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1. Let /CO be a summable function, periodic with period 2π. Let its
Fourier series be

1
-p- tfo + 2 (Cn c o s nt + bn sin nt) =

We write

Cα>0),

0

pΛ(t) = Γ(α + 1)*-*ΦΛ(O (α > 0),

THEOREM 1. / /

Jti+*\d(f)\ < oo,J
0

then the series 2 ny~BAn(t) is summable \C,a\ at t = x, where l> a> r ̂ >

When r = β, this theorem reduces to the following theorem for the case

BOSANQUET'S THEOREM [2]. // <Pβ(t) is of hounded variation in (0,π), then
the Fourier series of fit) is summable | C, a \ at the point t = x, where a > β

Further Theorem 1 generalizes the following theorem.

MOHANTY'S THEOREM [3]. / / 0 < a < 1, and

ft-\dφ(t) I <oo,
o

then 2 n*An(t) is summable \ C, β | for β> a, at t =x.
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THEOREM 2. / /

J I d(t-vφβ(t)) I < oo,
0

then the series
oo ny~β

2
is summable \C,r\ at t = x, where 1 ]> T I> 0 I> 0, αwJ ε > 0.

This theorem is a generalization of the following theorem.

CHENG'S THEOREM [4]. // <pΛ(t), 0<Iα: <: 1 is of bounded variation in (0, π),

2 /s summbale \C, a\ at the point t = x.

2. Proof of Theorem 1- We require the following lemmas.

LEMMA 1. Let

k

Sk(n, 0 = 2 K~-l s i n vt Cl > « > 0), (* ̂  w),
v = 0

have
, O = O{Λ(w - Λ)--1}=O{/-1(w - ^)*-1} (A < n),

Sn(n,t) =O(n«)=

PROOF. The first result is obtained by Abel's transformation, the second
has been given by Obrechkoff [1],

LEMMA 2. Let

Sϊin, t) = (jL)κSΛ(n, O,

then we have

Sfcn, O = Oί^+^w - ky-1} = Oy^kHn - k)*-1} (k < n)

The proof is the same as Lemma 1.

LEMMA 3. L ί̂

H«(n, t) = - L 2 ^ : ^ δ s i n w C« = r - £),

we have
H*(n, t) = O(nS)=O(t-1ns-1 + *-*««-*).
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PROOF. By Abel's transformation,

From Lemma 1,

O{v(n -

0

Substituting these values into H*(n, /), we get Lemma 3.

LEMMA 4.

PROOF. From the definition

n, t) =- {2

Using Lemma 2,

n-1

v=0

θ{ jf

Then, by the above equality we get Lemma 4.

LEMMA 5. Let

J(n,u) = Γ (t - u)-B~^-H«(n, t) dt

then, we have

207
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PROOF. We divide the interval of integration into two parts and put

J(n, fθ =

By the aid of Lemma 4, and by the second mean value theorem, we have,

Ji(n, u) =j n (t- «)-β O(nι+*) dt

/«(», «) = f (t-u) -B-jfH« in, t) dt

-§fH*Cu, 0

=--O{nβH«(n, u)}

(w -f n-1 ^ ξ ^ 7r).

By the same way, we have

tt+Λ"1

/i(»,«) = fa - ^-

f(t - uyH'1 dt + n1**-* f (t - uy*t-dή

LEMMA 6. Let

f dI(n, u) = / vβ ~r~f(nf v) dv,{ dvJ

then we have

PROOF. We use the second mean value theorem and Lemma 5.
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si

LEMMA 7. Let

K(n,u) = fv*-^J(n,

then we have

K(n, u) = O(n*+β-« + u-χn*-1 -f u-«n&-«

PROOF. By integration by parts we have
Tt

K(n, u) = [υ*J(n, t;)]; - β J υ^JCn, v)dv

say. By Lemma 5 we have
- uβuβj(n, u)

For the part ίC2, we use the definition of /(«, «) and Lemma 3, then

u

= ί Vs-1 f (t - V)-* -gfH'ίn, 0 at dv
u v

* J t

- § -4fH*tn, t) J v*~Kt - υy*dv dt
1

>*-Kl -zyPdzdt

u/t

1 it J

= /y zβ^Cl - z)~βdz]

f J -jfH«(n, t) dt

^θ{H«(n, π) -H«(n, c)}

since u<L C ^ ^.
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PROOF OF THEOREM 1. It is sufficient to prove that

oo

where
re

Using the notations in above lemmas we obtain
- n c\ it

1 ^ n 1 a ̂  Γ
Cn~ ~Λ~ ^ ι Λ^ZyV v^-o— I φ(t) COS vt at

n v=o

— — I <p(t) ̂ 4^- 2 A%-v vΊ~*\> cos v/ dt

/
0

/
0

(t - ^-β-di

0
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If we suppose that <?(/)= 1, then ζ% = 0, <Pβ(u) = 1 and we obtain
I(n, π) = 0. Thus we have

Hence

We divide 2 into two parts such that
OO

I(n, u)

= Mi + M2,

say. From Lemma 6 we have

Γ

For the part M 2 we use Lemma 7. Since

we have

Thus

and then

n = 1 o o

since δ = r — β.

This completes the proof of Theorem 1.
Similarly we can prove the following theorem.
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THEOREM 3. / /

It

J t--* I dΦβ(t) I < oo, Φ0(+O) - 0,
0

then the series
00

w = 0

is summable \C,a\ at t = x, where 1 > cc> r :> β^>0.

3. Proof of Theorem 2. We shall prove here the theorem for the case
r > β only.

Firstly we suppose j9 > 0. We require the following lemmas.

LEMMA 8. Let

k

Sk(n, /j = 2 Al-l s i n ^ (k^n,l^r> 0),

then we have
Sk(n, /) = O{k(n -

and
Sn(n,t) =

LEMMA 9. Let

= (—TSkCn, t) α ^ 1, * ^ »),

(k < n),

These are similarly proved as Lemmas 1, 2.

LEMMA 10. Let

then we have

h u iΊ

I Clog »)*+• ̂  Gog
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PROOF. By Abel's transformation we have

Win, t) = \ { 2 SΛn, 04 {lθg(/i 2)]1+< +Sn(n, t) llog(n% 2)V+<}•

From Lemma 8

hence
n-l

LEMMA 11.

I (log M ) ^ 8 ^ (log

PROOF. By Abel's transformation

By Lemma 9 we obtain

1 rfvl = θ / \
G o g O 1 + β / I Clog «)•+'/'

LEMMA 12.
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J(n, u) = j Ct - !4)-β~-HΠn,t) dt,

then we have

PROOF. We split up the interval into two parts, i.e.
W+W*"1 it

J(n,u)=f +f =/, + /„
in u+n

say. Then as λ = 1, Lemma 4 gives

/l =,

/

o{

ol

(log
+* ^ dt-

+'ί dt'

J a-uy*dt},

For the second part / 2 we use the second mean value theorem and Lemma
10, then

h = J (t - uyV-^jjW (n, t) dt - n?f ~HHn, t)dt

since by u + n^^ξ^π we may regard [Hy(n, O]S+»-i = O{Hy(n, «)}.

LEMMA 13.
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then we have

PROOF. We use the first value of JCn,u) in Lemma 12,

7* d Γ T '
I(n. u) = uy I —j—J(n,v) dv = uy\ J(n, v) \ =O

LEMMA 14. Let

then we have

K(n, u) = <

+ u β (log

PROOF. We integrate by parts,

K(n, u) =Γ^/Cn, v)Ύ -r f vv-iJCn, v)dv

say. Then by the second estimation of J(n,u) in Lemma 12,

K,C«, to - nyjCn, n) - u^J(n, u) =

For the part K2, from the definition of Jin, u) and the second estimation of
Hy(n,t) in Lemma 10,

It It j

t V

^ J~j~ HHnft) J v^-^t - u)-?dv dt

* - 1

1 * /
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- J HHn,/ Ϊ H K n y W P \ J HHn, ί ) / * " * " 1 dή .

We substitute the second estimation of Lemma 3 for Hy(n, t), then we get
easily

LEMMA 15. When nu^>l, we have K(n,u) = O{l/(logny+z}.

PROOF. If we remember that δ = r — β, we obtain from Lemma 14

\
f

From the assumption, nu^l, and r — 1, —1 + ΐ — β, — β are all non-positive.
Hence we get easily the lemma.

Now we shall prove Theorem 2 for the case β > 0. Proof runs quite
similary as that of Theorem 1.

It is sufficient to prove that

21 a \/n<oo,
n=i

where ζΊ

n is the w-th Cesaro mean of order r of the sequence {n ny-PAn(x)/
(\ogny+*}. Using the notations in the above lemmas we have

1 J*, 1
ζn===~Alf^i n-vVmpΊ {logCv + 2;} l+ε AnCx^

,t)dt

0

2 J
l - fljj

o

f(t- u>-β-d7HHn'» dt

o

w, «)]* - Jl(n, u) d
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Thus it suffices for us to prove that
oo

(A) 2 Kn>

and
OO ηt

•^c—i ί* / \

< OO.

7T

(B) 2 ί ' ίn> v) d ί̂ ~γΦβ (u))

PROOF OF (A). We have

0

for any integrable even function <e(O If we put <p(O— P-β, then we easily
get

therefore

Further, we have [5]

f <P(O cos vtdt = j V-t
o o

cos -τr-7r(r - ^ + D (I r -/91 ̂  1).

Hence, when φ(t) = Z7"^, we have

Now, since

^ 1 Of } (n ,ΛV-1

f

we obtain
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Hence the proof of (A) follows immediately, that is,

PROOF OF (B). By the assumption

Γ d{u"*Φβ(u)}
0

and obviously

1 r

<oo,

2 -=- / Kn,

hence it suffices for us to prove

uniformly with respect to u. We now divide the sum into two parts such
that

say. In the estimation of M1} we use Lemma 13, then

.o{^/

= θ{l/(logny+ή

Remembering that I(n,u) = I(n, π) — K(n,u), we have

n / r ^ ^ ' l ι r , v i . ^ ~ i 1

where the first sum on the right side is finite as was proved and, by Lemma
15,

Γ-i n
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Thus Theorem 2 is proved for the case β > 0.
For the case β = 0, we shall only sketch the proof since this case is

rather simple. It is sufficient to prove that, if

f \d{t-*φa)}\< oo,

where 0 < r <I 1, then the series
oo

2 nM»(O/Uog (n
W = 0

is summable | C, r | at / = x.

Now

i h HHn> v^dv + 1 dv~yφvn SvΊ ~wHHn'v) dv) •
0 00

We put

rJ
d

0

then it is sufficient to prove that

for 0 ^ / ^ π .

We begin to prove this for t = π. Putting φQt) = tΊ, we get

I(n,π)=O{l/(\0gny+*},

and then
oo

2 I I(n, π) \/n < oo.
ίl = l

Next we write

l/»= 2 |/(«,O|/w+ 2 \I(n,π) -K(n,t)\/n.

By the second mean value theorem and the first part of Lemma 10 we have

t .

therefore
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By integration by parts we have

K(n,t) =

= θ/l/clog ny+* + f-WΊ/ζlog ny+ή -r j V-WCn, v) dv
t

where we used for Hy(n,v) the second value of Lemma 10. The second
term of the right is

^HHn, v)dv = -^ ± Alzl ^ ^ 2 ) } 1 + e / *-> sin vdv/

Hence when w^/"1, remembering r <I 1, we have K(n,t) = O{l/(log
The proof of

2 |2fC«>0|/n = O(l)

is now in hand.
Thus Theorem 2 is proved completely.

4. We shall end this paper by showing theorems, which will clarify the
relation between Theorem 1 and Theorem 2.

THEOREM 4. Under the condition
Tt

f \d(U-*Φβ(U))\<oo,
0

we cannot conclude the \C, cc\ summability of _2 ny~βAn(x), however large oc
may be, where a > r > β.

PROOF. For the proof we shall give a negative example. Let <p(t) = ty~β

(r > β), then

f\d[u-*Φβ(u)}\ = 0,
0

but as we have already shown

c ; = ^ 2 Aizlvvy-β- A f ^(o cos vί dt
0

Γ* n

= = = Δ<* S£A -n-n-v w
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where C is a constant, Hence
oo

2 I C£ \/n = co.
71 = 1

THEOREM 5. Let v > 0. In order that

φ t-yΦβ(t) is of bounded variation in (0, V)

and

(ii) /"y"1 |Φβ0OI « integrable in (0, V),

ίϊ /s necessary and sufficient that
•n

(Hi)

(iv) <Ps(+ 0) = 0.

PROOF. The condition is sufficient. For, if (Hi) and (iv) hold, then we
have

f\ΦB(O\dt_ f ka(O| dt . f dt 1 f
J tι+i a t J T(β + D^+Y-β a ι J Γ(β + D / ' + Ϊ - P IJ

0 0 0 0

_ Γ \dφβ(u)\ r dt
~ J T(β + l) J μ+y

0 U

= / Γ(/+Mi) V~^

from which (ii) follows; and then (i) follows from

i ' •

The condition is necessary. For, suppose that (i) and (ii) hold, we now
obtain (Hi) from
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f ί-»+P IdφB(t) \
0

V

= f\d{T(β + l)t-vφB(t)} \+(r - β)fT(a + l)t-<-*\ΦB(O\dt < oo.
0 0

(iv) is obvious from (i).

Thus Theorem 5 is proved.

From the proof of Theorem 5, we can also conclude that the condition

< oo, <pβ( + 0) = 0
0

is equivalent to the condition of Theorem 3, that is,

V

J t"> I dΦβ(t) | < oo, Φ 0 ( + 0) - 0.
0
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