ON ABSOLUTE CESÀRO SUMMABILITY OF A SERIES RELATED TO A FOURIER SERIES

Кізні Матѕимото

(Received December 5, 1955)

1. Let f(t) be a summable function, periodic with period 2π . Let its Fourier series be

$$\frac{1}{2}a_0+\sum_{n=1}^{\infty}\left(a_n\cos nt+b_n\sin nt\right)\equiv\sum_{n=0}^{\infty}A_n(t).$$

We write

$$\varphi(t) = \frac{1}{2} \left\{ f(x+t) + f(x-t) \right\}$$

$$\Phi_{\alpha}(t) = \left(\frac{1}{\Gamma(\alpha)}\right) \int_{0}^{t} (t-u)^{\alpha-1} \varphi(u) du \qquad (\alpha > 0),$$

$$\varphi_{\alpha}(t) = \Gamma(\alpha+1) t^{-\alpha} \Phi_{\alpha}(t) \qquad (\alpha > 0),$$

$$A_{n}^{\alpha} = \binom{n+\alpha}{n} \cong n^{\alpha} / \Gamma(\alpha+1).$$

THEOREM 1. If

$$\int_{0}^{\pi} t^{-\gamma+\beta} |d\varphi_{\beta}(t)| < \infty,$$

then the series $\sum n^{\gamma-\beta}A_n(t)$ is summable $|C, \alpha|$ at t=x, where $1>\alpha>\gamma \geq \beta \geq 0$.

When $r = \beta$, this theorem reduces to the following theorem for the case $1 > \beta \ge 0$.

Bosanquer's Theorem [2]. If $\varphi_{\beta}(t)$ is of bounded variation in $(0,\pi)$, then the Fourier series of f(t) is summable $|C, \alpha|$ at the point t = x, where $\alpha > \beta \ge 0$.

Further Theorem 1 generalizes the following theorem.

Mohanty's Theorem [3]. If $0 < \alpha < 1$, and

$$\int_{0}^{\pi} t^{-\alpha} |d\varphi(t)| < \infty,$$

then $\sum n^{\alpha}A_n(t)$ is summable $|C, \beta|$ for $\beta > \alpha$, at t = x.

THEOREM 2. If

$$\int_{0}^{\pi} |d(t^{-\gamma}\Phi_{\beta}(t))| < \infty,$$

then the series

$$\sum_{n=0}^{\infty} \frac{n^{\gamma-\beta}}{\{\log (n+2)\}^{1+\epsilon}} A_n(t)$$

is summable $|C, \gamma|$ at t = x, where $1 \ge \gamma \ge \beta \ge 0$, and $\varepsilon > 0$.

This theorem is a generalization of the following theorem.

Cheng's Theorem [4]. If $\varphi_{\alpha}(t)$, $0 \le \alpha \le 1$ is of bounded variation in $(0, \pi)$, then $\sum A_n(t)/(\log n)^{1+\epsilon}$ is summbale $|C, \alpha|$ at the point t = x.

2. Proof of Theorem 1. We require the following lemmas.

LEMMA 1. Let

$$S_k(n,t) = \sum_{\nu=0}^k A_{n-\nu}^{\alpha-1} \sin \nu t$$
 $(1 > \alpha > 0), (k \le n),$

then we have

$$S_k(n, t) = O\{k(n-k)^{\alpha-1}\} = O\{t^{-1}(n-k)^{\alpha-1}\}$$
 $(k < n),$ $S_n(n, t) = O(n^{\alpha}) = O(t^{-\alpha}).$

PROOF. The first result is obtained by Abel's transformation, the second has been given by Obrechkoff [1].

LEMMA 2. Let

$$S_k^{\lambda}(n,t) = \left(\frac{d}{dt}\right)^{\lambda} S_k(n,t),$$

then we have

$$\begin{split} S_k^{\lambda}(n,t) &= O\{k^{\lambda+1}(n-k)^{\alpha-1}\} = O\{t^{-1}k^{\lambda}(n-k)^{\alpha-1}\} \\ S_n^{\lambda}(n,t) &= O(n^{\alpha+\lambda}) = O(n^{\lambda}t^{-\alpha}). \end{split}$$
 (k < n)

The proof is the same as Lemma 1.

LEMMA 3. Let

$$H^{\alpha}(n,t) = \frac{1}{A_n^{\alpha}} \sum_{\nu=0}^{n} A_{n-\nu}^{\alpha-1} \nu^{\delta} \sin \nu t \qquad (\delta = \gamma - \beta),$$

then we have

$$H^{\alpha}(n,t) = O(n^{\delta}) = O(t^{-1}n^{\delta-1} + t^{-\alpha}n^{\delta-\alpha}).$$

PROOF. By Abel's transformation,

$$H^{\alpha}(n,t)=\frac{1}{A_n^{\alpha}}\left\{\sum_{\nu=0}^{n-1}S_{\nu}(n,t)\Delta\nu^{\delta}+S_n(n,t)n^{\delta}\right\}.$$

From Lemma 1,

$$S_{\nu}(n,t) \Delta \nu^{\delta} = O\{\nu(n-\nu)^{\alpha-1}\nu^{\delta-1}\}$$

$$= O\{t^{-1}(n-\nu)^{\alpha-1}\nu^{\delta-1}\}$$

$$\sum_{\nu=0}^{n-1} S_{\nu}(n,t) \Delta \nu^{\delta} = O\{\int_{0}^{n} (n-\nu)^{\alpha-1}\nu^{\delta}d\nu\}$$

$$= O(n^{\delta+\alpha}),$$

$$= O\{t^{-1}\int_{0}^{n} (n-\nu)^{\alpha-1}\nu^{\delta-1}d\nu\}$$

$$= O(t^{-1}n^{\delta+\alpha-1}).$$

Substituting these values into $H^{\alpha}(n, t)$, we get Lemma 3.

LEMMA 4.

$$\left(\frac{d}{dt}\right)^{\lambda}H^{\alpha}(n,t)=O(n^{\lambda+\delta}),$$

$$=O(t^{-1}n^{\lambda+\delta}+t^{-\alpha}n^{\lambda+\delta-\alpha}).$$

Proof. From the definition

$$\left(\frac{d}{d\lambda}\right)^{\lambda}H^{\alpha}(n,t)=\frac{1}{A_{n}^{\alpha}}\left\{\sum_{\nu=0}^{n-1}S_{\nu}^{\lambda}(n,t)\,\Delta\nu^{\delta}+n^{\delta}S_{n}^{\lambda}(n,t)\right\}.$$

Using Lemma 2,

$$\sum_{\nu=0}^{n-1} S_{\nu}^{\lambda}(n,t) d\nu^{\delta} = \begin{cases} O\left\{\int_{0}^{n} \nu^{\lambda+1}(n-\nu)^{\alpha-1}\nu^{\delta-1}d\nu\right\} = O(n^{\lambda+\delta+\alpha}), \\ \\ O\left\{t^{-1}\int_{0}^{n} \nu^{\lambda}(n-\nu)^{\alpha-1}\nu^{\delta-1}d\nu\right\} = O(t^{-1}n^{\lambda+\delta+\alpha-1}). \end{cases}$$

Then, by the above equality we get Lemma 4.

LEMMA 5. Let

$$J(n,u) = \int_{u}^{\pi} (t-u)^{-\beta} \frac{d}{dt} H^{\alpha}(n,t) dt$$

then, we have

$$J(n, u) = O(n^{\alpha+\beta}),$$

= $O(u^{-1}n^{\delta+\beta-1} + u^{-\alpha}n^{\delta-\alpha+\beta}).$

Proof. We divide the interval of integration into two parts and put

$$J(n, u) = \int_{u}^{u+n^{-1}} + \int_{u+n^{-1}}^{\pi} = J_1 + J_2.$$

By the aid of Lemma 4, and by the second mean value theorem, we have,

$$J_1(n, u) = \int_u^{u+n^{-1}} (t - u)^{-\beta} \cdot O(n^{1+\delta}) dt$$

$$= O(n^{\delta+\beta}).$$

$$J_2(n, u) = \int_{u+n^{-1}}^{\pi} (t - u)^{-\beta} \frac{d}{dt} H^{\alpha}(n, t) dt$$

$$= n^{\beta} \int_{u+n^{-1}}^{\pi} \frac{d}{dt} H^{\alpha}(n, t) dt$$

$$= O\{n^{\beta} H^{\alpha}(n, u)\}$$

$$= O(n^{\delta+\beta}), \qquad (u + n^{-1} \le \xi \le \pi).$$

By the same way, we have

$$J_{1}(n, u) = \int_{u}^{u+n^{-1}} (t - u)^{-\beta} \cdot O(t^{-1}n^{\delta} + t^{-\alpha}n^{1+\delta-\alpha}) dt$$

$$= O\left\{n^{\delta} \int_{u}^{u+n^{-1}} (t - u)^{-\beta}t^{-1} dt + n^{1+\delta-\alpha} \int_{u}^{u+n^{-1}} (t - u)^{-\beta}t^{-\alpha} dt\right\}$$

$$= O(u^{-1}u^{\delta+\beta-1} + u^{-\alpha}n^{\delta+\beta-\alpha}).$$

$$J_{2}(n, u) = O\{n^{\beta}H^{\alpha}(n, u)\}$$

$$= O(u^{-1}n^{\delta+\beta-1} + u^{-\alpha}n^{\delta+\beta-\alpha}).$$

LEMMA 6. Let

$$I(n, u) = \int_{0}^{u} v^{\beta} \frac{d}{dv} J(n, v) dv,$$

then we have

$$I(n,u) = O(u^{\beta}n^{\alpha+\beta}).$$

Proof. We use the second mean value theorem and Lemma 5.

$$I(n, u) = u^{\beta} \int_{\eta}^{u} \frac{d}{dv} J(n, v) dv$$
$$= u^{\beta} [J(n, v)]_{\eta}^{u}$$
$$= O(u^{\beta} n^{\delta + \beta}).$$

LEMMA 7. Let

$$K(n, u) = \int_{u}^{\pi} v^{\beta} \frac{d}{dv} J(n, v) dv,$$

then we have

$$K(n, u) = O(n^{\delta + \beta - \alpha} + u^{-1}n^{\delta - 1} + u^{-\alpha}n^{\delta - \alpha} + u^{-1 + \beta}n^{\delta - 1 + \beta} + u^{-\alpha + \beta}n^{\delta - \alpha + \beta}).$$

Proof. By integration by parts we have

$$K(n, u) = [v^{\beta} J(n, v)]_{u}^{\pi} - \beta \int_{u}^{\pi} v^{\beta-1} J(n, v) dv = K_{1} + K_{2},$$

say. By Lemma 5 we have

$$K_1 = \pi^{\beta} J(n, \pi) - u^{\beta} J(n, u)$$

$$= O(n^{\delta + \beta - \alpha} + u^{\beta - 1} n^{\delta + \beta - 1} + u^{\beta - \alpha} n^{\delta + \beta - \alpha}).$$

For the part K_2 , we use the definition of J(n, u) and Lemma 3, then

$$K_{2} = \int_{u}^{\pi} v^{\beta-1} J(n, v) dv$$

$$= \int_{u}^{\pi} v^{\beta-1} \int_{v}^{\pi} (t - v)^{-\beta} \frac{d}{dt} H^{\alpha}(n, t) dt dv$$

$$= \int_{u}^{\pi} \frac{d}{dt} H^{\alpha}(n, t) \int_{u}^{t} v^{\beta-1} (t - v)^{-\beta} dv dt$$

$$= \int_{u}^{\pi} \frac{d}{dt} H^{\alpha}(n, t) \int_{u/t}^{1} z^{\beta-1} (1 - z)^{-\beta} dz dt$$

$$= \left\{ \int_{u/\pi}^{1} z^{\beta-1} (1 - z)^{-\beta} dz \right\} \int_{\zeta}^{\pi} \frac{d}{dt} H^{\alpha}(n, t) dt$$

$$= O\left\{ [H^{\alpha}(n, t)]_{\zeta}^{\pi} \right\}$$

$$= O\left\{ H^{\alpha}(n, \pi) - H^{\alpha}(n, \zeta) \right\}$$

$$= O(n^{\delta-\alpha} + u^{-1}n^{\delta-1} + u^{-\alpha}n^{\delta-\alpha}),$$

since $u \leq \zeta \leq \pi$.

PROOF OF THEOREM 1. It is sufficient to prove that

$$\sum_{n=1}^{\infty} |\zeta_n^{\alpha}|/n < \infty,$$

where

$$\zeta_n^{\alpha} = \frac{1}{A_n^{\alpha}} \sum_{\nu=0}^n A_{n-\nu}^{\alpha-1} \nu \cdot \nu^{\gamma-\beta} A_{\nu}(x).$$

Using the notations in above lemmas we obtain

$$\begin{split} &\zeta_{n}^{\alpha} = \frac{1}{A_{n}^{\alpha}} \sum_{\nu=0}^{n} A_{n-\nu}^{\alpha-1} \nu \, \nu^{\gamma-\beta} \frac{2}{\pi} \int_{0}^{\pi} \varphi(t) \cos \nu t \, dt \\ &= \frac{2}{\pi} \int_{0}^{\pi} \varphi(t) \frac{1}{A_{n}^{\alpha}} \sum_{\nu=0}^{n} A_{n-\nu}^{\alpha-1} \nu^{\gamma-\beta} \nu \cos \nu t \, dt \\ &= \frac{2}{\pi} \int_{0}^{\pi} \varphi(t) \frac{d}{dt} \left(\frac{1}{A_{n}^{\alpha}} \sum_{\nu=0}^{n} A_{n-\nu}^{\alpha-1} \nu^{\gamma-\beta} \sin \nu t \right) dt \\ &= \frac{2}{\pi} \int_{0}^{\pi} \varphi(t) \frac{d}{dt} H^{\alpha}(n, t) \, dt \\ &= \frac{2}{\pi} \int_{0}^{\pi} \frac{d}{dt} H^{\alpha}(n, t) \left\{ \frac{1}{\Gamma(1-\beta)} \int_{0}^{t} (t-u)^{-\beta} d\Phi_{\beta}(u) \right\} dt \\ &= \frac{2}{\pi\Gamma(1-\beta)} \int_{0}^{\pi} d\Phi_{\beta}(u) \int_{u}^{\pi} (t-u)^{-\beta} \frac{d}{dt} H^{\alpha}(n, t) \, dt \\ &= \frac{2}{\pi\Gamma(1-\beta)} \int_{0}^{\pi} J(n, u) d\Phi_{\beta}(u) \\ &= \frac{2}{\pi\Gamma(1-\beta)} \left[\Phi_{\beta}(u) J(n, u) \right]_{0}^{\pi} - \frac{2}{\pi\Gamma(1-\beta)} \int_{0}^{\pi} \Phi_{\beta}(u) \frac{d}{du} J(n, u) du \\ &= -\frac{2}{\pi\Gamma(1-\beta)} \int_{0}^{\pi} u^{-\beta} \Phi_{\beta}(u) u^{\beta} \frac{d}{du} J(n, u) \, du \\ &= -\frac{2}{\pi\Gamma(1-\beta)} \left(\left[u^{-\beta} \Phi_{\beta}(u) I(n, u) \right]_{0}^{\pi} - \frac{1}{\Gamma(\beta+1)} \int_{0}^{\pi} I(n, u) d \left\{ \Phi_{\beta}(u) \cdot u^{-\beta} \Gamma(\beta+1) \right\} \right) \\ &= -\frac{2}{\pi\Gamma(1-\beta)} \pi^{-\beta} \Phi_{\beta}(\pi) I(n, \pi) + \frac{2}{\pi\Gamma(1-\beta)\Gamma(1+\beta)} \int_{0}^{\pi} I(n, u) d\varphi_{\beta}(u). \end{split}$$

If we suppose that $\varphi(t) \equiv 1$, then $\zeta_n^{\alpha} = 0$, $\varphi_{\beta}(u) = 1$ and we obtain $I(n, \pi) = 0$. Thus we have

$$\zeta_n^{\alpha} = \frac{2}{\pi \Gamma(1-\beta)\Gamma(1+\beta)} \int_0^{\pi} I(n, u) \, d\varphi_{\beta}(u).$$

Hence

$$\begin{split} \sum_{n=1}^{\infty} \frac{|\zeta_n^{\alpha}|}{n} &= O\left\{ \int_0^{\pi} \sum_{n=1}^{\infty} \frac{I(n, u)}{n} d\varphi_{\beta}(u) \right\} \\ &= O\left\{ \int_0^{\pi} \left| \sum_{n=1}^{\infty} \frac{I(n, u)}{n} \right| d\varphi_{\beta}(u) \right| \right\}. \end{split}$$

We divide \sum into two parts such that

$$\sum_{n=1}^{\infty} \frac{I(n, u)}{n} = \sum_{n < u^{-1}} \frac{I(n, u)}{n} + \sum_{n \ge u^{-1}} \frac{I(n, u)}{n}$$
$$= M_1 + M_2,$$

say. From Lemma 6 we have

$$M_1 = O\left(\sum_{n < u^{-1}} \frac{u^{\beta} n^{\delta + \beta}}{n}\right) = O(u^{\beta} \int_0^{u^{-1}} y^{\delta + \beta - 1} dy) = O(u^{-\delta}).$$

For the part M_2 we use Lemma 7. Since

$$I(n, u) = I(n, \pi) - K(n, u) = -K(n, u),$$

we have

$$M_{2} = O\left\{\sum_{n \geq u^{-1}} \frac{-K(n, u)}{n}\right\}$$

$$= O\left\{\sum_{n \geq u^{-1}} n^{\delta + \beta - \alpha - 1} + u^{-1}n^{\delta - 2} + u^{-\alpha}n^{\delta - \alpha - 1} + u^{-1 + \beta}n^{\delta - 2 + \beta} + u^{-\alpha + \beta}n^{\delta - \alpha + \beta - 1}\right\}$$

$$= O(u^{-\delta}).$$

Thus

$$\sum_{n=1}^{\infty} I(n, u)/n = O(u^{-\delta}),$$

and then

$$\sum_{n=1}^{\infty} |\zeta_n^{\alpha}|/n = O\left(\int_0^{\pi} u^{-\delta} |d\varphi_{\beta}(u)|\right) = O\left(\int_0^{\pi} u^{-\gamma+\beta} |d\varphi_{\beta}(u)|\right) < \infty$$

since $\delta = r - \beta$.

This completes the proof of Theorem 1. Similarly we can prove the following theorem.

THEOREM 3. If

$$\int_{0}^{\pi} t^{-\gamma} |d\Phi_{\beta}(t)| < \infty, \qquad \Phi_{\beta}(+0) = 0,$$

then the series

$$\sum_{n=0}^{\infty} n^{\gamma-\beta} A_n(t)$$

is summable $|C, \alpha|$ at t = x, where $1 > \alpha > r \ge \beta \ge 0$.

3. Proof of Theorem 2. We shall prove here the theorem for the case $r > \beta$ only.

Firstly we suppose $\beta > 0$. We require the following lemmas.

LEMMA 8. Let

$$S_k(n,t) = \sum_{\nu=0}^k A_{n-\nu}^{\gamma-1} \sin \nu t \qquad (k \le n, \ 1 \ge \tau > 0),$$

then we have

$$S_k(n, t) = O\{k(n-k)^{\gamma-1}\}, = O\{t^{-1}(n-k)^{\gamma-1}\}\$$
 $(k < n),$

and

$$S_n(n,t) = O(n^{\gamma}), = O(t^{-\gamma}).$$

Lemma 9. Let

$$S_k^{\lambda}(n,t) = \left(\frac{d}{dt}\right)^{\lambda} S_k(n,t)$$
 $(\lambda \ge 1, k \le n),$

then we have

$$S_k^{\lambda}(n,t) = O\{k^{\lambda+1}(n-k)^{\gamma-1}\},$$

= $O\{t^{-1}k^{\lambda}(n-k)^{\gamma-1}\},$ $(k < n),$

and

$$S_n^{\lambda}(n, t) = O(n^{\gamma + \lambda}),$$

= $O(n^{\lambda}t^{-\gamma}).$

These are similarly proved as Lemmas 1, 2.

LEMMA 10. Let

$$H^{\gamma}(n,t) = \frac{1}{A_n^{\gamma}} \sum_{\nu=0}^n A_{n-\nu}^{\gamma-1} \frac{\nu^{\delta}}{\{\log(\nu+2)\}^{1+\varepsilon}} \sin \nu t \qquad (\delta = \gamma - \beta),$$

then we have

$$H^{\gamma}(n,t) = O\left\{\frac{n^{\delta}}{(\log n)^{1+\epsilon}}\right\},$$

$$= O\left\{t^{-1}\frac{n^{\delta-1}}{(\log n)^{1+\epsilon}} + t^{-\gamma}\frac{n^{\delta-\gamma}}{(\log n)^{1+\epsilon}}\right\}.$$

PROOF. By Abel's transformation we have

$$H^{\gamma}(n,t) = \frac{1}{A_n^{\gamma}} \left\{ \sum_{\nu=0}^{n-1} S_{\nu}(n,t) \Delta \frac{\nu^{\delta}}{\{\log(\nu+2)\}^{1+\epsilon}} + S_n(n,t) \frac{n^{\delta}}{\{\log(n+2)\}^{1+\epsilon}} \right\}.$$

From Lemma 8

$$S_{\nu}(n,t) \Delta \frac{\nu^{\delta}}{\{\log(\nu+2)\}^{1+\epsilon}} = O\left\{\nu(n-\nu)^{\gamma-1} \frac{\nu^{\delta-1}}{(\log\nu)^{1+\epsilon}}\right\},$$

$$= O\left\{t^{-1}(n-\nu)^{\gamma-1} \frac{\nu^{\delta-1}}{(\log\nu)^{1+\epsilon}}\right\},$$

hence

$$\begin{split} \sum_{\nu=1}^{n-1} S_{\nu}(n,t) \Delta \frac{\nu^{\delta}}{\{\log(\nu+2)\}^{1+\epsilon}} \\ &= \begin{cases} O\left\{\int_{0}^{n} (n-\nu)^{\gamma-1} \frac{\nu^{\delta}}{(\log\nu)^{1+\epsilon}} d\nu\right\} = O\left\{\frac{n^{\delta+\gamma}}{(\log n)^{1+\epsilon}}\right\}, \\ O\left\{\int_{0}^{n} (n-\nu)^{\gamma-1} \frac{\nu^{\delta-1}}{(\log\nu)^{1+\epsilon}} d\nu \cdot t^{-1}\right\} = O\left\{t^{-1} \frac{n^{\delta+\gamma-1}}{(\log n)^{1+\epsilon}}\right\}. \end{split}$$

LEMMA 11.

$$\begin{split} \left(\frac{d}{dt}\right)^{\lambda} H^{\gamma}(n,t) &= O\left\{\frac{n^{\lambda+\delta}}{(\log n)^{1+\epsilon}}\right\}, \\ &= O\left\{t^{-1} \frac{n^{\lambda-1+\delta}}{(\log n)^{1+\epsilon}} + t^{-\gamma} \frac{n^{\lambda+\delta-\gamma}}{(\log n)^{1+\epsilon}}\right\}. \end{split}$$

PROOF. By Abel's transformation

$$\left(\frac{d}{dt}\right)^{\lambda}H^{\gamma}(n,t) = \frac{1}{A_n^{\gamma}} \left\{ \sum_{\nu=0}^{n-1} S_{\nu}^{\lambda}(n,t) \Delta_{\frac{\nu^{\delta}}{\{\log(\nu+2)\}^{1+\epsilon}}} + S_n^{\lambda}(n,t) \frac{n^{\delta}}{\{\log(n+2)\}^{1+\epsilon}} \right\}.$$

By Lemma 9 we obtain

$$\sum_{\nu=0}^{n-1} S_{\nu}^{\lambda}(n,t) \Delta \frac{\nu^{\delta}}{(\log \nu)^{1+\varepsilon}}$$

$$= \begin{cases} O\left\{\int_{0}^{n} \nu^{\lambda+1} (n-\nu)^{\gamma-1} \frac{\nu^{\delta-1}}{(\log \nu)^{1+\varepsilon}} d\nu\right\} = O\left\{\frac{n^{\delta+\lambda-\gamma}}{(\log n)^{1+\varepsilon}}\right\}, \\ O\left\{\int_{0}^{n} \nu^{\lambda} (n-\nu)^{\gamma-1} \frac{\nu^{\delta-1}}{(\log \nu)^{1+\varepsilon}} d\nu \cdot t^{-1}\right\} = O\left\{t^{-1} \frac{n^{\lambda+\delta+\gamma-1}}{(\log n)^{1+\varepsilon}}\right\}. \end{cases}$$

LEMMA 12. Let

$$J(n, u) = \int_{u}^{\pi} (t - u)^{-\beta} \frac{d}{dt} H^{\gamma}(n, t) dt,$$

then we have

$$\begin{split} J(n, u) &= O\left\{\frac{n^{\delta + \beta}}{(\log n)^{1 + \epsilon}}\right\} \\ &= O\left\{u^{-1} \frac{n^{\delta + \beta - 1}}{(\log n)^{1 + \epsilon}} + u^{-\gamma} \frac{n^{\delta + \beta - \gamma}}{(\log n)^{1 + \epsilon}}\right\}. \end{split}$$

Proof. We split up the interval into two parts, i.e.

$$J(n, u) = \int_{u}^{u+n^{-1}} + \int_{u+n^{-1}}^{\pi} = J_1 + J_2,$$

say. Then as $\lambda = 1$, Lemma 4 gives

$$\begin{split} J_1 = & \begin{cases} \int_u^{u+n^{-1}} (t-u)^{-\beta} O\left\{\frac{n^{1+\delta}}{(\log n)^{1+\epsilon}}\right\} dt, \\ \int_u^{u+n^{-1}} (t-u)^{-\beta} O\left\{t^{-1} \frac{n^{\delta}}{(\log n)^{1+\epsilon}} + t^{-\gamma} \frac{n^{-\gamma+1+\delta}}{(\log n)^{1+\epsilon}}\right\} dt; \\ = & \begin{cases} O\left\{\frac{n^{1+\delta}}{(\log n)^{1+\epsilon}} \int_u^{u+n^{-1}} (t-u)^{-\beta} dt\right\}, \\ O\left\{\frac{n^{\delta}}{(\log n)^{1+\epsilon}} \int_u^{u+n^{-1}} (t-u)^{-\beta} t^{-1} dt + \frac{n^{1+\delta-\gamma}}{(\log n)^{1+\epsilon}} \int_u^{u+n^{-1}} (t-u)^{-\beta} t^{-\gamma} dt; \\ = O\left\{\frac{n^{\delta+\beta}}{(\log n)^{1+\epsilon}}\right\}, & = O\left\{u^{-1} \frac{n^{\delta+\beta-1}}{(\log n)^{1+\epsilon}} + u^{-\gamma} \frac{n^{\delta+\beta-\gamma}}{(\log n)^{1+\epsilon}}\right\}. \end{cases} \end{split}$$

For the second part J_2 we use the second mean value theorem and Lemma 10, then

$$J_{2} = \int_{u+n^{-1}}^{\pi} (t-u)^{-\beta} \frac{d}{dt} H^{\gamma}(n,t) dt = n^{\beta} \int_{u+n^{-1}}^{\xi} \frac{d}{dt} H^{\gamma}(n,t) dt$$

$$= n^{\beta} [H^{\gamma}(n,t)]_{u+n^{-1}}^{\xi}$$

$$= O\{n^{\delta+\beta} (\log n)^{-1-\xi}\},$$

$$= O\{u^{-1}n^{\delta+\beta-1} (\log n)^{-1-\xi} + u^{-\gamma}n^{\delta+\beta-\gamma} (\log n)^{-1-\xi}\}$$

since by $u + n^{-1} \le \xi \le \pi$ we may regard $[H^{\gamma}(n, t)]_{u+n-1}^{\xi} = O\{H^{\gamma}(n, u)\}.$

LEMMA 13. Let

$$I(n, u) = \int_0^u v^{\gamma} \frac{d}{dv} J(n, v) dv,$$

then we have

$$I(n, u) = O\{u^{\gamma} n^{\delta+\beta}/(\log n)^{1+\epsilon}\}.$$

Proof. We use the first value of J(n, u) in Lemma 12.

$$I(n, u) = u^{\gamma} \int_0^{\eta} \frac{d}{dv} J(n, v) dv = u^{\gamma} \left[J(n, v) \right]_0^{\eta} = O\left\{ u^{\gamma} n^{\delta + \beta} / (\log n)^{1+\varepsilon} \right\}.$$

LEMMA 14. Let

$$K(n,u) = \int_{-\infty}^{\infty} v^{\gamma} \frac{d}{dv} J(n,v) dv,$$

then we have

$$K(n, u) = O\left\{\frac{n^{\delta + \beta - \gamma}}{(\log n)^{1 + \epsilon}} + u^{\gamma - 1} \frac{n^{\delta + \beta - 1}}{(\log n)^{1 + \epsilon}} + u^{-\beta} \frac{n^{\delta - \gamma}}{(\log n)^{1 + \epsilon}} + u^{-\beta} \frac{n^{\delta - \gamma}}{(\log n)^{1 + \epsilon}}\right\}.$$

PROOF. We integrate by parts,

$$K(n, u) = \left[v^{\gamma} J(n, v)\right]_{u}^{\pi} - \gamma \int_{u}^{\pi} v^{\gamma - 1} J(n, v) dv$$
$$= K_{1} + K_{2},$$

say. Then by the second estimation of J(n, u) in Lemma 12,

$$K_1(n,u) = \pi^{\gamma} J(n,\pi) - u^{\gamma} J(n,u) = O\left\{ \frac{n^{\delta+\beta-\gamma}}{(\log n)^{1+\epsilon}} + u^{-1+\gamma} \frac{n^{\delta+\beta-1}}{(\log n)^{1+\epsilon}} \right\}.$$

For the part K_2 , from the definition of J(n, u) and the second estimation of $H^{\gamma}(n, t)$ in Lemma 10,

$$K_{2} = \int_{u}^{\pi} v^{\gamma-1} \int_{v}^{\pi} (t-v)^{-\beta} \frac{d}{dt} H^{\gamma}(n,t) dt dv$$

$$= \int_{u}^{\pi} \frac{d}{dt} H^{\gamma}(n,t) \int_{u}^{t} v^{\gamma-1} (t-u)^{-\beta} dv dt$$

$$= \int_{v}^{\pi} \frac{d}{dt} H^{\gamma}(n,t) t^{\gamma-\beta} \int_{u/t}^{1} z^{\gamma-1} (1-z)^{-\beta} dz dt$$

$$= \int_{u/\pi}^{1} z^{\gamma-1} (1-z)^{-\beta} dz \int_{\zeta}^{\pi} t^{\gamma-\beta} \frac{d}{dt} H^{\gamma}(n,t) dt$$

$$= O\left\{ \int_{\zeta}^{\pi} t^{\gamma-\beta} \frac{d}{dt} H^{\gamma}(n,t) dt \right\}$$

$$=O\left\{\left[H^{\gamma}(n,t)t^{\gamma-\beta}\right]_{\zeta}^{\pi}-\int_{\zeta}^{\pi}H^{\gamma}(n,t)t^{\gamma-\beta-1}dt\right\}.$$

We substitute the second estimation of Lemma 3 for $H^{\gamma}(n,t)$, then we get easily

$$K_2 = O\left\{u^{\gamma - \beta - 1} \frac{n^{\delta - 1}}{(\log n)^{1 + \epsilon}} + u^{-\beta} \frac{n^{\delta - \gamma}}{(\log n)^{1 + \epsilon}}\right\}.$$

LEMMA 15. When $nu \ge 1$, we have $K(n, u) = O\{1/(\log n)^{1+\epsilon}\}.$

Proof. If we remember that $\delta = r - \beta$, we obtain from Lemma 14

$$K(n,u) = O\left\{\frac{1}{(\log n)^{1+\epsilon}} + \frac{(un)^{\gamma-1}}{(\log n)^{1+\epsilon}} + \frac{(un)^{-1+\gamma-\beta}}{(\log n)^{1+\epsilon}} + \frac{(un)^{-\beta}}{(\log n)^{1+\epsilon}}\right\}.$$

From the assumption, $nu \ge 1$, and r-1, $-1+r-\beta$, $-\beta$ are all non-positive. Hence we get easily the lemma.

Now we shall prove Theorem 2 for the case $\beta > 0$. Proof runs quite similary as that of Theorem 1.

It is sufficient to prove that

$$\sum_{n=1}^{\infty} |\zeta_n^{\gamma}|/n < \infty,$$

where ζ_n^{γ} is the *n*-th Cesàro mean of order γ of the sequence $\{n \cdot n^{\gamma-\beta} A_n(x) / (\log n)^{1+\epsilon}\}$. Using the notations in the above lemmas we have

$$\zeta_{n}^{\gamma} = \frac{1}{A_{n}^{\gamma}} \sum_{\nu=0}^{n} A_{n-\nu}^{\gamma-1} \nu \cdot \nu^{\gamma-\beta} \frac{1}{\{\log(\nu+2)\}^{1+\epsilon}} A_{n}(x)$$

$$= \frac{2}{\pi} \int_{0}^{\pi} \varphi(t) \frac{d}{dt} \left\{ \frac{1}{A_{n}^{\gamma}} \sum_{\nu=0}^{n} A_{n-\nu}^{\gamma-1} \frac{\nu^{\gamma-\beta}}{\{\log(\nu+2)\}^{1+\epsilon}} \sin \nu t \, dt \right\}$$

$$= \frac{2}{\pi} \int_{0}^{\pi} \varphi(t) \frac{d}{dt} H^{\gamma}(n,t) \, dt$$

$$= \frac{2}{\pi \Gamma(1-\beta)} \int_{0}^{\pi} d\Phi_{\beta}(u) \int_{u}^{\pi} (t-u)^{-\beta} \frac{d}{dt} H^{\gamma}(n,t) \, dt$$

$$= \frac{2}{\pi \Gamma(1-\beta)} \int_{0}^{\pi} J(n,u) d\Phi_{\beta}(u)$$

$$= -\frac{2}{\pi \Gamma(1-\beta)} \int_{0}^{\pi} \Phi_{\beta}(u) \frac{d}{du} J(n,u) \, du$$

$$= -\frac{2}{\pi \Gamma(1-\beta)} \left(\left[u^{-\gamma} \Phi_{\beta}(u) I(n,u) \right]_{0}^{\pi} - \int_{0}^{\pi} I(n,u) \, d \left\{ \Phi_{\beta}(u) u^{-\gamma} \right\} \right)$$

$$=-\frac{2}{\pi\Gamma(1-\beta)}\bigg[\pi^{-\gamma}\Phi_{\beta}(\pi)I(n,\pi)-\int_{0}^{\pi}I(n,u)\,d\left\{u^{-\gamma}\Phi_{\beta}(u)\right\}\bigg].$$

Thus it suffices for us to prove that

(A)
$$\sum_{n=1}^{\infty} I(n,\pi)/n < \infty,$$

and

(B)
$$\sum_{n=1}^{\infty} \left| \int_{0}^{\pi} I(n,v) d\left\{ u^{-\gamma} \Phi_{\beta}(u) \right\} \right| / n < \infty.$$

Proof of (A). We have

$$\begin{split} \zeta_n^{\gamma} &= \frac{1}{A_n^{\gamma}} \sum_{\nu=0}^n A_{n-\nu}^{\gamma-1} \nu \cdot \nu^{\gamma-\beta} \frac{1}{\{\log{(n+2)}\}^{1+\epsilon}} \cdot \frac{2}{\pi} \int_0^{\pi} \varphi(t) \cos{\nu t} \, dt \\ &= -\frac{2}{\pi \Gamma(1-\beta)} \left[\pi^{-\gamma} \Phi_{\beta}(\pi) I(n,\pi) - \int_0^{\pi} I(n,u) \, d\left\{ u^{-\gamma} \Phi_{\beta}(u) \right\} \right] \end{split}$$

for any integrable even function $\varphi(t)$. If we put $\varphi(t) = t^{\gamma - \beta}$, then we easily get

$$\Phi_{\beta}(t) = \frac{\mathrm{B}(\beta, \gamma - \beta + 1)}{\Gamma(\beta)} t^{\gamma},$$

therefore

$$d\{u^{-\gamma}\Phi_{\beta}(u)\}=0.$$

Further, we have [5]

Hence, when $\varphi(t) = t^{\gamma - \beta}$, we have

$$I(n, \pi) = O\left\{\frac{1}{A_n^{\gamma}} \sum_{\nu=0}^n A_{n-\nu}^{\gamma-1} \frac{1}{\{\log(\nu+2)\}^{1+\epsilon}}\right\}.$$

Now, since

$$\begin{split} \sum_{\nu=0}^{n} A_{n-\nu}^{\gamma-1} \frac{1}{\{\log(\nu+2)\}^{1+e}} &= O\left\{ \int_{0}^{n} (n-\nu)^{\gamma-1} \frac{d\nu}{(\log\nu)^{1+e}} \right\} \\ &= O\left\{ n^{\gamma} \frac{1}{(\log n)^{1+e}} \right\}, \end{split}$$

we obtain

$$I(n, \pi) = O\{1/(\log n)^{1+\epsilon}\}.$$

Hence the proof of (A) follows immediately, that is,

$$\sum_{n=1}^{\infty} I(n,\pi)/n = O\left\{\sum_{n=2}^{\infty} 1/n(\log n)^{1+\epsilon}\right\} < \infty.$$

Proof of (B). By the assumption

$$\int_{0}^{\pi} \left| d\{u^{-\gamma} \Phi_{\beta}(u)\} \right| < \infty,$$

and obviously

$$\sum_{n=1}^{\infty} \left| \frac{1}{n} \int_{0}^{\pi} I(n,u) d\{u^{-\gamma} \Phi_{\beta}(u)\} \right| \leq \int_{0}^{\pi} \left| \sum_{n=1}^{\infty} \frac{1}{n} I(n,u) \right| \left| d\{u^{-\gamma} \Phi_{\beta}(u)\} \right|,$$

hence it suffices for us to prove

$$\sum_{n=1}^{\infty} \frac{1}{n} |I(n,u)| = O(1)$$

uniformly with respect to u. We now divide the sum into two parts such that

$$\sum_{n=1}^{\infty} = \sum_{n < u^{-1}} + \sum_{n \ge u^{-1}} = M_1 + M_2,$$

say. In the estimation of M_1 , we use Lemma 13, then

$$\begin{split} M_1 &= O\left\{\sum_{n < u^{-1}} \frac{1}{n} \left(u^{\gamma} \frac{n^{\gamma}}{(\log n)^{1+\epsilon}} \right) \right\} \\ &= O\left\{ u^{\gamma} \sum_{n < u^{-1}} \frac{n^{\gamma-1}}{(\log n)^{1+\epsilon}} \right\} \\ &= O\left\{ u^{\gamma} \int_{0}^{u^{-1}} \frac{x^{\gamma-1}}{(\log x)^{1+\epsilon}} dx \right\} \\ &= O\left\{ 1/(\log n)^{1+\epsilon} \right\} \\ &= O(1). \end{split}$$

Remembering that $I(n, u) = I(n, \pi) - K(n, u)$, we have

$$M_2 \leq \sum_{n\geq u^{-1}} \frac{1}{n} |I(n,\pi)| + \sum_{n\geq n-1} \frac{1}{n} |K(n,u)|,$$

where the first sum on the right side is finite as was proved and, by Lemma 15,

$$\sum_{n \ge u^{-1}} \frac{1}{n} |K(n, u)| = O\left\{ \sum_{n \le u^{-1}} \frac{1}{n(\log n)^{1+\epsilon}} \right\}$$

$$= O(1).$$

Thus Theorem 2 is proved for the case $\beta > 0$.

For the case $\beta = 0$, we shall only sketch the proof since this case is rather simple. It is sufficient to prove that, if

$$\int_{0}^{\pi} |d\{t^{-\gamma}\varphi(t)\}| < \infty,$$

where $0 < r \le 1$, then the series

$$\sum_{n=0}^{\infty} n^{\gamma} A_n(t) / \{\log (n+2)\}^{1+\epsilon}$$

is summable $|C, \gamma|$ at t = x.

Now

$$\begin{split} \zeta_n^{\gamma} &= \frac{1}{A_n^{\gamma}} \sum_{\nu=0}^n A_{n-\nu}^{\gamma-1} \nu \cdot \nu^{\gamma} \frac{A_{\nu}(x)}{\{\log(\nu+2)\}^{1+\frac{\alpha}{2}}} \\ &= O\Big\{ \int_0^{\pi} v^{\gamma} \frac{d}{dv} H^{\gamma}(n,v) dv + \int_0^{\pi} d\{t^{-\gamma} \varphi(t)\} \int_0^t v^{\gamma} \frac{d}{dt} H^{\gamma}(n,v) dv \Big\}. \end{split}$$

We put

$$\int_0^t v^{\gamma} \frac{d}{dv} H^{\gamma}(n,v) dv = I(n,t),$$

then it is sufficient to prove that

$$\sum_{n=1}^{\infty} |I(n,t)|/n = O(1),$$

for $0 \le t \le \pi$.

We begin to prove this for $t = \pi$. Putting $\varphi(t) = t^{\gamma}$, we get

$$I(n, \pi) = O\{1/(\log n)^{1+\epsilon}\},$$

and then

$$\sum_{n=1}^{\infty} |I(n,\pi)|/n < \infty.$$

Next we write

$$\sum_{n=1}^{\infty} |I(n,t)|/n = \sum_{n < t^{-1}} |I(n,t)|/n + \sum_{n \ge t^{-1}} |I(n,\pi) - K(n,t)|/n.$$

By the second mean value theorem and the first part of Lemma 10 we have

$$I(n,t) = \int_0^t v^{\gamma} \frac{d}{dv} H^{\gamma}(n,v) dv = O\left\{t^{\gamma} n^{\gamma} / (\log n)^{1+\epsilon}\right\},\,$$

therefore

$$\sum_{n < t^{-1}} |I(n, t)|/n = O(1).$$

By integration by parts we have

$$K(n,t) = \int_{t}^{\pi} v^{\gamma} \frac{d}{dv} H^{\gamma}(n,v) dv$$

$$= O\left\{1/(\log n)^{1+\varepsilon} + t^{\gamma-1} n^{\gamma-1}/(\log n)^{1+\varepsilon}\right\} - \gamma \int_{t}^{\pi} v^{\gamma-1} H^{\gamma}(n,v) dv$$

where we used for $H^{\gamma}(n,v)$ the second value of Lemma 10. The second term of the right is

$$\int_{t}^{\pi} v^{\gamma-1} H^{\gamma}(n, v) dv = \frac{1}{A^{\gamma}} \sum_{\nu=0}^{n} A_{n-\nu}^{\gamma-1} \frac{\nu^{\gamma}}{\{\log(\nu+2)\}^{1+\epsilon}} \int_{t}^{\pi} v^{\gamma-1} \sin v dv$$

$$= O\left\{t^{\gamma-1} n^{\gamma-1} / (\log n)^{1+\epsilon}\right\}.$$

Hence when $n \ge t^{-1}$, remembering $r \le 1$, we have $K(n, t) = O\{1/(\log n)^{1+\epsilon}\}$. The proof of

$$\sum_{n\geq t^{-1}} |K(n,t)|/n = O(1)$$

is now in hand.

Thus Theorem 2 is proved completely.

4. We shall end this paper by showing theorems, which will clarify the relation between Theorem 1 and Theorem 2.

THEOREM 4. Under the condition

$$\int_{1}^{\pi} |d(u^{-\gamma}\Phi_{\beta}(u))| < \infty,$$

we cannot conclude the $|C, \alpha|$ summability of $\sum n^{\gamma-\beta}A_n(x)$, however large α may be, where $\alpha > \gamma > \beta$.

Proof. For the proof we shall give a negative example. Let $\varphi(t)=t^{\gamma-\beta}$ $(\gamma>\beta)$, then

$$\int_{0}^{\pi} |d\{u^{-\gamma}\Phi_{\beta}(u)\}| = 0,$$

but as we have already shown

$$\zeta_n^{\alpha} = \frac{1}{A_n^{\alpha}} \sum_{\nu=0}^n A_{n-\nu}^{\alpha-1} \nu \cdot \nu^{\gamma-\beta} \cdot \frac{2}{\pi} \int_0^{\pi} \varphi(t) \cos \nu t \, dt$$

$$\cong \frac{C}{A_n^{\alpha}} \sum_{\nu=0}^n A_{n-\nu}^{\alpha-1} = C$$

where C is a constant. Hence

$$\sum_{n=1}^{\infty} |\zeta_n^{\alpha}|/n = \infty.$$

Theorem 5. Let $\eta > 0$. In order that

(i)
$$t^{-\gamma}\Phi_{\beta}(t)$$
 is of bounded variation in $(0, \gamma)$

and

(ii)
$$t^{-\gamma-1}|\Phi_{\beta}(t)|$$
 is integrable in $(0, \eta)$,

it is necessary and sufficient that

(iii)
$$\int_{0}^{\eta} t^{-\gamma+\beta} |d\varphi_{\beta}(t)| < \infty,$$

and

(iv)
$$\varphi_{\mathbf{8}}(+0) = 0.$$

PROOF. The condition is sufficient. For, if (iii) and (iv) hold, then we have

$$\int_{0}^{\eta} \frac{|\Phi_{\beta}(t)|}{t^{1+\gamma}} dt = \int_{0}^{\eta} \frac{|\varphi_{\beta}(t)|}{\Gamma(\beta+1)t^{1+\gamma-\beta}} dt = \int_{0}^{\eta} \frac{dt}{\Gamma(\beta+1)t^{1+\gamma-\beta}} \left| \int_{0}^{t} d\varphi_{\beta}(u) \right|$$

$$\leq \int_{0}^{\eta} \frac{dt}{\Gamma(\beta+1)t^{1+\gamma-\beta}} \int_{0}^{t} |d\varphi_{\beta}(t)|$$

$$= \int_{0}^{\eta} \frac{|d\varphi_{\beta}(u)|}{\Gamma(\beta+1)} \int_{u}^{\eta} \frac{dt}{t^{1+\gamma-\beta}}$$

$$= \int_{0}^{\eta} \frac{|d\varphi_{\beta}(u)|}{\Gamma(\beta+1)} \left(\frac{u^{-\gamma+\beta}-\eta^{-\gamma+\beta}}{\gamma-\beta} \right) < \infty$$

from which (ii) follows; and then (i) follows from

$$\begin{split} \int_0^{\eta} |d\left\{t^{-\gamma} \boldsymbol{\varphi}_{\boldsymbol{\beta}}(t)\right\}| &= \int_0^{\eta} \left|d\left\{\frac{t^{-\gamma+\beta}}{\Gamma(1+\beta)} \varphi_{\boldsymbol{\beta}}(t)\right\}\right| \\ &\leq \int_0^{\eta} \frac{t^{-\gamma+\beta}}{\Gamma(\beta+1)} |d\varphi_{\boldsymbol{\beta}}(t)| + \int_0^{\eta} \frac{\gamma-\beta}{\Gamma(1+\beta)} |\varphi_{\boldsymbol{\beta}}(t)| t^{-\gamma+\beta-1} dt \\ &= \int_0^{\eta} \frac{t^{-\gamma+\beta}}{\Gamma(1+\beta)} |d\varphi_{\boldsymbol{\beta}}(t)| + \int_0^{\eta} (\gamma-\beta) \frac{|\Phi_{\boldsymbol{\beta}}(t)|}{t^{\gamma+1}} dt < \infty. \end{split}$$

The condition is necessary. For, suppose that (i) and (ii) hold, we now obtain (iii) from

$$\begin{split} &\int_0^\eta t^{-\gamma+\beta} \, |\, d\varphi_\beta(t)\, | \leq \int_0^\eta \, |\, d\{t^{-\gamma+\beta}\varphi_\beta(t)\}\, | + (\tau-\beta) \int_0^\eta \, |\, \varphi_\beta(t)\, |\, t^{-\gamma+\beta-1} dt \\ &= \int_0^\eta |\, d\{\Gamma(\beta+1)t^{-\gamma}\Phi_\beta(t)\}\, | + (\tau-\beta) \int_0^\eta \Gamma(\alpha+1)t^{-\gamma-1} |\Phi_\beta(t)\, |\, dt < \infty. \end{split}$$

(iv) is obvious from (i).

Thus Theorem 5 is proved.

From the proof of Theorem 5, we can also conclude that the condition

$$\int_{0}^{\eta} t^{-\gamma+\beta} |d\varphi_{\beta}(t)| < \infty, \qquad \varphi_{\beta}(+0) = 0$$

is equivalent to the condition of Theorem 3, that is,

$$\int_0^{\eta} t^{-\gamma} |d\Phi_{\beta}(t)| < \infty, \qquad \Phi_{\beta}(+0) = 0.$$

References

- [1] N. Obrechkoff, Sur la sommation des séries trigonométriques de Fourier par les moyennes arithmétiques, Bull. de la Soc. Math. de France, 62(1934), 84-109 et 167-184.
- [2] L.S. BOSANQUET, The absolute Cesàro summability of Fourier series, Proc. London Math. Soc., 41(1936), 517-528.
- [3] R. MOHANTY, The absolute Cesàro summability of some series associated with a Fourier series and its allied series, Journ. London Math. Soc., 25(1950), 63-67.
- [4] M.T. CHENG, Summability factors of Fourier series at a given point, Duke Math. Journ., 15(1948), 29-36.
- [5] E.C. TITCHMARSH, The theory of functions, Oxford, 1932.

MATHEMATICAL DEPARTMENT, TÔKYO TORITSU UNIVERSITY.