ON ABSOLUTE CESÀRO SUMMABILITY OF A SERIES
 RELATED TO A FOURIER SERIES

Kishi Matsumoto

(Received December 5, 1955)

1. Let $f(t)$ be a summable function, periodic with period 2π. Let its Fourier series be

$$
\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n t+b_{n} \sin n t\right) \equiv \sum_{n=0}^{\infty} A_{n}(t)
$$

We write

$$
\begin{array}{rlrl}
\varphi(t) & =\frac{1}{2}\{f(x+t)+f(x-t)\} & \\
\Phi_{\alpha}(t) & =\left(\frac{1}{\Gamma(\alpha)}\right) \int_{0}^{t}(t-u)^{\alpha-1} \varphi(u) d u & & (\alpha>0) \\
\varphi_{\alpha}(t) & =\Gamma(\alpha+1) t^{-\alpha} \Phi_{\alpha}(t) & (\alpha>0) \\
A_{n}^{\alpha} & =\binom{n+\alpha}{n} \cong n^{\alpha} / \Gamma(\alpha+1) &
\end{array}
$$

Theorem 1. If

$$
\int_{0}^{\pi} t^{-\gamma+\beta}\left|d \varphi_{\beta}(t)\right|<\infty
$$

then the series $\sum n^{\gamma-\beta} A_{n}(t)$ is summable $|C, \alpha|$ at $t=x$, where $1>\alpha>\gamma \geqq$ $\beta \geqq 0$.

When $\gamma=\beta$, this theorem reduces to the following theorem for the case $1>\beta \geqq 0$.

Bosanquet's Theorem [2]. If $\varphi_{B}(t)$ is of bounded variation in $(0, \pi)$, then the Fourier series of $f(t)$ is summable $|C, \alpha|$ at the point $t=x$, where $\alpha>\beta$ ≥ 0.

Further Theorem 1 generalizes the following theorem.
Mohanty's Theorem [3]. If $0<\alpha<1$, and

$$
\int_{0}^{\pi} t^{-\infty}|d \varphi(t)|<\infty
$$

then $\sum n^{\alpha} A_{n}(t)$ is summable $|C, \beta|$ for $\beta>\alpha$, at $t=x$.

Theorem 2. If

$$
\int_{0}^{\pi}\left|d\left(t^{-\gamma} \Phi_{\beta}(t)\right)\right|<\infty
$$

then the series

$$
\sum_{n=0}^{\infty} \frac{n^{\gamma-\beta}}{\{\log (n+2)\}^{1+\varepsilon}} A_{n}(t)
$$

is summable $|C, r|$ at $t=x$, where $1 \geqq r \geqq \beta \geqq 0$, and $\varepsilon>0$.
This theorem is a generalization of the following theorem.
Cheng's Theorem [4]. If $\varphi_{\alpha}(t), 0 \leqq \alpha \leqq 1$ is of bounded variation in ($0, \pi$), then $\sum A_{n}(t) /(\log n)^{1+\varepsilon}$ is summbale $|C, \alpha|$ at the point $t=x$.
2. Proof of Theorem 1. We require the following lemmas.

Lemma 1. Let

$$
S_{k}(n, t)=\sum_{\nu=0}^{k} A_{n-\nu}^{\alpha-1} \sin \nu t \quad(1>\alpha>0),(k \leqq n),
$$

then we have

$$
\begin{aligned}
S_{k}(n, t)=O\left\{k(n-k)^{\alpha-1}\right\} & =O\left\{t^{-1}(n-k)^{\alpha-1}\right\} \\
S_{n}(n, t)=O\left(n^{\alpha}\right) & =O\left(t^{-\alpha}\right)
\end{aligned}
$$

Proof. The first result is obtained by Abel's transformation, the second has been given by Obrechkoff [1].

Lemma 2. Let

$$
S_{k}^{\lambda}(n, t)=\left(\frac{d}{d t}\right)^{\lambda} S_{k}(n, t)
$$

then we have

$$
\begin{aligned}
& S_{k}^{\lambda}(n, t)=O\left\{k^{\lambda+1}(n-k)^{\alpha-1}\right\}=O\left\{t^{-1} k^{\lambda}(n-k)^{\alpha-1}\right\} \quad(k<n) \\
& S_{n}^{\lambda}(n, t)=O\left(n^{\alpha+\lambda}\right)=O\left(n^{\lambda} t^{-\alpha}\right)
\end{aligned}
$$

The proof is the same as Lemma 1.
Lemma 3. Let

$$
H^{\alpha}(n, t)=\frac{1}{A_{n}^{\alpha}} \sum_{\nu=0}^{n} A_{n-\nu}^{\alpha-1} \nu \delta \sin \nu t \quad(\delta=\gamma-\beta)
$$

then we have

$$
H^{\alpha}(n, t)=O\left(n^{\delta}\right)=O\left(t^{-1} n^{\delta-1}+t^{-\alpha} n^{\delta-\alpha}\right) .
$$

Proof. By Abel's transformation,

$$
H^{a}(n, t)=\frac{1}{A_{n}^{\alpha}}\left\{\sum_{\nu=0}^{n-1} S_{\nu}(n, t) \Delta \nu^{\delta}+S_{n}(n, t) n_{\zeta}^{\delta}\right\} .
$$

From Lemma 1,

$$
\begin{aligned}
S_{\nu}(n, t) \Delta \nu^{\delta} & =O\left\{\nu(n-\nu)^{\alpha-1} \nu^{\delta-1}\right\} \\
& =O\left\{t^{-1}(n-\nu)^{\alpha-1} \nu^{-1}\right\} \\
\sum_{\nu=0}^{n-1} S_{\nu}(n, t) \Delta \nu \delta & =O\left\{\int_{0}^{n}(n-\nu)^{\alpha-1} \nu \delta d \nu\right\} \\
& =O\left(n^{\delta+\alpha}\right), \\
& =O\left\{t^{-1} \int_{0}^{n}(n-\nu)^{\alpha-1} \nu^{\delta-1} d \nu\right\} \\
& =O\left(t^{-1} n^{\delta+\alpha-1}\right) .
\end{aligned}
$$

Substituting these values into $H^{\alpha}(n, t)$, we get Lemma 3.
Lemma 4.

$$
\begin{aligned}
\left(\frac{d}{d t}\right)^{\lambda} H^{\alpha}(n, t) & =O\left(n^{\lambda+\delta}\right), \\
& =O\left(t^{-1} n^{\lambda+\delta}+t^{-\alpha} n^{\lambda+\delta-\alpha}\right)
\end{aligned}
$$

Proof. From the definition

$$
\left(\frac{d}{d \lambda}\right)^{\lambda} H^{\alpha}(n, t)=\frac{1}{A_{n}^{\alpha}}\left\{\sum_{\nu=0}^{n-1} S_{\nu}^{\lambda}(n, t) \Delta \nu^{\delta}+n^{\delta} S_{n}^{\lambda}(n, t)^{\prime} .\right.
$$

Using Lemma 2,

$$
\sum_{\nu=0}^{n-1} S_{\nu}^{\lambda}(n, t) \Delta \nu^{\delta}=\left\{\begin{array}{l}
O\left\{\int_{0}^{n} \nu^{\lambda+1}(n-\nu)^{\alpha-1} \nu \delta-1\right. \\
\nu
\end{array}\right\}=O\left(n^{\lambda+\delta+\alpha}\right),\left\{\begin{array}{l}
O\left\{t^{-1} \int_{0}^{n} \nu^{\lambda}(n-\nu)^{\alpha-1} \nu^{\delta-1} d \nu\right\}=O\left(t^{-1} n^{\lambda+\delta+\alpha-1}\right)
\end{array}\right.
$$

Then, by the above equality we get Lemma 4.
Lemma 5. Let

$$
J(n, u)=\int_{u}^{\pi}(t-u)^{-\beta} \frac{d}{d t} H^{\alpha}(n, t) d t
$$

then, we have

$$
\begin{aligned}
J(n, u) & =O\left(n^{\alpha+\beta}\right), \\
& =O\left(u^{-1} n^{\delta+\beta-1}+u^{-\alpha} n^{\delta-\alpha+\beta}\right) .
\end{aligned}
$$

Proof. We divide the interval of integration into two parts and put

$$
J(n, u)=\int_{u}^{u+n^{-1}}+\int_{u+n^{-1}}^{\pi}=J_{1}+J_{2}
$$

By the aid of Lemma 4, and by the second mean value theorem, we have,

$$
\begin{aligned}
J_{1}(n, u) & =\int_{u}^{u+n^{-1}}(t-u)^{-\beta} \cdot O\left(n^{1+\delta}\right) d t \\
& =O\left(n^{\delta+\beta}\right) . \\
J_{2}(n, u) & =\int_{u+n^{-1}}^{\pi}(t-u)^{-\beta} \frac{d}{d t} H^{\alpha}(n, t) d t \\
& =n^{\beta} \int_{u+n^{-1}}^{\pi} \frac{d}{d t} H^{\alpha}(n, t) d t \\
& =O\left\{n^{\beta} H^{\alpha}(n, u)\right\} \\
& =O\left(n^{\delta+\beta}\right), \quad\left(u+n^{-1} \leqq \xi \leqq \pi\right) .
\end{aligned}
$$

By the same way, we have

$$
\begin{aligned}
J_{1}(n, u) & =\int_{u}^{u+n^{-1}}(t-u)^{-\beta} \cdot O\left(t^{-1} n^{\delta}+t^{-\alpha} n^{1+\delta-\alpha}\right) d t \\
& =O\left\{n^{\delta} \int_{u}^{u+n^{-1}}(t-u)^{-\beta} t^{-1} d t+n^{1+\delta-\alpha} \int_{u}^{u+n^{-1}}(t-u)^{-\beta} t^{-\alpha} d t^{\}}\right. \\
& =O\left(u^{-1} u^{\delta+\beta-1}+u^{-\alpha} n^{\delta+\beta-\alpha}\right) . \\
J_{2}(n, u) & =O\left\{n^{\beta} H^{\alpha}(n, u)\right\} \\
& =O\left(u^{-1} n^{\delta+\beta-1}+u^{-\alpha} n^{\delta+\beta-\alpha}\right) .
\end{aligned}
$$

Lemma 6. Let

$$
I(n, u)=\int_{0}^{u} v^{\beta} \frac{d}{d v} J(n, v) d v,
$$

then we have

$$
I(n, u)=O\left(u^{\beta} n^{\alpha+\beta}\right) .
$$

Proof. We use the second mean value theorem and Lemma 5.

$$
\begin{aligned}
I(n, u) & =u^{\beta} \int_{\eta}^{u} \frac{d}{d v} J(n, v) d v \\
& =u^{\beta}[J(n, v)]_{\eta}^{u} \\
& =O\left(u^{\beta} n^{\delta+\beta}\right)
\end{aligned}
$$

Lemma 7. Let

$$
K(n, u)=\int_{u}^{\pi} v^{\beta} \frac{d}{d v} J(n, v) d v
$$

then we have

$$
\begin{aligned}
K(n, u)=O\left(n^{\delta+\beta-\alpha}\right. & +u^{-1} n^{\delta-1}+u^{-\alpha} n^{\delta-\alpha} \\
& \left.+u^{-1+\beta} n^{\delta-1+\beta}+u^{-\alpha+\beta} n^{\delta-\alpha+\beta}\right)
\end{aligned}
$$

Proof. By integration by parts we have

$$
K(n, u)=\left[v^{\beta} J(n, v)\right]_{u}^{\pi}-\beta \int_{u}^{\pi} v^{\beta-1} J(n, v) d v=K_{1}+K_{2}
$$

say. By Lemma 5 we have

$$
\begin{aligned}
K_{1} & =\pi^{\beta} J(n, \pi)-u^{\beta} J(n, u) \\
& =O\left(n^{\delta+\beta-\alpha}+u^{\beta-1} n^{\delta+\beta-1}+u^{\beta-\alpha} n^{\delta+\beta-\alpha}\right)
\end{aligned}
$$

For the part K_{2}, we use the definition of $J(n, u)$ and Lemma 3, then

$$
\begin{aligned}
K_{2} & =\int_{u}^{\pi} v^{\beta-1} J(n, v) d v \\
& =\int_{u}^{\pi} v^{\beta-1} \int_{v}^{\pi}(t-v)^{-\beta} \frac{d}{d t} H^{\alpha}(n, t) d t d v \\
& =\int_{u}^{\pi} \frac{d}{d t} H^{\alpha}(n, t) \int_{u}^{t} v^{\beta-1}(t-v)^{-\beta} d v d t \\
& =\int_{u}^{\pi} \frac{d}{d t} H^{\alpha}(n, t) \int_{u / t}^{1} z^{\beta-1}(1-z)^{-\beta} d z d t \\
& =\int_{u / \pi}^{1} z^{\beta-1}(1-z)^{-\beta} d z_{\}} \int_{\zeta}^{\pi} \frac{d}{d t} H^{\alpha}(n, t) d t \\
& =O\left\{\left[H^{\alpha}(n, t)\right]_{\zeta}^{\pi}\right\} \\
& =O\left\{H^{\alpha}(n, \pi)-H^{\alpha}(n, \zeta)\right\} \\
& =O\left(n^{\delta-\alpha}+u^{-1} n^{\delta-1}+u^{-\alpha} n^{\delta-\alpha}\right)
\end{aligned}
$$

since $\boldsymbol{u} \leqq \zeta \leqq \pi$.

Proof of Theorem 1. It is sufficient to prove that

$$
\sum_{n=1}^{\infty}\left|\zeta_{n}^{\alpha}\right| / n<\infty
$$

where

$$
\zeta_{n}^{\alpha}=\frac{1}{A_{n}^{\alpha}} \sum_{\nu=0}^{n} A_{n-\nu}^{\alpha-1} \nu \cdot \nu^{\gamma-\beta} A_{\nu}(x) .
$$

Using the notations in above lemmas we obtain

$$
\begin{aligned}
\zeta_{n}^{\alpha} & =\frac{1}{A_{n}^{\alpha}} \sum_{\nu=0}^{n} A_{n-\nu}^{\alpha-1} \nu \nu^{\gamma-\beta} \frac{2}{\pi} \int_{0}^{\pi} \varphi(t) \cos \nu t d t \\
& =\frac{2}{\pi} \int_{0}^{\pi} \varphi(t) \frac{1}{A_{n}^{\alpha}} \sum_{\nu=0}^{n} A_{n-\nu}^{\alpha-1} \nu^{\gamma-\beta} \nu \cos \nu t d t \\
& =\frac{2}{\pi} \int_{0}^{\pi} \varphi(t) \frac{d}{d t}(\underbrace{\alpha}_{A_{n}^{\alpha}} \sum_{\nu=0}^{n} A_{n-\nu}^{\alpha-1} \nu^{\gamma-\beta} \sin \nu t) d t \\
& =\frac{2}{\pi} \int_{0}^{\pi} \varphi(t) \frac{d}{d t} H^{\alpha}(n, t) d t \\
& \left.=\frac{2}{\pi} \int_{0}^{\pi} \frac{d}{d t} H^{\alpha}(n, t)\right\}_{\left[\frac{1}{\Gamma(1-\beta)} \int_{0}^{t}(t-u)^{-\beta} d \Phi_{B}(u)\right\} d t} \\
& =\frac{2}{\pi \Gamma(1-\beta)} \int_{0}^{\pi} d \Phi_{\beta}(u) \int_{u}^{\pi}(t-u)^{-\beta} \frac{d}{d t} H^{\alpha}(n, t) d t \\
& =\frac{2}{\pi \Gamma(1-\beta)} \int_{0}^{\pi} J(n, u) d \Phi_{B}(u) \\
& =\frac{2}{\pi \Gamma(1-\beta)}\left[\Phi_{\beta}(u) J(n, u)\right]_{0}^{\pi}-\frac{2}{\pi \Gamma(1-\beta)} \int_{0}^{\pi} \Phi_{\beta}(u) \frac{d}{d u} J(n, u) d u \\
& =-\frac{2}{\pi \Gamma(1-\beta)} \int_{0}^{\pi} u^{-\beta} \Phi_{\beta}(u) u^{\beta} \frac{d}{d u} J(n, u) d u \\
& =-\frac{2}{\pi \Gamma(1-\beta)}\left(\left[u^{-\beta} \Phi_{\beta}(u) I(n, u)\right]_{0}^{\pi}-\frac{1}{\Gamma(\beta+1)} \int_{0}^{\pi} I(n, u) d\left\{\Phi_{\beta}(u)\right.\right. \\
& =-\frac{2}{\pi \Gamma(1-\beta)} \pi^{-\beta} \Phi_{\beta}(\pi) I(n, \pi)+\frac{1}{\pi \Gamma(1-\beta) \Gamma(1+\beta)} \int_{0}^{\pi} I(n, u) d \varphi_{\beta}(u) .
\end{aligned}
$$

If we suppose that $\varphi(t) \equiv 1$, then $\zeta_{n}^{\alpha}=0, \varphi_{B}(u)=1$ and we obtain $I(n, \pi)=0$. Thus we have

$$
\zeta_{n}^{\alpha}=\frac{2}{\pi \Gamma(1-\beta) \Gamma(1+\beta)} \int_{0}^{\pi} I(n, u) d \varphi_{\beta}(u) .
$$

Hence

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{\left|\zeta_{n}^{\alpha}\right|}{n} & =O\left\{\int_{0}^{\pi} \sum_{n=1}^{\infty} \frac{I(n, u)}{n} d \varphi_{B}(u)\right\} \\
& =O\left\{\int_{0}^{\pi}\left|\sum_{n=1}^{\infty} \frac{I(n, u)}{n} \| d \varphi_{B}(u)\right|\right\}
\end{aligned}
$$

We divide \sum into two parts such that

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{I(n, u)}{n} & =\sum_{n<u-1} \frac{I(n, u)}{n}+\sum_{n \geq u^{-1}} \frac{I(n, u)}{n} \\
& =M_{1}+M_{2},
\end{aligned}
$$

say. From Lemma 6 we have

$$
M_{1}=O\left(\sum_{n<u^{-1}} \frac{u^{\beta} n^{\delta+\beta}}{n}\right)=O\left(u^{\beta} \int_{0}^{u^{-1}} y^{\delta+\beta-1} d y\right)=O\left(u^{-\delta}\right)
$$

For the part M_{2} we use Lemma 7. Since

$$
I(n, u)=I(n, \pi)-K(n, u)=-K(n, u),
$$

we have

$$
\begin{aligned}
M_{2}= & O\left\{\sum_{n \geq u^{-1}} \frac{-K(n, u)}{n}\right\} \\
= & O\left\{\sum_{n \geq u^{-1}} n^{\delta+\beta-\alpha-1}+u^{-1} n^{\delta-2}+u^{-\alpha} n^{\delta-\alpha-1}+u^{-1+\beta} n^{\delta-2+\beta}\right. \\
& \left.+u^{-\alpha+\beta} n^{\delta-\alpha+\beta-1}\right\} \\
= & O\left(u^{-\delta}\right) .
\end{aligned}
$$

Thus

$$
\sum_{n=1}^{\infty} I(n, u) / n=O\left(u^{-\delta}\right)
$$

and then

$$
\sum_{n=1}^{\infty}\left|\zeta_{n}^{\alpha}\right| / n=O\left(\int_{0}^{\pi} u^{-\delta}\left|d \varphi_{\beta}(u)\right|\right)=O\left(\int_{0}^{\pi} u^{-\gamma+\beta}\left|d \varphi_{\beta}(u)\right|\right)<\infty
$$

since $\delta=\gamma-\beta$.
This completes the proof of Theorem 1.
Similarly we can prove the following theorem.

Theorem 3. If

$$
\int_{0}^{\pi} t^{-\gamma}\left|d \Phi_{B}(t)\right|<\infty, \quad \Phi_{B}(+0)=0
$$

then the series

$$
\sum_{n=0}^{\infty} n^{\gamma-\beta} A_{n}(t)
$$

is summable $|C, \alpha|$ at $t=x$, where $1>\alpha>r \geqq \beta \geqq 0$.
3. Proof of Theorem 2. We shall prove here the theorem for the case $r>\beta$ only.

Firstly we suppose $\beta>0$. We require the following lemmas.
Lemma 8. Let

$$
S_{k}(n, t)=\sum_{\nu=0}^{k} A_{n-\nu}^{\gamma-1} \sin \nu t \quad(k \leqq n, 1 \geqq r>0)
$$

then we have

$$
S_{k}(n, t)=O\left\{k(n-k)^{\gamma-1}\right\}, \quad=O\left\{t^{-1}(n-k)^{\gamma-1}\right\} \quad(k<n),
$$

and

$$
S_{n}(n, t)=O\left(n^{\gamma}\right), \quad=O\left(t^{-\gamma}\right) .
$$

Lemma 9. Let

$$
S_{k}^{\lambda}(n, t)=\left(\frac{d}{d t}\right)^{\lambda} S_{k}(n, t) \quad(\lambda \geqq 1, k \leqq n),
$$

then we have

$$
\begin{aligned}
S_{k}^{\lambda}(n, t) & =O\left\{k^{\lambda+1}(n-k)^{\gamma-1}\right\}, \\
& =O\left\{t^{-1} k^{\lambda}(n-k)^{\gamma-1}\right\},
\end{aligned} \quad(k<n),
$$

and

$$
\begin{aligned}
S_{n}^{\lambda}(n, t) & =O\left(n^{\gamma+\lambda}\right), \\
& =O\left(n^{\lambda} t^{-\gamma}\right) .
\end{aligned}
$$

These are similarly proved as Lemmas $1,2$.
Lemma 10. Let

$$
H^{\gamma}(n, t)=\frac{1}{A_{n}^{\gamma}} \sum_{\nu=0}^{n} A_{n-\nu}^{\gamma-1} \frac{\nu \delta}{\{\log (\nu+2)\}^{1+\varepsilon}} \sin \nu t \quad(\delta=\gamma-\beta),
$$

then we have

$$
\begin{aligned}
H^{\gamma}(n, t) & =O\left\{\frac{n^{\delta}}{(\log n)^{1+\varepsilon}}\right\}, \\
& =O\left\{t^{-1} \frac{n^{\delta-1}}{(\log n)^{1+\varepsilon}}+t^{-\gamma} \frac{n^{\delta-\gamma}}{(\log n)^{1+\varepsilon}}\right\} .
\end{aligned}
$$

Proof. By Abel's transformation we have

$$
H^{\gamma}(n, t)=\frac{1}{A_{22}^{\gamma}}\left\{\sum_{\nu=0}^{n-1} S_{\nu}(n, t) \Delta \frac{\nu \delta}{\{\log (\nu+2)\}^{1+\varepsilon}}+S_{n}(n, t) \frac{n^{\delta}}{\left.\{\log (n+2)\}^{1+\varepsilon}\right\}}\right\}
$$

From Lemma 8

$$
\begin{aligned}
S_{\nu}\left(n, t^{\prime}\right) \Delta \frac{\nu \delta}{\{\log (\nu+2)\}^{1+\varepsilon}} & =O\left\{\nu(n-\nu)^{\gamma-1} \frac{\nu^{\delta-1}}{(\log \nu)^{1+\varepsilon}}\right\} \\
& =O\left\{t^{-1}(n-\nu)^{\gamma-1} \frac{\nu \delta-1}{(\log \nu)^{1+\varepsilon}}\right\}
\end{aligned}
$$

hence

$$
\begin{aligned}
& \sum_{\nu=1}^{n-1} S_{\nu}(n, t) \Delta \frac{\nu \delta}{\{\log (\nu+2)\}^{1+\varepsilon}} \\
& =\left\{\begin{array}{l}
O\left\{\int_{0}^{n}(n-\nu)^{\gamma-1} \frac{\nu \delta}{(\log \nu)^{1+\varepsilon}} d \nu\right\}=O\left\{\frac{n^{\delta+\gamma}}{(\log n)^{1+\varepsilon}}\right\}, \\
O\left\{\int_{0}^{n}(n-\nu)^{\gamma-1} \frac{\nu^{\delta-1}}{(\log \nu)^{1+\varepsilon}} d \nu \cdot t^{-1}\right\}=O\left\{t^{-1} \frac{n n^{\delta+\gamma-1}}{(\log n)^{1+\varepsilon}}\right\} .
\end{array}\right.
\end{aligned}
$$

Lemma 11.

$$
\begin{aligned}
\left(\frac{d}{d t}\right)^{\lambda} H^{\gamma}(n, t) & =O\left\{\frac{n^{\lambda+\delta}}{(\log n)^{1+\varepsilon}}\right\} \\
& =O\left\{t^{-1} \frac{n^{\lambda-1+\delta}}{(\log n)^{1+\varepsilon}}+t^{-\gamma} \frac{n^{\lambda+\delta-\gamma}}{(\log n)^{1+\varepsilon}}\right\}
\end{aligned}
$$

Proof. By Abel's transformation

$$
\left(\frac{d}{d t}\right)^{\lambda} H^{\gamma}(n, t)=\frac{1}{A_{n}^{\gamma}}\left\{\sum_{\nu=0}^{n-1} S_{\nu}^{\lambda}(n, t) \Delta \frac{\nu^{\delta}}{\{\log (\nu+2)\}^{1+\varepsilon}}+S_{n}^{\lambda}(n, t) \frac{n^{\delta}}{\{\log (n+2)\}^{1+\varepsilon}}\right\}
$$

By Lemma 9 we obtain

$$
\begin{aligned}
& \sum_{\nu=0}^{n-1} S_{\nu}^{\lambda}(n, t) \Delta \frac{\nu \delta}{(\log \nu)^{1+\varepsilon}} \\
& \quad=\left\{\begin{array}{l}
O\left\{\int_{0}^{n} \nu^{\lambda+1}(n-\nu)^{\gamma-1} \frac{\nu^{\delta-1}}{(\log \nu)^{1+\varepsilon}} d \nu\right\}=O\left\{\frac{n^{\delta+\lambda-\gamma}}{(\log n)^{1+\varepsilon}}\right\}, \\
O\left\{\int_{0}^{n} \nu^{\lambda}(n-\nu)^{\gamma-1} \frac{\nu^{\delta-1}}{(\log \nu)^{1+\varepsilon}} d \nu \cdot t^{-1}\right\}=O\left\{t^{-1} \frac{n^{\lambda+\delta+\gamma-1}}{(\log n)^{1+\varepsilon}}\right\}
\end{array}\right.
\end{aligned}
$$

Lemma 12. Let

$$
J(n, u)=\int_{u}^{\pi}(t-u)^{-\beta} \frac{d}{d t} H^{\gamma}(n, t) d t
$$

then we have

$$
\begin{aligned}
J(n, u) & =O\left\{\frac{n^{\delta+\beta}}{(\log n)^{1+\varepsilon}}\right\} \\
& =O\left\{u^{-1} \frac{n^{\delta+\beta-1}}{(\log n)^{1+\varepsilon}}+u^{-\gamma} \frac{n^{\delta+\beta-\gamma}}{(\log n)^{1+\varepsilon}}\right\} .
\end{aligned}
$$

Proof. We split up the interval into two parts, i.e.

$$
J(n, u)=\int_{u}^{u+n^{-1}}+\int_{u+n^{-1}}^{\pi}=J_{1}+J_{2}
$$

say. Then as $\lambda=1$, Lemma 4 gives

$$
\begin{aligned}
& J_{1}=\left\{\begin{array}{l}
\int_{u}^{u+n^{-1}}(t-u)^{-\beta} O\left\{\frac{n^{1+\delta}}{(\log n)^{1+\varepsilon}}\right\} d t, \\
\int_{u}^{u+n^{-1}}(t-u)^{-\beta} O_{\{ } t^{-1} \frac{n^{\delta}}{(\log n)^{1+\varepsilon}}+t^{-\gamma} \frac{n^{-\gamma+1+\delta}}{\left.(\log n)^{1+\varepsilon}\right\}} d t ;
\end{array}\right. \\
& =\left\{\begin{array}{l}
O\left\{\frac{n^{1+\delta}}{(\log n)^{1+\varepsilon}} \int_{u}^{u+n^{-1}}(t-u)^{-\beta} d t_{\}},\right. \\
O\left\{\frac{n^{\delta}}{(\log n)^{1+\varepsilon}} \int_{u}^{u+n^{-1}}(t-u)^{-\beta} t^{-1} d t+\frac{n^{1+\delta-\gamma}}{(\log n)^{1+\varepsilon}} \int_{u}^{u+n^{-1}}(t-u)^{-\beta} t^{-\gamma} d t ;\right.
\end{array}\right. \\
& =O\left\{\frac{n^{\delta+\beta}}{(\log n)^{1+\varepsilon}}\right\},=O\left\{u^{-1} \frac{n^{\delta+\beta-1}}{(\log n)^{1+\varepsilon}}+u^{-\gamma} \frac{n^{\delta+\beta-\gamma}}{(\log n)^{1+\varepsilon}}\right\} .
\end{aligned}
$$

For the second part J_{2} we use the second mean value theorem and Lemma 10 , then

$$
\begin{aligned}
J_{2} & =\int_{u+n^{-1}}^{\pi}(t-u)^{-\beta} \frac{d}{d \bar{t}} H^{\gamma}(n, t) d t=n^{\beta} \int_{u+n^{-1}}^{\xi} \frac{d}{d t} H^{\gamma}(n, t) d t \\
& =n^{\beta}\left[H^{\gamma}(n, t)\right]_{u+n^{-1}}^{\xi} \\
& =O\left\{n^{\delta+\beta}(\log n)^{-1-\varepsilon}\right\}, \\
& =O\left\{u^{-1} n^{\delta+\beta-1}(\log n)^{-1-\varepsilon}+u^{-\gamma} n^{\delta+\beta-\gamma}(\log n)^{-1-\varepsilon}\right\}
\end{aligned}
$$

since by $u+n^{-1} \leqq \xi \leqq \pi$ we may regard $\left[H^{\gamma}(n, t)\right]_{u+n^{-1}}^{\xi}=O\left\{H^{\nu}(n, u)\right\}$.
Lemma 13. Let

$$
I(n, u)=\int_{0}^{u} v^{\gamma} \frac{d}{d v} J(n, v) d v,
$$

then we have

$$
I(n, u)=O\left\{u^{\gamma} n^{\delta+\beta} /(\log n)^{1+\varepsilon}\right\} .
$$

Proof. We use the first value of $J(n, u)$ in Lemma 12.
$I(n, u)=u^{\gamma} \int_{0}^{\eta} \frac{d}{d v} J(n, v) d v=u^{\gamma}[J(n, v)]_{0}^{\eta}=O\left\{u^{\gamma} n^{\delta+\beta} /(\log n)^{1+\varepsilon}\right\}$.

Lemma 14. Let

$$
K(n, u)=\int_{u}^{\pi} v^{\gamma} \frac{d}{d v} J(n, v) d v,
$$

then we have

$$
\begin{aligned}
& K(n, u)=O_{\left\{\frac{n+\beta}{\delta+\beta}\right.}^{(\log n)^{1+\varepsilon}}+u^{\gamma-1} \frac{n^{\delta+\beta-1}}{(\log n)^{1+\varepsilon}} \\
& \left.\quad+u^{-1+\gamma-\beta} \frac{n^{\delta-1}}{(\log n)^{1+\varepsilon}}+u^{-\beta} \frac{n^{\delta-\gamma}}{(\log n)^{1+\varepsilon}}\right\} .
\end{aligned}
$$

Proof. We integrate by parts,

$$
\begin{aligned}
K(n, u) & =\left[v^{\gamma} J(n, v)\right]_{u}^{\pi}-\gamma \int_{u}^{\pi} v^{\gamma-1} J(n, v) d v \\
& =K_{1}+K_{2}
\end{aligned}
$$

say. Then by the second estimation of $J(n, u)$ in Lemma 12,

$$
K_{1}(n, u)=\pi^{\gamma} J(n, \pi)-u^{\gamma} J(n, u)=O\left\{\frac{n^{\delta+\beta-\gamma}}{(\log n)^{1+\varepsilon}}+u^{-1+\gamma} \frac{n^{\delta+\beta-1}}{(\log n)^{1+\varepsilon}}\right\} .
$$

For the part K_{2}, from the definition of $J(n, u)$ and the second estimation of $H^{\gamma}(n, t)$ in Lemma 10,

$$
\begin{aligned}
K_{2} & =\int_{u}^{\pi} v^{\gamma-1} \int_{v}^{\pi}(t-v)^{-\beta} \frac{d}{d t} H^{\gamma}(n, t) d t d v \\
& =\int_{u}^{\pi} \frac{d}{d t} H^{\gamma}(n, t) \int_{u}^{t} v^{\gamma-1}(t-u)^{-\beta} d v d t \\
& =\int_{u}^{\pi} \frac{d}{d t} H^{\gamma}(n, t) t^{\gamma-\beta} \int_{u / t}^{1} z^{\gamma-1}(1-z)^{-\beta} d z d t \\
& =\int_{u / \pi}^{1} z^{\gamma-1}(1-z)^{-\beta} d z \int_{\zeta}^{\pi} t^{\gamma-\beta} \frac{d}{d t} H^{\gamma}(n, t) d t \\
& =O\left\{\int_{\zeta}^{\pi} t^{\gamma-\beta} \frac{d}{d t} H^{\gamma}(n, t) d t\right\}
\end{aligned}
$$

$$
=O\left\{\left[H^{\gamma}(n, t) t^{\gamma-\beta}\right]_{\zeta}^{\pi}-\int_{\zeta}^{\pi} H^{\gamma}(n, t) t^{\gamma-\beta-1} d t_{\}}^{\}}\right.
$$

We substitute the second estimation of Lemma 3 for $H^{\gamma}(n, t)$, then we get easily

$$
K_{2}=O\left\{u^{\gamma-\beta-1} \frac{n^{\delta-1}}{(\log n)^{1+\varepsilon}}+u^{-\beta} \frac{n^{\delta-\gamma}}{(\log n)^{1+\varepsilon}}\right\} .
$$

Lemma 15. When $n u \geqq 1$, we have $K(n, u)=O\left\{1 /(\log n)^{1+\varepsilon}\right\}$.
Proof. If we remember that $\delta=\gamma-\beta$, we obtain from Lemma 14

$$
K(n, u)=O\left\{\frac{1}{(\log n)^{1+\varepsilon}}+\frac{(u n)^{\gamma-1}}{(\log n)^{1+\varepsilon}}+\frac{(u n)^{-1+\gamma-\beta}}{(\log n)^{1+\varepsilon}}+\frac{(u n)^{-\beta}}{(\log n)^{1+\varepsilon}}\right\}
$$

From the assumption, $n u \geqq 1$, and $\gamma-1,-1+\gamma-\beta,-\beta$ are all non-positive. Hence we get easily the lemma.

Now we shall prove Theorem 2 for the case $\beta>0$. Proof runs quite similary as that of Theorem 1.

It is sufficient to prove that

$$
\sum_{n=1}^{\infty}\left|\zeta_{n}^{\gamma}\right| / n<\infty,
$$

where ζ_{n}^{γ} is the n-th Cesàro mean of order γ of the sequence $\left\{n \cdot n^{\gamma-\beta} A_{n}(x) /\right.$ $\left.(\log n)^{1+\varepsilon}\right\}$. Using the notations in the above lemmas we have

$$
\begin{aligned}
\zeta_{n}^{\gamma} & =\frac{1}{A_{n}^{\gamma}} \sum_{\nu=0}^{n} A_{n-\nu}^{\gamma-1} \nu \cdot \nu^{\gamma-\beta} \frac{1}{\{\log (\nu+2)\}^{1+\varepsilon}} A_{n}(x) \\
& =\frac{2}{\pi} \int_{0}^{\pi} \varphi(t) \frac{d}{d t}\left\{\frac{1}{A_{n}^{\gamma}} \sum_{\nu=0}^{n} A_{n-\nu}^{\gamma-1} \frac{\nu^{\gamma-\beta}}{\{\log (\nu+2)\}^{1+\varepsilon}} \sin \nu t d t\right\} \\
& =\frac{2}{\pi} \int_{0}^{\pi} \varphi(t) \frac{d}{d t} H^{\gamma}(n, t) d t \\
& =\frac{2}{\pi \Gamma(1-\beta)} \int_{0}^{\pi} d \Phi_{\beta}(u) \int_{u}^{\pi}(t-u)^{-\beta} \frac{d}{d t} H^{\gamma}(n, t) d t \\
& =\frac{2}{\pi \Gamma(1-\beta)} \int_{0}^{\pi} J(n, u) d \Phi_{\beta}(u) \\
& =-\frac{2}{\pi \Gamma(1-\beta)} \int_{0}^{\pi} \Phi_{\beta}(u) \frac{d}{d u} J(n, u) d u \\
& =-\frac{2}{\pi \Gamma(1-\beta)}\left(\left[u^{-\gamma} \Phi_{\beta}(u) I(n, u)\right]_{0}^{\pi}-\int_{0}^{\pi} I(n, u) d\left\{\Phi_{\beta}(u) u^{-\gamma\}}\right\}\right)
\end{aligned}
$$

$$
=-\frac{2}{\pi \Gamma(1-\beta)}\left[\pi^{-\gamma} \Phi_{\beta}(\pi) I(n, \pi)-\int_{0}^{\pi} I(n, u) d\left\{u^{-\gamma} \Phi_{\beta}(u)\right\}\right] .
$$

Thus it suffices for us to prove that
(A)

$$
\sum_{n=1}^{\infty} I(n, \pi) / n<\infty,
$$

and
(B) $\quad \sum_{n=1}^{\infty}\left|\int_{0}^{\pi} I(n, v) d\left\{^{\left.u^{-\gamma} \Phi_{\beta}(u)\right\}}\right\}\right| / n<\infty$.

Proof of (A). We have

$$
\begin{aligned}
\zeta_{n}^{\gamma} & =\frac{1}{A_{n}^{\gamma}} \sum_{\nu=0}^{n} A_{n-\nu}^{\gamma-1} \nu \cdot \nu^{\gamma-\beta} \frac{1}{\{\log (n+2)\}^{1+\varepsilon}} \cdot \frac{2}{\pi} \int_{0}^{\pi} \varphi(t) \cos \nu t d t \\
& =-\frac{2}{\pi \Gamma(1-\beta)}\left[\pi^{-\gamma} \Phi_{\beta}(\pi) I(n, \pi)-\int_{0}^{\pi} I(n, u) d\left\{u^{-\gamma} \Phi_{\beta}(u)\right\}\right]
\end{aligned}
$$

for any integrable even function $\varphi(t)$. If we put $\varphi(t)=t^{\gamma-\beta}$, then we easily get

$$
\Phi_{\beta}(t)=\frac{\mathrm{B}(\beta, \gamma-\beta+1)}{\Gamma(\beta)} t^{\gamma},
$$

therefore

$$
d\left\{u^{-\gamma} \Phi_{\beta}(u)\right\}=0
$$

Further, we have [5]

$$
\begin{aligned}
\int_{0}^{\pi} \varphi(t) \cos \nu t d t & =\int_{0}^{\pi} t^{\gamma-\beta} \cos \nu t d t \\
& \cong \nu^{-1-\gamma+\beta} \Gamma(\gamma-\beta+1) \cos \frac{1}{2} \pi(\gamma-\beta+1) \quad(|\gamma-\beta| \leqq 1)
\end{aligned}
$$

Hence, when $\varphi(t)=t^{\gamma-\beta}$, we have

$$
I(n, \pi)=O\left\{\frac{1}{A_{n}^{\gamma}} \sum_{\nu=0}^{n} A_{n-\nu}^{\gamma-1} \frac{1}{\{\log (\nu+2)\}^{1+\ell}}\right\}
$$

Now, since

$$
\begin{aligned}
\sum_{\nu=0}^{n} A_{n-\nu}^{\gamma-1} \frac{1}{\{\log (\nu+2)\}^{1+\varepsilon}} & =O\left\{\int_{0}^{n}(n-\nu)^{\gamma-1} \frac{d \nu}{(\log \nu)^{1+\varepsilon}}\right\} \\
& =O\left\{n^{\gamma} \frac{1}{\left.(\log n)^{1+\varepsilon}\right\}}\right\}
\end{aligned}
$$

we obtain

$$
I(n, \pi)=O\left\{1 /(\log n)^{1+\varepsilon}\right\}
$$

Hence the proof of (A) follows immediately, that is,

$$
\sum_{n=1}^{\infty} I(n, \pi) / n=O\left\{\sum_{n=2}^{\infty} 1 / n(\log n)^{1+z}\right\}<\infty
$$

Proof of (B). By the assumption

$$
\int_{0}^{\pi}\left|d\left\{u^{-\gamma} \Phi_{\beta}(u)\right\}\right|<\infty
$$

and obviously

$$
\sum_{n=1}^{\infty}\left|\frac{1}{n} \int_{0}^{\pi} I(n, u) d\left\{u^{-\gamma} \Phi_{\beta}(u)\right\}\right| \leqq \int_{0}^{\pi}\left|\sum_{n=1}^{\infty} \frac{1}{n} I(n, u)\right|\left|d\left\{u^{-\gamma} \Phi_{\beta}(u)\right\}\right|,
$$

hence it suffices for us to prove

$$
\sum_{n=1}^{\infty} \frac{1}{n}|I(n, u)|=O(1)
$$

uniformly with respect to u. We now divide the sum into two parts such that

$$
\sum_{n=1}^{\infty}=\sum_{n<n^{-1}}+\sum_{n \geq u^{-1}}=M_{1}+M_{2}
$$

say. In the estimation of M_{1}, we use Lemma 13, then

$$
\begin{aligned}
M_{1} & =O\left\{\sum_{n<u^{-1}} \frac{1}{n}\left(u^{\gamma} \frac{n^{\gamma}}{(\log n)^{1+\varepsilon}}\right)\right\} \\
& =O\left\{u^{\gamma} \sum_{n<u^{-1}} \frac{n^{\gamma-1}}{(\log n)^{1+\varepsilon}}\right\} \\
& =O\left\{u^{\gamma} \int_{0}^{u^{-1}} \frac{x^{\gamma-1}}{(\log x)^{1+\varepsilon}} d x\right\} \\
& =O\left\{1 /(\log n)^{1+\varepsilon}\right\} \\
& =O(1) .
\end{aligned}
$$

Remembering that $I(n, u)=I(n, \pi)-K(n, u)$, we have

$$
M_{2} \leqq \sum_{n \geq u-1} \frac{1}{n}|I(n, \pi)|+\sum_{n \geq n-1} \frac{1}{n}|K(n, u)|,
$$

where the first sum on the right side is finite as was proved and, by Lemma 15 ,

$$
\begin{aligned}
\sum_{n \geq w^{-1}} \frac{1}{n}|K(n, u)| & =O\left\{\sum \frac{1}{n(\log n)^{1+\varepsilon}}\right\} \\
& =O(1)
\end{aligned}
$$

Thus Theorem 2 is proved for the case $\beta>0$.
For the case $\beta=0$, we shall only sketch the proof since this case is rather simple. It is sufficient to prove that, if

$$
\int_{0}^{\pi}\left|d\left\{t^{-\gamma} \varphi(t)\right\}\right|<\infty,
$$

where $0<r \leqq 1$, then the series

$$
\sum_{n=0}^{\infty} n^{\gamma} A_{n}(t) /\{\log (n+2)\}^{1+z}
$$

is summable $|C, r|$ at $t=x$.
Now

$$
\begin{aligned}
\zeta_{n}^{\gamma} & =\frac{1}{A_{\hbar}^{\gamma}} \sum_{\nu=0}^{n} A_{n-\nu}^{\gamma-1} \nu \cdot \nu^{\gamma} \frac{A_{\nu}(x)}{\{\log (\nu+2)\}^{1+z}} \\
& =O\left\{\int_{0}^{\pi} v^{\gamma} \frac{d}{d v} H^{\gamma}(n, v) d v+\int_{0}^{\pi} d\left\{t^{-\gamma} \varphi(t)\right\} \int_{0}^{i} v^{\gamma} \frac{d}{d t} H^{\gamma}(n, v) d v\right\} .
\end{aligned}
$$

We put

$$
\int_{0}^{t} v^{\gamma} \frac{d}{d v} H^{\gamma}(n, v) d v=I(n, t)
$$

then it is sufficient to prove that

$$
\sum_{n=1}^{\infty}|I(n, t)| / n=O(1)
$$

for $0 \leqq t \leqq \pi$.
We begin to prove this for $t=\pi$. Putting $\varphi(t)=t^{\nu}$, we get

$$
I(n, \pi)=O\left\{1 /(\log n)^{1+\varepsilon}\right\}
$$

and then

$$
\sum_{n=1}^{\infty}|I(n, \pi)| / n<\infty .
$$

Next we write

$$
\sum_{n=1}^{\infty}|I(n, t)| / n=\sum_{n<t-1}|I(n, t)| / n+\sum_{n \geq t-1}|I(n, \pi)-K(n, t)| / n
$$

By the second mean value theorem and the first part of Lemma 10 we have

$$
I(n, t)=\int_{0}^{t} v^{\gamma} \frac{d}{d v} H^{\gamma}(n, v) d v=O\left\{t^{\gamma} n^{\gamma} /(\log n)^{1+\varepsilon}\right\}
$$

therefore

$$
\sum_{n<t-1} \mid I(n, t \mid / n=O(1)
$$

By integration by parts we have

$$
\begin{aligned}
K(n, t) & =\int_{t}^{\pi} v^{\gamma} \frac{d}{d v} H^{\gamma}(n, v) d v \\
& =O\left\{1 /(\log n)^{1+\varepsilon}+t^{\gamma-1} n^{\gamma-1} /(\log n)^{1+\varepsilon}\right\}-\gamma \int_{t}^{\pi} v^{\gamma-1} H^{\gamma}(n, v) d v
\end{aligned}
$$

where we used for $H^{\gamma}(n, v)$ the second value of Lemma 10 . The second term of the right is

$$
\begin{aligned}
\int_{t}^{\pi} v^{\gamma-1} H^{\gamma}(n, v) d v & =\frac{1}{A_{z}^{\gamma}} \sum_{\nu=0}^{n} A_{n-\nu}^{\gamma-1} \frac{\nu^{\gamma}}{\{\log (\nu+2)\}^{1+\varepsilon}} \int_{t}^{\pi} v^{\gamma-1} \sin v d v \\
& =O_{\left\{^{\gamma-1} n^{\gamma-1} /(\log n)^{1+\varepsilon}\right\} .} .
\end{aligned}
$$

Hence when $n \geqq t^{-1}$, remembering $\gamma \leqq 1$, we have $K(n, t)=O\left\{1 /(\log n)^{1+\varepsilon}\right\}$. The proof of

$$
\sum_{n \geq t^{-1}}|K(n, t)| / n=O(1)
$$

is now in hand.
Thus Theorem 2 is proved completely.
4. We shall end this paper by showing theorems, which will clarify the relation between Theorem 1 and Theorem 2.

Theorem 4. Under the condition

$$
\int_{0}^{\pi}\left|d\left(u^{-\gamma} \Phi_{B}(u)\right)\right|<\infty,
$$

we cannot conclude the $|C, \alpha|$ summability of $\sum n^{\gamma-\beta} A_{n}(x)$, however large α may be, where $\alpha>\gamma>\beta$.

Proof. For the proof we shall give a negative example. Let $\varphi(t)=t^{\gamma-\beta}$ $(\gamma>\beta)$, then

$$
\int_{0}^{\pi}\left|d\left\{u^{-\gamma} \Phi_{B}(u)\right\}\right|=0
$$

but as we have already shown

$$
\begin{aligned}
\zeta_{n}^{\alpha} & =\frac{1}{A_{10}^{\alpha}} \sum_{\nu=0}^{n} A_{n-\nu}^{\alpha-1} \nu \cdot \nu \gamma-\beta \cdot \frac{2}{\pi} \int_{0}^{\pi} \varphi(t) \cos \nu t d t \\
& \cong \frac{C}{A_{i b}^{\alpha}} \sum_{\nu=0}^{n} A_{n-\nu}^{\alpha-1}=C
\end{aligned}
$$

where C is a constant. Hence

$$
\sum_{n=1}^{\infty}\left|\zeta_{n}^{\alpha}\right| / n=\infty .
$$

Theorem 5. Let $\eta>0$. In order that
(i)

$$
t^{-\gamma} \Phi_{B}(t) \text { is of bounded variation in }(0, \eta)
$$

and
(ii) $\quad t^{-\gamma-1}\left|\Phi_{B}(t)\right|$ is integrable in $(0, \eta)$,
it is necessary and sufficient that

$$
\begin{equation*}
\int_{0}^{\eta} t^{-\gamma+\beta}\left|d \varphi_{\beta}(t)\right|<\infty \tag{iii}
\end{equation*}
$$

and

$$
\text { (iv) } \quad \varphi_{\beta}(+0)=0
$$

Proof. The condition is sufficient. For, if (iii) and (iv) hold, then we have

$$
\begin{aligned}
\int_{0}^{\eta} \frac{\left|\Phi_{\beta}(t)\right|}{t^{1+\gamma}} d t & =\int_{0}^{\eta} \frac{\left|\varphi_{\beta}(t)\right|}{\Gamma(\beta+1) t^{1+\gamma-\beta}} d t=\int_{0}^{\eta} \frac{d t}{\Gamma(\beta+1) t^{1+\gamma-\beta}}\left|\int_{0}^{t} d \varphi_{\beta}(u)\right| \\
& \leqq \int_{0}^{\eta} \frac{d t}{\Gamma(\beta+1) t^{1+\gamma-\beta}} \int_{0}^{t}\left|d \varphi_{\beta}(t)\right| \\
& =\int_{0}^{\eta} \frac{\left|d \varphi_{B}(u)\right|}{\Gamma(\beta+1)} \int_{u}^{\eta} \frac{d t}{t^{1+\gamma-\beta}} \\
& =\int_{0}^{n} \frac{\left|d \varphi_{\beta}(u)\right|}{\Gamma(\beta+1)}\left(\frac{u^{-\gamma+\beta}-\eta-\gamma+\beta}{\gamma-\beta}\right)<\infty
\end{aligned}
$$

from which (ii) follows; and then (i) follows from

$$
\begin{aligned}
\int_{0}^{\eta}\left|d\left\{t^{-\gamma} \Phi_{\beta}(t)\right\}\right| & \left.=\int_{0}^{\eta} \left\lvert\, d \frac{t^{-\gamma+\beta}}{\{\Gamma(1+\beta)} \varphi_{\beta}(t)\right.\right\} \mid \\
& \leqq \int_{0}^{\eta} \frac{t^{-\gamma+\beta}}{\Gamma(\beta+1)}\left|d \varphi_{\beta}(t)\right|+\int_{0}^{\eta} \frac{\gamma-\beta}{\Gamma(1+\beta)}\left|\varphi_{\beta}(t)\right| t^{-\gamma+\beta-1} d t \\
& =\int_{0}^{\eta} \frac{t^{-\gamma+\beta}}{\Gamma(1+\beta)}\left|d \varphi_{\beta}(t)\right|+\int_{0}^{\eta}(\gamma-\beta) \frac{\left|\Phi_{\beta}(t)\right|}{t^{\gamma+1}} d t<\infty .
\end{aligned}
$$

The condition is necessary. For, suppose that (i) and (ii) hold, we now obtain (iii) from

$$
\begin{aligned}
& \int_{0}^{\eta} t^{-\gamma+\beta}\left|d \varphi_{\beta}(t)\right| \leqq \int_{0}^{\eta}\left|d\left\{t^{-\gamma+\beta} \varphi_{\beta}(t)\right\}\right|+(\gamma-\beta) \int_{0}^{\eta}\left|\varphi_{\beta}(t)\right| t^{-\gamma+\beta-1} d t \\
= & \int_{0}^{\eta}\left|d\left\{\Gamma(\beta+1) t^{-\gamma} \Phi_{\beta}(t)\right\}\right|+(\gamma-\beta) \int_{0}^{\eta} \Gamma(\alpha+1) t^{-\gamma-1}\left|\Phi_{\beta}(t)\right| d t<\infty
\end{aligned}
$$

(iv) is obvious from (i).

Thus Theorem 5 is proved.
From the proof of Theorem 5, we can also conclude that the condition

$$
\int_{0}^{\eta} t^{-\gamma+\beta}\left|d \varphi_{\beta}(t)\right|<\infty, \quad \varphi_{\beta}(+0)=0
$$

is equivalent to the condition of Theorem 3, that is,

$$
\int_{0}^{\eta} t^{-\gamma}\left|d \Phi_{\beta}(t)\right|<\infty, \quad \Phi_{B}(+0)=0 .
$$

References

[1] N. Obrechkoff, Sur la sommation des séries trigonométriques de Fourier par les moyennes arithmétiques, Bull. de la Soc. Math. de France, 62(1934), 84-109 et 167-184.
[2] L.S. Bosanquet, The absolute Cesàro summability of Fourier series, Proc. London Math. Soc., 41(1936), 517-528.
[3] R. Mohanty, The absolute Cesàro summability of some series associated with a Fourier series and its allied series, Journ. London Math. Soc., 25(1950), 63-67.
[4] M.T. Cheng, Summability factors of Fourier series at a given point, Duke Math. Journ., 15(1948), 29-36.
[5] E.C. Titchmarsh, The theory of functions, Oxford, 1932.

Mathematical Department, Tôkyo Toritsu University.

