every figureR on \mathfrak{S}.

For any subset X of \subseteq the 2-dimensional Hausdorff measure $\mu(X)$ is defined ${ }^{4}$. We assume that the 2 -dimensional Hausdorff measure of every bounded set is finite. Then we have by Lebesgue Decomposition Theorem and Radon-Nykodym's Theorem

$$
F^{*}(X)=T^{*}(X)+\int_{X} \frac{1}{k} d \mu(x)
$$

where X is a Borel set, T^{*} the function of singularities of F^{*}, and $1 / k$ an integrable function uniquely determined at almost all points on \mathfrak{S}. Putting: $T^{*}(R)=T(R)$, we have by (2.6)

$$
F(R)=T(R)+\int \frac{1}{k} d \mu(x)
$$

The function $1 / k$ will be said the generalized Gaussian curvature of \mathfrak{S}. If the function F is monotone, then F is non-decreasing or non-increasing: according as F is non-negative or non-positive. Hence we have

$$
\int_{\sigma} \frac{1}{k} d \mu(x) \leqq b \hat{a} c+\hat{c b} a+\hat{a c b}-\pi \quad \text { or }
$$

[^2]$$
\int_{\sigma} \frac{1}{k} d \mu(x) \geqq \hat{b a c}+c \hat{b} a+\hat{a c} b-\pi
$$
for every normal triangle $\sigma(=a b c)$ according as F is non-negative or non-positive.
3. In this paragraph we study a G-space with constant curvature in H. Busemann's sense. If in a G-space every point p has a spherical neighborhood $S(p, \rho(p))$ such that the bisector $B\left(a, a^{\prime}\right)^{5)}$ of any two distinct points a and a^{\prime} in $S(p, \rho(p))$ is linear ${ }^{6)}$ in this neighborhood, then the space is said to be with constant curvature.

In such a space $(\mathscr{G}$, for every point p there exists a positive number $\delta(\boldsymbol{p})$. $5 \delta(p)=\overline{\delta(} p)<\min (\rho(p), \eta(p))$ which satisfies the following conditions [1; § 15$]$.
(1) The neighborhood $S(p, \delta(p))$ is homeomorphic to the interior of a finite dimensional euclidean sphere; (2) if the dimension of \mathscr{H} is $n(\geqq 2)$, $S(p, \bar{\delta}(p)) \cap B\left(a, a^{\prime}\right)\left(a, a^{\prime} \in S(p, \bar{\delta}(p))\right.$ is of dimension $(n-1)$ (we put $B_{p}\left(a, a^{\prime}\right)=$ $B\left(a, a^{\prime}\right) \cap S(p, \delta(p))$ and call this a hyperplane); (3) Every sphere is strictly convex for $0<\alpha \leqq \delta(p) ;(4)$ every point x of $S(p, \delta(p))$ has a unique foot f on a hyperplane B_{p} which intersects $S(p, \delta(p))$; (5) a mapping $\Omega\left(B_{p}\right)$ of $S(p, \delta(p))$, which is a motion, is defined as follows :
(a) $x \Omega\left(B_{p}\right)=x$ for every point $x \in B_{p}$, and
(b) if $x \in S(p, \delta(p))-B_{p}$, the point $x^{\prime}\left(=x \Omega\left(B_{p}\right)\right)$ is determined by $x f=f x^{\prime}$ $=x x^{\prime} / 2$.
The mapping $\Omega\left(B_{p}\right)$ is said to be the reflection of $S(p, \delta(p))$ with respect to B_{p}. All G-spaces with constant curvature are divided into two classes as follows [5]:
I. The class of G-spaces of Type I. If a G-space (${ }^{(1 i}$ is of Type I, then the universal covering space $\widetilde{\mathfrak{F}}$ of \mathfrak{F} has the following properties :
(1) Every extremal is closed; (2) every extremal through a point p passes through a unique point p^{\prime} called the conjugate point of p; every extremal subarc from p to p^{\prime} is a segment of constant length κ; (4) every sphere with radius less than $\kappa / 2$ is strictly convex; (5) the bisector of any two distinct points is linear and coincides with a sphere of radius $\kappa / 2$.
II. The class of G-spaces of Type II. If a G-space (5 is of Type II, then the universal covering space $\widetilde{\mathscr{F})}$ of \mathfrak{F} has the following properties:
(1) $\widetilde{\mathscr{G}}$ is a straight line space; (2) every sphere is strictly convex ; (3) the bisector of any two distinct points is linear and of dimension $(n-1)$.

On account of $(5)_{\mathrm{I}}$ and (3) $)_{\mathrm{II}}$, the bisector of two distinct points is said to be a subspace of dimension $(n-1)$.

Let \subseteq be a G-space with constant curvature and of dimension 2. The angular measure Φ is introduced as follows:
j) The bisector of two distinct points a and a^{\prime} is defined as the set $\left\{x \mid a x=a^{\prime} x\right\}$.
6) A set E is said linear, if for any two points x and x^{\prime} of E there exists a segment $T\left(x, x^{\prime}\right)$ contained in E.

Let p be any point of \mathbb{S} and a line ${ }^{7}{ }^{7} \mathfrak{g}_{p}$ through p intersect the circle $K(p, \delta(p) / 2)$ at points a and a^{\prime}. The line $B_{p}\left(a ; a^{\prime}\right)$ is perpendicular ${ }^{8)}$ to $T\left(a, a^{\prime}\right)$ at p. Let $B_{p}\left(a, a^{\prime}\right)$ intersect $K(p, \delta(p) / 2)$ at points b and b^{\prime}. Then the segments $T\left(a, a^{\prime}\right)$ and $T\left(b b^{\prime}\right)$ divide $\overline{S(\bar{p}, \delta(p) /<)}$ into four convex sectors $\widehat{a p b}$, $\widehat{b p a^{\prime}}$, $a^{\prime} p b^{\prime}$, and $b^{\prime} p a$. For these sectors we put

$$
\Phi_{p}(\overparen{a p b})=\Phi_{p}\left(\widehat{b p} a^{\prime}\right)=\Phi_{p}\left(\widehat{a^{\prime} p b^{\prime}}\right)=\Phi_{p}\left(\widehat{b^{\prime} p a}\right)=\pi / 4
$$

Let $B_{p}(a, b)$ intersect $K(p, \delta(p) / 2)$ at points c and c^{\prime} and $B_{p}\left(a^{\prime}, b\right) K(p, \delta(p) / 2)$, at points d and d^{\prime}. Then each of the above four sectors is divided by either $B_{p}(a, b)$ or $B_{p}\left(a^{\prime}, b\right)$ into two convex sectors. We denote these sectors by $a \widehat{a p c}$, $\widehat{c p b}, \widehat{b p d^{\prime}}, d^{\prime} \not a^{\prime}, a^{\top} \bar{p} c^{\prime}, c^{\prime} \not b^{\prime}, b^{\prime} \widehat{p} d$ and $\overparen{d p a} a$ and put

$$
\Phi_{p}(\widehat{a p c})=\ldots .=\Phi_{p}(\widehat{d p a})=\pi / 8 .
$$

We continue this process. If we denote by A the set of points $\left\{a, a^{\prime} ; b, b^{\prime} ; c, c^{\prime}\right.$; \ldots.$\} , then the closure \bar{A}$ coincides with the circle $K(p, \delta(p) / 2)$. For any sector $\widehat{a p} q$, by taking a sequence of points $\left\{q_{\nu}\right\}\left(q_{\nu} \in A\right)$ which converges to $q, \Phi_{p}(\widetilde{a p} q)$ is defined as the limit of the sequence $\Phi_{p}\left(\widetilde{a p q_{v}}\right)$ (See [5] in details).

The function Φ_{p}, thus defined fulfills the conditions $1^{\circ}, 2^{\circ}$, and 3° in $\S 2$. The definition of the function Φ_{p} does not depend on any choice of the line g_{p}. In snch a way we define the function Φ_{p} at every point p of \mathbb{S}. Then we denote by Φ the function Φ_{p}. The angular measure Φ thus obtained is invariant under the reflections with respect to lines.

In the remainder of this note, by means of the angular measure Φ, we study a G-space with constant curvature. For the angle between two segments $T(p, a)$ and $T(p, b)$ we use the same notation $\hat{a p b}$ as in $\S 2$.

(3.1) Theorem. The angular measure Φ is continuous.

Proof. Let $\left\{\boldsymbol{p}_{v}\right\}$ be a sequence of points which converges to a point \boldsymbol{p}, and put $\alpha=\inf \delta\left(p_{v}\right) / 2$. Then α is positive. Let D_{ν} be any sector of each $\overline{S\left(p_{\nu}, \alpha\right)}$ such that Fl D_{ν} coincides with a sector D of $S(p, \alpha)$. Then the legs $T_{1 \nu}$ and $T_{2 \nu}$ of each D_{ν} tends to the legs T_{1} and T_{2} of D respectively. Let $\boldsymbol{q}_{i v}$ be the end point of each $T_{i v}$ and \boldsymbol{q}_{i} the end point of $T_{i}(i=1,2)$. Now we prove $\lim _{v \rightarrow+\infty} q_{1 t} \hat{p}_{\nu} q_{2 v}=q_{1} \hat{p} q_{2}$.

Obviously the sequences of points $\left\{q_{1 v}\right\}$ and $\left\{q_{i v}\right\}$ converge to the points \boldsymbol{q}_{1} and \boldsymbol{q}_{2} respectively. Let each $\boldsymbol{q}_{2 \nu}^{\prime}$ be a point on $K\left(\boldsymbol{p}_{\nu}, \alpha\right)$ such that $\boldsymbol{q}_{1,} \hat{p}_{\nu} \boldsymbol{q}_{2 \nu}^{\prime}=\boldsymbol{q}_{1} \hat{p} q_{2}$. If we choose suitably such points $\boldsymbol{q}_{2 v}^{\prime}$, then the sequence of points $\left\{\boldsymbol{q}_{2 \nu}^{\prime}\right\}$ converges to q_{ν}. Suppose that such points $q_{2 \nu}^{\prime}$ have been chosen. Then there exists a positive integer N such that $S(p, \delta(p)) \supset S\left(p_{\nu}, \alpha\right)$ for every $\nu \geqq N$. Since the angles $q_{2,}^{\prime} \hat{p}_{v} q_{z \nu}(\nu \geqq N)$ are invariant under the reflections with respect to lines which intersect $S(p, \delta(p))$, it follows that, if

[^3]for a positive number δ, N is sufficiently large, then $\boldsymbol{q}_{2 \nu}^{\prime} \boldsymbol{D}_{\nu} q_{2 \nu}<\delta$ for every $\nu \geqq N$. Hence we have
\[

$$
\begin{aligned}
\left|q_{1 \nu} \hat{p}_{\nu} q_{2 v}-q_{1} \hat{p}_{q_{2}}\right| & =\left|q_{1 \nu} \hat{p}_{v} q_{2 \nu}-q_{1 \nu} \hat{p}_{v} q_{2 \nu}^{\prime}\right| \\
& \leqq q_{2 \nu}^{\prime} \hat{p}_{v} q_{2 \nu}<\delta \quad \text { for every } \nu \geqq N .
\end{aligned}
$$
\]

Thus the theorem is proved.
Making use of the angular measure Φ we define the excess function F. Then, by (2.4) and (3.1), we have the following :
(3.2) If the excess function F is of bounded variation, then F is continuous.

Under the assumption of (3.2), for any bounded subset X there exist a positive integer M and a positive number δ_{0} such that every circular disk $\overline{S(p, \gamma)}\left(p \in X, 0<\gamma \leqq \delta_{0}\right)$ is covered by M circular disks with radius $\gamma / 5$. Next we shall show this.

Let V be a bounded and connected open set which contains X. If we put $\delta=\inf _{x \in V} \delta(x)$, then δ is positive. Let δ_{0} be a positive number not greater than δ. Let a line g_{p} through $p(\in X)$ intersect a sphere $K(p, \gamma)\left(0<\gamma \leqq \delta_{0}\right)$ at points a and a^{\prime} and $B_{p}\left(a, a^{\prime}\right) K(p, \gamma)$ at points b and b^{\prime}. Next divide $T\left(a, a^{\prime}\right)$ and $T\left(b, b^{\prime}\right)$ into 24 parts of equal length $a a^{\prime} / 24\left(=b b^{\prime} / 24\right)$. If δ_{0} is sufficiently small, then the lines perpendicular to $T\left(a, a^{\prime}\right)$ and $T\left(b, b^{\prime}\right)$ at points of the subdivisions form the net composed of 24^{2} quadrilaterals $P_{i}(i=1,2, \ldots$. 24^{*}) such that each P_{i} is covered by a circular disk with radius $\gamma / 5$. This is clear from the continuity of the fnnction F.

For any circular disk $S\left(q, \delta_{0}\right)(q \in X)$ there exists the combination of finite number of reflections with respect to lines by which $S\left(p, \delta_{0}\right)$ is carried onto it. Hence if we put $M=24^{\prime 2}$, then M and δ_{0} are tne numbers which fulfill the condition described above.

Let E be a set contained in a neighborhood $S(x, \delta(x)$). The parameter of regularity $\gamma(E)$ of E is defined as the upper bound of the number $\mu(E) / \mu(\bar{S})$, where \bar{S} denotes any circular disk containing E. Let $\left\{E_{v}\right\}$ be a sequence of closed sets on \mathfrak{S} which tends to a point p. If there exists a positive number α such that $\gamma\left(E_{\nu}\right) \geqq \alpha(\nu=1,2, \ldots$.$) , then the sequence \left\{E_{v}\right\}$ is said to be regular.

Let \mathfrak{F} be a family of closed sets such that the parameter of regularity of each set exceeds a fixed number $\alpha(>0)$ and for every point x of the set X there exists in $\mathfrak{\vartheta}$ a regular sequence of sets $\left\{W_{\nu}\right\}\left(W_{\nu} \ni x\right)$ which tends to x. Theu \mathscr{F} contains a finite or countable sequence $\left\{X_{\nu}\right\}$ of sets no two of which have common points, such that

$$
\begin{equation*}
\mu\left(X-\sum X\right)=0 \tag{3.3}
\end{equation*}
$$

Next we prove (3.3). To do this, we suppose that every set of \mathfrak{F} can be covered by a circular disk with radius not greater than $\delta_{0} / 5$.

Choose an arbitrary set X_{1} of \mathfrak{F} and suppose that the first λ sets X_{1}, $X_{\mathbf{2}}, \ldots, X_{\lambda}$ no two of which have common points have been chosen. If X -
$\sum_{\nu=1}^{\lambda} X_{\nu}=\phi$, then the theorem is proved. If this is not so, we denote by δ_{λ} the upper bound of the diameters of all sets which have no common points with $\sum_{i=1}^{\lambda} X_{\nu}$ and choose an arbitrary set $X_{\lambda+1}$ of those sets with diameter exceeding $\delta_{\lambda} / 2$. If $X-\sum_{v=1}^{\lambda+1} X_{v} \neq \phi$, then we continue this process.

Suppose that an infinite sequence of sets $\left\{X_{\nu}\right\}$ has been chosen, and put $Y=X-\sum_{\nu=1}^{\infty} X_{\nu}$. It is sufficient to show that, if $\mu(Y)>0$, then we arrive at a contradiction. To do this, associate with each set X_{ν} a circular disk \bar{S}_{ν} with radius γ_{ν} such that $X_{\nu} \subset \bar{S}_{\nu}$ and $\mu\left(X_{\nu}\right) / \mu\left(\bar{S}_{\nu}\right)>\alpha / 2$, and let \bar{S}_{ν}^{\prime} be the circular disk with the same center as \bar{S}_{ν} and the radius $5 \gamma_{\nu}$. We then have

$$
\begin{equation*}
\sum_{\nu=1}^{\infty} \mu\left(\bar{S}_{\nu}^{\prime}\right)<M \sum_{\nu=1}^{\infty} \mu\left(\bar{S}_{v}\right) \leqq 2 M \alpha^{-1} \sum_{\nu=1}^{\infty} \mu\left(X_{\nu}\right)<+\infty \tag{3.4}
\end{equation*}
$$

Hence a positive integer N exists such that $\sum_{d_{\nu=N+1}}^{\infty} \mu\left(\overline{S_{\nu}}\right)<\mu(Y)$. From this it follows that there exists a point $x_{0}(\in X)$ not belonging to $\sum_{\nu=N+1}^{\infty} S_{v}^{\prime}$. By virtue of the assumption there must exist a set $X^{\prime}\left(\ni x_{0}\right)$ of $\widetilde{\Downarrow}$ such that $X^{\prime} \cap X_{\nu}$ $=\phi$ for $\nu=1,2, \ldots, N$. From (3.4) we see that the radius γ_{ν} of \bar{S}_{ν} tends to zero as $\nu \rightarrow+\infty$. Hence X^{\prime} has common points with at least one of the sets X_{ν} $(\nu>N)$. Let ν_{0} be the smallest integer such that $X^{\prime} \cap X_{\nu_{0}} \neq \phi$. The diameter of X^{\prime} does not exceed $\delta_{t_{0-1}}\left(<4 \gamma_{\nu_{0}}\right)$. Hence $X^{\prime} \subset \bar{S}_{\nu_{0}}^{\prime}$, which contradicts to the assumption $x_{0} \bar{\in} \sum_{,=N+1}^{\infty} \overline{\mathrm{S}}_{\nu}^{\prime}$. Thus (3.3) is proved.

By use of (3.3) it is easily proved that Vitali's Covering Theorem holds on \subseteq, i. e., if a set X is covered by a family \widetilde{F} of closed sets in the sense of Vitali, there exists in \mathfrak{F} a finite or countable sequence $\left\{X_{\nu}\right\}$ of sets no two of which have common points such that (3.3) holds. For any subset Z there exists a $(G)_{s}$ set G such that $Z \subset G$ and $\mu(Z)=\mu(G)$. By virtue of this property and Vitali's Covering Theorem it is easily seen that the additive function of a set F^{*} is derivable at almost all points [3]. Taking account of the reflection with respect to lines, F is derivable at every point and its derivative is equal to a constant number $1 / k$. Hence the excess function F is derivable at every point, i. e., for any regular sequence of normal triangles $\left\{\sigma_{\nu}\right\}$ which tends to a point $p \lim _{\nu \rightarrow+\infty} F\left(\sigma_{\nu}\right) / \mu\left(\sigma_{\nu}\right)$ exists and is equal to $1 / k$.

Next we prove the following
(3.5) Theorem. If the excess function F is of bounded variation, then F is absolutely continuous and its derivative is equal to a constant number $1 / k$. For any normal triangle $\sigma(=a b c)$ the function F is given by

$$
\mu(\sigma) / k=\hat{b a c}+\hat{c b} a+\hat{a c b}-\pi
$$

Proof. It is sufficient to prove that the function T^{*} of sigularities of F^{*} vanishes on \subseteq. It is easy to see that the derivative of the function T^{*} is equal to zero at every point. We prove the theorem only in the case where the function T^{*} is non-negative, since its upper and lower variations are
finite.
Let p be any point on \mathfrak{S}, and put $m \delta=\delta(p)$, where m is a positive integer. Let a line \mathfrak{g}_{p} through p intersect $K(p, \delta)$ at points a and a^{\prime} and \mathfrak{h}_{p} and $\mathfrak{h}_{p}^{\prime}$ be the supporting lines of $K(p, \delta)$ at a and a^{\prime} respectively. Then \mathfrak{g}_{p} divides $S(p, \delta(p))$ into two domains. We denote by D one of these domains.

Let $\left\{\boldsymbol{p}_{\nu}\right\}$ and $\left\{\boldsymbol{p}_{v}^{\prime}\right\}$ be the sequence of points in D such that $p_{\nu} \in E\left[\mathfrak{h}_{p}\right]$, $\boldsymbol{p}_{v}^{\prime}$ $\in E\left[h_{p}^{\prime}\right]$, and $a p_{\nu}=a^{\prime} p_{\nu}^{\prime}=\delta / 2^{\nu}$ for each ν and $g_{p, \nu}$ the line which contains each $T\left(p_{v}, p_{v}^{\prime}\right)$ as a subsegment. Then

$$
\begin{equation*}
\mathfrak{g}_{p, \nu} \cap \mathfrak{g}_{p}=\phi \quad \text { for every } \nu \tag{3.6}
\end{equation*}
$$

Next we subdivide the segment $T\left(a, a^{\prime}\right)$ by points $a_{\nu}^{(1)}, a_{\nu}^{(2)}, \ldots, a_{\nu}^{(\nu)}$ as follows:

Take on g_{ν} the point $a_{\nu}^{(1)}$ such that $a a_{\nu}^{(1)}=a p_{\nu}$ and let $p_{\nu}^{(1)}$ be the point at which the line perpendicular to g_{p} at $a_{v}^{(1)}$ intersects the line $g_{p, v}$. Further take on g_{p} the point $a_{\nu}^{(2)}$ such that $a_{\nu}^{(1)} a_{\nu}^{(2)}=a_{\nu}^{(1)} p_{\nu}^{(1)}$. Then we can determine the point $p_{\nu}^{(2)}$ as above. If $a_{\nu}^{(1)} a^{\prime} \leqq a_{\nu}^{(1)} p_{\nu}^{(1)}$, we end this process. If $a_{v}^{(1)} a^{\prime}>a_{\nu}^{(1)} p_{\nu}^{(1)}$, then we continue this process. On account of (3.6), after finite steps we arrive at a point $a_{\nu}^{(\bar{\nu})}$ such that $a_{\nu}^{\left(\nu^{\nu} a^{\prime}\right.} \leqq a_{\nu}^{\left(\nu^{(\nu)}\right.} \nu_{\nu}^{(\nu)}$ and $a_{\nu}^{(\bar{\nu})} \in E\left[T\left(a, a^{\prime}\right)\right]$. Then we take on g_{p} and $\mathrm{g}_{p, \nu}$ the points $a_{\nu}^{(\bar{j}+1)}$ and $p_{\nu}^{(\bar{\nu}+1)}$ in the same way as above respectively.

Thus we have $\bar{\nu}+1$ quadrilaterals $a_{\nu}^{(i)} a_{\nu}^{(i+1)} p_{\nu}^{(i+1)} p_{\nu}^{(i)}(i=0,1,2, \ldots .$,$) for$ each ν, where $a_{\nu}^{(0)}=a$. We denote by $P_{\nu}^{(i)}$ each quadrilateral $a_{\nu}^{(i)} a_{\nu}^{(i+1)} p_{\nu}^{(i+1)}$ $p_{\nu}^{(i)}$. By virtue of the continuity of the function F, each inside angle of $P_{\nu}^{(i)}$ tends to $\pi / 2$ as $\nu \rightarrow+\infty$. Hence it follows that for every point x of $T\left(a, a^{\prime}\right)$ there exists a regular sequence of quadrilaterals $\left\{P_{\nu}^{(\nu)}\right\}\left(P_{\nu}^{(i \nu)} \ni x\right)$ tending to x.

Now we prove that for an arbitrary positive number ε there exists a positive integer N such that

$$
\begin{equation*}
T^{*}\left(P_{\nu}^{(\nu)}\right)<\varepsilon \mu\left(P_{\nu}^{(\nu)}\right) \text { for each } \nu \geqq N \text { and each } i(0 \leqq i \leqq \bar{\nu}) . \tag{3.7}
\end{equation*}
$$

If this is not so, then we should have a sequence of positive integers $\{\lambda\}$ $(\subset\{\nu\})$ such that

$$
\begin{equation*}
T^{*}\left(P_{\Lambda}^{\left(i_{\lambda}\right)}\right) \geqq \varepsilon \mu\left(P_{\lambda}^{\left.\left(i_{\lambda}\right)^{\prime}\right)}\right. \tag{3.8}
\end{equation*}
$$

for each λ and a positive integer $i_{\lambda}\left(0 \leqq i_{\lambda} \leqq \bar{\lambda}\right)$. Let $\mathfrak{h}_{p, \lambda}$ be the line perpendicular to g_{p} at the midpoint of the segment $T\left(a, a_{\lambda}^{(i \lambda)}\right)$. Then $a_{\lambda}^{(i \lambda)} \Omega\left(h_{p, \lambda}\right)=a$. Hence each quadrilateral $P_{\lambda \lambda}^{(i)}$ is carried by $\Omega\left(\mathfrak{h}_{p, \lambda}\right)$ onto a quadrilateral P_{λ}^{\prime} with the vertex a. The sequence of quadrilaterals $\left\{P_{\lambda}^{\prime}\right\}$ is regular and tends to a. Hence there exists a positive integer N^{\prime} suci' that

$$
T^{*}\left(P_{\lambda}^{\prime}\right)<\varepsilon \mu\left(P_{\lambda}^{\prime}\right) \text { for every } \lambda \geqq N^{\prime}
$$

Obviously $T^{*}\left(P_{\lambda}^{(\lambda)}\right)=T^{*}\left(P_{\lambda}^{\prime}\right)$ and $\mu\left(P_{\lambda}^{(i \lambda)}\right)=\mu\left(P_{\lambda}^{\prime}\right)$ for every λ, but this contradicts to (3.8). Thus (3.7) is proved.

Between the lines g_{p} and $\mathrm{g}_{p, N}$, there exist $\bar{N}+1$ quadrilaterals $P_{N}^{(0)}, P_{N}^{(1)}$, \ldots, and $P_{N}^{(\bar{N})}$ which fulfill the condition (3.7). We put

$$
\bar{P}_{N}^{(i)}=P_{N}^{(i)} \Omega\left(\mathrm{g}_{1, N}\right) \quad(i=0,1,2, \ldots, N)
$$

Then it is easy to see that the two vertices of each $\bar{P}_{N}^{(i)}$ lie on the line $\mathfrak{g}_{p} \Omega\left(g_{p, s}\right)$. Hence, in such a way, we get the figure R composed of a finite number of non-overlapping quadrilaterals P_{ν} such that $S(p, \delta(p)) \supset R \supset S(p, \delta)$ for a sufficiently large positive integer m and each P_{ν} fulfills the condition (3.8). The figure R is expressed as the sum ΣP_{ν}. From this it follows that

$$
\begin{aligned}
T^{*}(\mathrm{~S}(p, \delta)) & <T^{*}(R)=\Sigma T^{*}\left(P_{\nu}\right) \\
& <\varepsilon \Sigma \mu\left(P_{\nu}\right) \\
& =\varepsilon \mu(R), \text { and } \\
\mu(R) & >\mu(S(p, \delta)) .
\end{aligned}
$$

Therefore we conclude that $T^{*}(S(p, \delta))=0$, since ε is arbitrary. From this we see that T^{*} vanishes on \subseteq. Thus the theorem is proved.
4. Let (5) be a G-space with constant curvature and of dimension $n(\geqq$ 2) and (5) the universal covering space of (5). In a subspace of dimension $(n-$ 1) of (5) the bisector of any two distinct points is linear and of dimension ($n-2$). We call this a subspace of dimension ($n-2$). Repeating this, in a subspace of dimension 2, the bisector of any two distinct points is an extremal [5].

The generalized Gaussian curvature of every subspace of dimension 2 is equal to a constant number $1 / k$. If G is Riemannian, then the number $1 / k$ is its Riemannian curvature. The number $1 / k$ will be said the generalized Riemannian curvature of (5).
(4.1) Theorem. If the space \mathbb{S}^{5} is of type I, then its generalized Riemannian curvature is positive.

Proof. In (夭), every subspace $\widetilde{\S}$ of dimension 2 is compact and covered by a finite number of triangles $\sigma_{i}(i=1,2, \ldots, m)$. From (2.4) it tollows that

$$
\sum_{i=1}^{m} F\left(\sigma_{i}\right)=4 \pi
$$

since $\chi(\widetilde{\mathrm{S}})=2$. Therefore we have by (3.5)

$$
\sum_{i=1}^{m} \mu\left(\sigma_{i}\right) / k=4 \pi
$$

Since $\sum_{i=1}^{m} \mu\left(\sigma_{i}\right)=\mu(\widetilde{\mathbb{S}})>0$, the number $1 / k$ is positive. Thus the theorem is proved.

On $\widetilde{ভ}$ the following properties can easily be proved by classical arguments.
(4.2) (i) Let $a b c$ be a rectangular triangle with $a \hat{c b}=\pi / 2$ and $m(a, b)$ the midpoint of the segment $T(a, b)$. Then the distance between $m(a, b)$ and
$E[T(b, c)]$ is greater than the half of $a c$. (ii) Every equidistant curve to an extremal \mathfrak{x} turns its convexity toward \mathfrak{x}. (iii) For an extremal subarc $x(\tau)$, $\alpha \leqq \tau \leqq \beta$, and an extremal \mathfrak{x}, the function $f(\tau)=x(\tau) E[\mathfrak{r}]\left(=\inf _{x \in E_{i \in]}} x(\tau) x\right)$ is a concave function.

Next we prove the following
(4.3) Theorem. If the space \mathscr{S}^{5} is of Type II, then its generalized Riemannian curvature is non-positive.

Proof. It is sufficient to prove that, if $1 / k$ is positive, we arrive at a contradiction. Let $\widetilde{\mathbb{S}}$ be a subspace of dimension 2 of $\widetilde{\mathscr{E}}$, and let p be any point on $\widetilde{\mathfrak{S}}$ and f the foot of p on an extremal $\mathfrak{x}(\ni p)$. Further let $x(\tau),-\infty$ $<\tau<+\infty$, be the parametric representation of x such fhat $x(0)=f$ and τ_{0} a fixed positive number. Then, for any positive number $\tau\left(>\tau_{0}\right)$, we have by putting $x(\tau)=b$ and $x(-\tau)=b^{\prime}$

$$
\begin{equation*}
\mu\left(p b b^{\prime}\right) / k=\hat{p b} b^{\prime}+\hat{p b^{\prime}} b-\left(\pi-\hat{b p} b^{\prime}\right) \tag{4.4}
\end{equation*}
$$

$$
>\mu\left(p a a^{\prime}\right) / k
$$

where $x\left(\tau_{0}\right)=a$ and $x\left(-\tau_{0}\right)=a^{\prime}$. We can easily see that, on $\widetilde{\mathbb{S}}$, for any positive number ε there exist two positive numbers α and β such that, for any three points x, y and z which satisfy the conditions $x y=x z=\alpha$ and $y z$ $\geqq 2 \alpha(1-\beta)$, the inequality $\hat{y} \hat{x} z \geqq \pi-\varepsilon / 2$ holds.

Assume that $\mu\left(p a a^{\prime}\right)>k \varepsilon>0$, and put $\lambda(\tau)=p b(=p x(\tau))$ and $2 \beta=\delta$. The function $f(\tau)=\lambda(\tau)-\tau+\delta \tau$ is continuous on the interval $\tau_{0} \leqq \tau<+\infty$, and $\lim _{\tau \rightarrow+\infty} f(\tau)=+\infty$. Hence $f(\tau)$ attains its minimum at some value τ on $\tau_{0} \leqq \tau<+\infty$ and fulfills the condition

$$
\lambda(\bar{\tau}+\sigma)-(\bar{\tau}+\bar{\sigma})+\delta(\tau+\sigma)-\{\lambda(\tau)-\bar{\tau}+\delta \bar{\tau}\} \geqq 0 \text { for } \sigma \geqq 0 .
$$

Therefore

$$
\begin{equation*}
\lambda(\bar{\tau}+\sigma)-\lambda(\bar{\tau}) \geqq \sigma(1-\delta) . \tag{4.5}
\end{equation*}
$$

Put $c=x(\bar{\tau})$ and $c^{\prime}=x(-\tau)$, and let d and e be the points on $T(p, c)$ and on the prolongation of the segment $T(f, c)$ respectively such that $c d=c e=$ α. If we put $\sigma=\alpha$ in (4.5), we then have

$$
d e \geqq 2 \alpha(1-\beta)
$$

since $d e-\alpha>\lambda(\bar{\tau}+\alpha)-\lambda(\bar{\tau})$. Hence we see $p c d \geqq \pi-\varepsilon / 2$. Let d^{\prime} be the point on the prolongation of the segment $T\left(f, c^{\prime}\right)$ such that $c^{\prime} d^{\prime}=\alpha$. Then we see $\hat{p c^{\prime}} d^{\prime}=\pi-\varepsilon / 2$ since on $\widetilde{\mathfrak{S}}$ the bisector property holds in the large. On the other hand $\pi-\hat{c p} c^{\prime} \geqq 0$ is obvious. Hence we see from (4.4)

$$
\begin{aligned}
\mu\left(p \hat{a a^{\prime}}\right) / k<\mu\left(p c c^{\prime}\right) / k & \leqq \hat{p c c^{\prime}}+\hat{p c^{\prime} c} \\
& =(\pi-\hat{p c} d)+\left(\pi-p \hat{c^{\prime} d^{\prime}}\right) \\
& \leqq \varepsilon / 2+\varepsilon / 2=\varepsilon,
\end{aligned}
$$

which contradicts to the assumption $0<k \varepsilon<\mu\left(p a a^{\prime}\right)$. Thus the theorem is proved.

If the number $1 / k$ is equal to zero, then $\widetilde{\S}$ has the same property as a
euclidean plane, i.e., the theorem in plane geometry holds on $\widetilde{\mathbb{S}}$. We can introduce Lebesgue measure which coincides with Hausdorff measure μ. If $1 / k<0$, then the following properties of $\widetilde{\varsigma}$ is also easily proved by classical arguments.
(4.6) (i) Let $a b c$ be a rectangular triangle with $a \hat{c} b=\pi / 2$ and $m(a, b)$ the midpoint of the segment $T(a, b)$. Then the distance between $m(a, b)$ and $E[T(b, c)]$ is less than the half of $a c$. (ii) Every equidistant curve to an extremal \mathfrak{x} turns its concavity toward \mathfrak{x}. (iii) For an extremal subarc $x(\tau), \alpha \leqq$ $\tau \leqq \beta$, and an extremal \mathfrak{x} the function $f(\tau)=x(\tau) E[x]$ is a convex function.

In virtue of (3.5), (4.1), (4.2), (4.3) and (4.6), if (55 is a G-space with constant curvature and the excess function is of bounded variation, the space \mathscr{E} is of Type I or Type II according as its constant generalized Riemannian curvature is positive or non-positive. Specially, if $1 / k=0$, the space $\widetilde{\mathscr{S}}$ is regarded as an n-dimensional euclidean space.

References

[1]. H. Busemann, Local metric geometry, Trans. Amer. Math. Soc., 56 (1944), 200274.
[2]. S. Cohn-Vossen, Kürzeste Wege und Totalkrümmung auf Flächen, Comp. Math., 2 (1935), 69-133.
[3]. S. Saks, Theory of the integral, Warszawa-Lwów (1937).
[4] A. Hausdorff, Mengenlehre, 3, Aufl., Berlin (1935).
[5]. Y. NASU, On spaces with constant curvature, Tensor, 5 (1955).

[^0]: 1) $E\left[x_{1}(\tau), 0 \leqq r \leqq r(p)\right]$ means the set of all points of the segment $x_{1}(\tau), 0 \leqq r \leqq \eta(p)$.

 We use the same notation for half extremals and extremals.
 2) Fl means the closed limit introduced by Hausdorff [1], [4]

[^1]: 3) The interior of a set X is denoted by X°.
[^2]: 4) Let X be any subset of S and, for a given ε, Λ the class of all countable coverings $\Sigma\left(X_{i}=X\right)$ with diam $X_{i}<\varepsilon$. Then the 2-dimensional Hausdorff measure $\mu(X)$ is defined as $(\pi / 4) \lim \left\{\underset{\Lambda}{\inf } \Sigma\left(\operatorname{diam} X_{i}\right)^{2}\right\}$.
[^3]: 7) Let x and x^{\prime} be two points on $K(p, \bar{\delta}(p))$. The open segment $T\left(x, x^{\prime}\right)-x-x^{\prime}$ is said a line g_{p}.
 8) A line g_{p} is said perpendicular to a set E at a point f, if every point on g_{p} has f as a foot on E.
