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1. Introduction. In the study of the congruence properties of the
partition function p(n), it is natural to use the device of dissecting a power
series according to the residue class of the exponent. For example, to study
the properties of p(5n+ r), r=0,1,2, 3,4, one considers the generating function

Πα-* )- = ] .
»>1 n>o

and attempts to write it in the form

A0(x5) -f xAi(x5) + x2A2(x5

where the Ajc(y) are power series in y. It is more convenient to work with
the reciprocal of the generating function, for which we have the identity of
Euler,

n^.1 _ o c

The elements in the dissection are not defficult to compute, and this has in
fact been done for special cases by Ramanujan [7], Darling [3], and Watson
[9], and in general by Atkin and Swinnerton-Dyer [1].

It is the purpose of this note to study the behavior of the elements
Wfc(r) in the dissection of the related function V(τ/q)/v(qτ)f where

y (T) = e*iτ/™ Π (1 - e**inT)

and q=6λ ± 1. From the results of [1],

where v = (q - l)/2,

and x = exp (2πίτ),I(τ) > 0. In § 2 I discuss the action of certain modular

1) Part of the work on this paper was done while the author was a National
Science Foundation Post-doctoral Fellow, at the Institute for Advanced Study,
1953-54.
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subgroups on Wk(τ). These subgroups are defined by

T0(q) : c = 0 (mod q),

TKq) : £ = c==0 (mod q),

T(q) : <2Ξίί = l, δ = c = O (mod q),

where af b, c} d, are the integral elements of the modular transformation

, aτ + b „,
τf = r—Γ = M r

cτ + d
and #d — bc=l. The complete result is that

12πi*ab= exp ( )Wa*W (M e= Γo(<?)).)

It follows that each T f̂c is invariant under Γ(#), that the set {Wk} k •-= 1,..., vy

is permuted by Γ£(#), and that the vector-space spanned by this set is
invariant under T0(q). An immediate corollary is the result that ψ(τ) is
invariant under Γ2(#), or equivalently, that ψ(qτ) is invariant under Γ0(tf2).
This last result, for q a prime power, has been proved by Lehner [4], using
the transformation equation for y(τ) and the theory of Dedekind sums.

In §3 I apply the previous theory to the functions φr(τ) = Ψ(τ -f r),
Y = 0,1, . . . . , q — 1, and show that

ψr(Mτ) = 0rd-+MCO CM EΞ Γ0(tf)).

This permits the deduction of the modular equation of Ramanujan-Watson
type [9], an algebraic relation between μ(τ) =V(τ/q)/y(τ) and M(qτ), which
Watson used to obtain the congruence properties of p(n) for the moduli 5α

and 7β. The theory developed here makes transparent the cyclic nature of
certain identities which appear in Watson's work. The modular equation
for q = 11 is given here (in parametric form), in the hope that it may be
useful in settling the question for powers of 11. In addition, an identity of
Ramanujan type is obtained which yields a proof of the congruence p(lln +
6) Ξ= 0 (mod 11). This identity is probably equivalent to one of Lehner's[4],
who used a different basis, however.

In §4 I make further applications to prove two hitherto unpublished and
unproved identities of Ramanujan. Identities of Slater and Newman are
also derived. Finally in § 5, I prove an identity of Rademacher which he
deduced by subjecting Ramanujan's

+ 4)*. = 5 Π - ^ Ξ ^

to the modular transformation τ' = — 1/r.

2. Properties of W*(r). Let q be a positive integer of the form 6λ ± 1
(λ > 0). For ^ φ θ (mod q), we define

(2. 1) Ck(x q) = C*GO = Π d - xnq-k)(l - #^-«+*),

where x = exp (2τrίτ), /(τ) > 0. The following properties of the Cfc are



A SYSTEM OF MODULAR FUNCTIONS

easily established :

(2. 2) Ck+q = C-ib = - χ-kCk Cq-jc = Cfc.

Now we define

(2. 3) TF.Cr q) - T7fc(r) = *«*/*-* £ ψ θ

From (2. 2) it follows readily that

(2. 4) flPWr) = TF_fc(r) = TΓ*(r),

so that there are exactly v = (# — l)/2 distinct functions Wκ(τ). We may
also write

(2 5} PP. <r) - exo ί 1 2 π ί k H ) . &^kπτ\qτ)
{Δ b) WΛT) " 6 X P \ q I ^(2kπτ \ qτ)
or by use of the transformation

(2. 7) Wκ(τ) =-

~~~nτ~/q

We now proceed to study the behavior of

under an arbitrary transformation of the full modular group, given by

(2.9) ' = "—£?£
where α, ̂ , c, d are integers and ad — be = 1. We shall show that

(2.10) g(z, w\Mτ)^ e X p { / ( 2 2 ~ M ; y c r + d) } . ̂ ((cr + rf)^, (cr 4- rf)w | r).

Since g is a function of x = expC27rίr), (2.10) is true for

and (2. 6) shows that it is also true for

Suppose now that (2.10) holds for M, and let M' = SM. Then

g(z, w \ M'τ) = ^(2, M; | Mr),

which is given by (2.10). But

M \c> d')-\ c d >

so that c' = c, df = d, and (2.10) holds for M'. Again, suppose that it holds
for M, and let
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Then, with τ' = Mr,

g(z, w I Jlί'r) -

c d

= exp

a by

Γ iτ'^* ~ r' | Mr),

by (2. 6). Applying the induction hypothesis with 2 replaced by zτ\ w by
wr', we find

g(z, w I ΛfV) = exp -f rf)^, (cr + d) τ'w \ τ)

where
= τr + cτ\c'τ

Λ + rfo,
since #'<i' — δrc' = 1. This shows that (2.10) is true for Mf. Since the trans-
formations S and T generate the modular group, (2.10) is completely proved.

We observe also that

(2.11) g(z + tnπ, w + nπ \ τ) = (-l)m+ng(ztw\τ).

Now, by (2. 7) and (2. 8),

(2.12) Wk(τ)=

In order to apply (2.10), let

Then, writing r' = ^r, we have

(2.13)

where

Hence, applying (2.10), we obtain

τ + β), 2kπ(aτ

, 2kaπτ \ τf),
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the last by virtue of (2.11). But τf = Tτu where τ1=— l/qτ, so (again by
(2.10)),

= PVΠ .σ — —

By (2. 4), we have the final result

(2.15) W*(Nτ) = e x p ( 1 2 π ^ ) Wak(τ) (JV e Γo(<7)).

In particular, Wk is invariant under N^. T(q), and the set {WK} is permuted
by Γo°(<?):

(2.16) Wk(Nτ) = IFΛfc(τ) (JV e ΓJCtf)).

We shall say that F(τ) = Φ (PFΊ(τ), , Wv(τ)) is c;yc//c if Φ is invariant
under k->ak for every a prime to #. If Φ is a polynomial, we shall call it
(q,m)-isobaric whenever each term has weight = m (mod #), provided that
Wjc is assigned weight k2. Then (2.15) shows that every cyclic function is
invariant under ΓJKg), and every cyclic, (q, 0) -isobaric polynomial is invariant
under T0(q).

Now let us examine the behavior of Wk(τ) at τ = 0. For this purpose,
set •£•' = - l/qτ. Then

2 4- q

As T -> 0, r' -> ί oo, and

(2.17) T^fc(r) -> 2 cos (2kπ/q) (τ -> 0).

Also, WfcCO has no zeroes or singularities in the finite upper half-plane
/(r) > 0. In the particular case where q = />, a prime, the fundamental
region for Γ0ί7>; has exactly two parabolic vertices τ = 0, /oo. Therefore,
any cyclic, (p, 0)-isobaric polynomial which is bounded at too must be a
constant. This gives us an easy method for identifying two such polynomi-
als, by comparing the principal parts of their expansions in terms of x = exp
(2πiτ) (including the constant term). The expansions are easily obtained
from (2. 3).

As a useful example, consider

Using (2. 3), (2. 2), and the fact that 2k and 4k run over a half residue-
system as k does, we see that F(τ) = ± #m. But F(r) is cyclic and (q, 0)-
isobaric, hence invariant under T0(q). Therefore m = 0 and

= ± 1 = lim F(τ) = Π 2 cos (2kπ/q).
£-*0 fc = l

Thus we have
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(2.18)
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Wv(τ) = ( - l)(«2-υ/8.

3. Modular equations of Ramanujan-Watson type. In his work on
congruence properties of partitions, to the moduli 5* and 73, Watson [9]
dissected the Euler pentagonal series according to the residues of the
exponents mod p (p = 5,7). This has been done in general by Atkin and
Swinnerton-Dyer [1, Lemma 6]. Their result, in our notation, is

V

(3.1) Ψ(τ) = l + 'ΣWk(τ),

where

(3. 2)

q = 6λ±l, and T?(r) is the Dedekind function. It follows immediately from
the results of §2 that ψ(τ) is invariant under ΓjJĈ ) (see Lehner [4, Th.
3]).

Let us define

(3. 3) </>r(O = ψ (τ -f r) = Ψ(Srτ) (r = integer).

By (3. 1) and (2.15),

(3. 4) Ψr(τ) =

where e = exp(127r//^). Obviously </>r+<i(O = Ψr(O, so there are q distinct
functions ψr{τ)y r = 0, 1,..., q — 1. Now if

we have, again by (2.15),
V

Φr(Nτ) = 1 + 2 εfc2(r

Let / ==t ak (mod ^) be chosen in the range 1,2, , v. Then

Ψr(Nτ) = 1 + 2 εί2(^2+0δ) Wt(τ),

since ad=Ξ=l (mod q). Thus

(3. 5) Φr(Nτ) = φrv+ (N~(rq δ )

Hence any function of the {(/'r} which is invariant under r -* δ2r (for all δ
prime to q) will belong to Γg(^) if in addition it is invariant under r -> r + 1,
it will belong to Γo(#). In particular, every symmetric function of the {ψr}
belongs to T0(q).

Now consider



(3. 6)
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Φ(z I r) = (z - Ψo(τ))(z ~ φt(τ» (z - </
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We have just proved that all the σr(τ) belong to Γ0(q). An easy compu-
tation with the infinite products shows that

(3.7) . . « ^ - l

Since Φ(ψ(τ) |τ) = 0, we have

(3. 8) (-1 ) λh^Vry)
If we eliminate the ^r(O (r = 1, , q — 1) by means of the algebraic
equations connecting them with σq(τ) (as modular functions belonging to
the same subgroup T0(q))f we obtain an equation between ψ(τ) and σq(τ).
This is essentially the modular equation connecting μ(τ) = V(τ/q)/y(τ) and
u(qτ), since

C3. 9) <Kτ)

(3.10) <JQ(τ

Such equations were discussed by Watson [9], and were obtained explicitly
by him for q = 5,7.

In the construction of the modular equation, it is somewhat easier to
work with the equation Φ(z + 11 τ) = 0, with roots ψr(τ) - 1, r = 0, 1, . . . ,
q -1. Thus

+ 11 T) = -i -f - (;*(τ).

Instead of computing the elementary symmetric functions <r*(τ) directly, we
go over to the power-sums

α - i

2
r —0

(3.11)

The transition to the 0% is then made by the formulas
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(3.12) 2<τξ= tffSf - S J ,

It is not necessary to compute <?*, since we need only σu , <τα_i in (3.8),
and these are given by

(3.13) oτ = 2 (q~~r

m)*?n Cσ0 = σt - 1).

This program is easy to carry out for q = 5, 7. For # = 5 we get S* = 0,

SJ = lOTFiTFs = - 10 (by (2.18)), S* == 0, S* - 30^W2

2 = 30. Then σ* = 0,

* * = 5, <r? = 0, <;* = 5, and from (3.13), ^i = σ2 - 25, «r3 = 15, a^ = 5. Hence

(3.14) tf 5 = 05 - 50* + 1503 - 2502 + 250,

or, putting

we have
(3.141) v = u5 + 5w4 + 15^3 -f 25«2

This is essentially the modular equation as given by Watson.

Similarly, for q = 7, we find S* = SJ = 0, SJ = 42, S* - 28A, 5? - 70#,

S* = 42C + 630, where

L̂ = WIW2 + W$Vz + WΊϊFi,

(3.15) 5 - WJW1 + WIW\ + W*Wt,

C - WΐW* + WξWi + W*Ws.

The first few terms in the expansions of these functions are

A = - x'1 - 4 - 2x + - - - ,

(3.16) B = r 1 + l + ,

C = 3 + .

By the method sketched in § 2, we get B = —A —3, C = 3. Again, putting

and carrying through the routine calculations of ary we obtain (3.8) in the
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form

3 v = u7 + 7u6 + 21w5 4-

4- (63 - 3δi4)w2 - 49(1 4- A)u .

Directly from the product,

v = ΛT2 - 8ΛΓ' 4- 20 4- ,

so t; = (A 4- 8)2. Thus, setting

κ> = 0 7 ( 0 / 7 ( 7 0 ) * = s-1 +

we have

and finally

(3.19) w2 - 7w(u* 4- 5u2 + 7u)

= u7 + 7w6 + 21w5 + 49w4 -f 147M3 + 343w2 -f 343^,

which agrees with Watson's result.
For q = 11 the calculations are rather lengthy but elementary, and we

shall give only the final result. Let

(3.20) a = WlWJVs + WIWJV, + WIW5W2 + WIWJV* 4- WIW2W* - 17

- ΛT2 4- 2*-1 - 12 4- 5x 4- 8*2 4- ΛΓ8 4- 4x* 4- ,

0 = 2 - (WWi 4- WφT* + ^ ^ 5 4- I f ^ 4- Wtfrύ

- A;"3 4- x'1 -\2 + 2x + 2x* 4- 16Λ;3 4- • • .

Then

υ - u11 - llu10 4- 5 llw9 - l l 2 ^ 8 - l l 2 ^ 7 4- 11(112 - 2a)u6

- 112(11 - 2a)u5 - 11(1P 4-

4- 112(5 112 4- 38α 4- 2&)Φ - 11(11* 4- 72 l l α - α 2 4-

4- 112(H3 4- 8 l l α 4- α 2 4- llβ)u.

There are the further relations

(3.22) v = (II 2 4- a)β - SΛVa - 14α2

(3.23) v2 + ( I I 4 4- 13 l l 2 α 4- 34α2)z; = a* 4- 9(112 4- α ) 2 .

The auxiliary functions are connected by

(3.24) α* 4- 38α2 4- 3 l l 2 α 4- 9 = β2 4- 6α/3 4- ll2j9.

Elimination of a and β from (3.21), (3.22), and (3.23) will yield the modular
equation, which will be of degree 55 in u. This fact makes it difficult to
apply the methods of Watson, since the conjugates of the root u = ψ (r)
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consist not only of the translates ψ(τ -f r), r = 0, r = 0, 1, 2, ,10, but
also of others, the factor 5 being accounted for by the degree of (3.23) in a.

Equation (3.21) enables us, however, to prove the Ramanujan congruence
p(lln-h 6 ) Ξ = 0 (mod 11). In fact, we get an identity for the generating
function. To see this, we consider

10

-A- 2 Φr1^ = Π u - *""> 2
A r = o n .̂1 m^o

On the other hand? from (3.21),

Hence

(3.25) T] />Cllw + 6)Λ:-+1 = ΠΛ:5 Π

Π (JΞ^T

Since a and /9 have integral coefficients, the result follows. For a similar
identity, see Lehner [4].

4. Two identities of Remanujan for q = 7. Bailey [2] has given a proof
of the identity

m>l (1 — #"0 ~~ ^"J ^ 5 ' ( 1 — ^ ) 2 '

which appears, unproved, in Ramanujan's notebooks. It is easy to see that
(4. 1) implies the Ramanujan identity

(4.2) 2 ρ ^ n + 4)*w - 5 Π Si " !l?β'5 -

Indeed, if we denote by /(*) =^AnXn the left side of (4. 1), and set

(4. 3) /*(*)= 2
we have

(4. 4) /*(#) = Π (1-Λ:m)5

But the right side of (4. 1) is easily seen to be

(4.5) 2**-ΛΓ2-M4-)
N>I n\N n v 5 '

Thus AδN = 5A^, and

m^ l {i- — X )

from which (4. 2) follows directly.
The elegance of this proof of the Ramanujan congruence and identity

for p = 5 led me to seek a similar one for p = 7. Let
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(4.7) Π % ^ Σ

(4. 8) F*(x) = 2 B^xn = Π

The classical identity of Ramanujan,

C4. 9) 2 *C7» + 5)*- = 7 Π T Γ Ξ S " 3 + 49* Π %^r£

is then equivalent to

(4.10) F*(*)

where

(4.11) Q(x) = x Π (1 - # 7 w ) 3 ( l - Λ:m)s.

I had hoped to prove (4.10) using some elementary methods in elliptic
functions which I had developed. Instead, the following identity came forth :

(4.12) F*0O = 7(S0O -

where

C4.13) S(x) = 2 xN

Of course, (4.12) proves the congruence p(7n + 5) ΞΞΞO (mod 7), but it was
not clear how it related to (4.10). The two together yield

(4.14) S(x)=Q(x) + SF(x).

Conversely, (4.14) easily implies both (4.10) and (4.12). For, equating coe-
fficients of xln

y we obtain

(4.15) S*(x) = Q*Cχ) + 8 F * ( Λ : ) .

Now it is easy to see that

(4.16) S*0O = 49S(x)

and

(4.17) Q * U ) - - 7 Q ( Λ ) .

Hence

(4.18) 49SOO - - 7C(ΛΓ) + 8F*(x).

Elimination of Q from (4.18) and (4.14) yields (4.12), and elimination of S
yields (4.10). It was therefore highly desirable to find an independent proof
of the key identity (4.14).

When I communicated these results to professor Bailey, he informed me
that (4.14) appears unproved in Ramanujan's notebooks, along with the
similar (also unproved) formula

(4.19) 49000 + 8 Π γ\ " * Z ? = 8 - 7Γ0O,
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where

(4.20) T(x^^x-^(A-)d\

Using the results of § 3, I can now prove (4.14) and (4.19) without much
difficulty. From (3.18),

(4.21) 1 ^ ) ' + 8 + ACτ) = 0.

Now WJVzWs = 1, by (2.18), so

(4.22) A (o = w$Vt + wiw* + wyr,

+ +

where
SI .-<n.\

(4.23) P = i

and the C are defined by (2. 1). (The identity obtained by eliminating
between (4.21) and (4.22) is stated by Slater [8,(1.3)], who also quotes (4.14)
and shows that the latter implies the former.)

Now we have the formula2)

Π [(1 - ̂ - ^ ( l - xn~H)y ~ 2 J (1 - Λ:W/)
— oo

where

(4.25) K(x) = Π (1 - ^ n ) .

Replacing x by Λ;7 and then / by xa, a = 1,2,3, in (4.24), we obtain

(4.26)

where a' = 7 — a. Hence, from (4.22),

(4.27) - x*P'iK*(χi)A(τ) = Si + 52 - S,.

Returning to (4.21), and multiplying by

2) This is essentially the elliptic function identity
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we have

(4.28) Q(x) -f SF(x) = Si + S2 - S 3,

since

Equation (4.28) is the first of Ramanujan's identities referred to above, in
the form given by him. An easy transformation shows that Si-fS2 —Sτ=S,
and (4.14) is proved.

To prove (4.19), we subject (4.21) to the transformation r-> —=—, to get

(4.29) 4

Now

(4.30)
qτ

= ΪVTc
D±
D*

Q

where bk = cos (2kπ/q) and

(4.31) Die, = Die(x) = 11 Cl — β ) V ) ( l — ω~knn) (ω — e q )

Hence, with # = 7,

(4.32) A ( ~ l

O lie β JDjcDwc byie D Z)fc
Ok Dφ OK UΆ1c

where

(4.34) R = DAft = Π - ^ S ?
n>.l \± — X )

Now put / = ω*fc (k = 1, 2, 3) in (4.24) to get

(4.35) Bk-2-b

Split the sum for m = 0, m > 0, and m < 0, then expand in powers of x:

(4.36) s = ω 3 ; . ( i + : ; ? + s «• s
- o o 1 "J > >

Now

m\ fcm

7 ^ '

and AC - *) = - AC*), so

^ fc = O

7 / /-
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Therefore

(4.37) A{- i ) = Bt + B2 + B* =-• RK~4a + 7 2 ^ 2 (^
x Ίτ ' \ ft>o a\n v 7

Substituting in (4.29) and simplifying, we get

490 + 8Φ = - a - IT,

where

(4.38) Φ C x ) e , J | _ a ^ . l .

Equating constant terms, we find that a = — 8, so

(4.39; 49Q + 8Φ = 8 - IT.

This completes the proof of (4.19).

If we apply the starring operation to (4.39), observing that X* = T, we
get

-3430 + 8Φ* = 490 + 8Φ,

or

(4.40) Φ* = Φ + 490.

Following Newman [5], we define pr(n) by

(4.41) Π (1 - xnY = 2 Pr(n)xn.

Then

W>0

Φ*OO = JΊ α - χmri^ΣρΊσn)xn.

Therefore (4.40) is equivalent to

(4.42) ^Σιp7<i7n)xn = Π ( 1 - xn)8(l - xΊrιyι -f 49* Π d - * w ) 4 ( l - x7ny.

This is example 3 on p. 320 of Newman's paper.

5. Rademacher's identity. Rademacher [6, eq; (4. 7)] has derived the
following interesting identity by subjecting (4. 2) to the transformation
r -> — T"1, using the transformation theory of y(τ) and some results on
Dedekind sums:

\v5. x ) ^^i p\rl')X'' ~~ 0 ^^\ \ p '/ p\rl ίjX — 1J. ~pΓϊ ,- r̂,

There are several other methods of deriving (5. 1), of which I select the
following for its elementary nature, and because it illustrates the utility of
the systems of functions introduced here.

We have
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I n\ 1 v i / r \

— Πα

where the ψr are defind by (3. 3) with q = 5. Also

2 />CM)*2Sti = Π (1 - ΛΓ26")-1.
w>0

Inserting these values in (5. 1), multiplying by ΛT1 H (1 — x™), and expressing
the products as ^-functions, we find that (5. 1) is equivalent to

Recalling the definitions of φ(τ) and <r6(r) (which we shall write as
we find

(5. 20 ^(5r)Γl + VTS(-f-V;1C5r)l= tf(r).

Now replace r by r/5 and observe that

so that (5. 20 becomes

(5. 2") 05(r)

Now the functions ( - ^ ) ^ r ( O (r = 1,2,3,4) satisfy an equation

(5. 3) z4 - AxZ* + Λ2ε
2 - Aτz + A4 = 0,

and

(5-4)

To determine the coefficients, we express the symmetric functions of φlf

and φ2, φ* in terms of Wly W2 by (3. 4). Thus

= 1 + Wi + PF2 + (ω + ω^CT î + Wύ + Cω2 +

with similar expressions for φ2, ψ*. But Wι + TF2 = φ— 1 and W1PP2 =— 1,

so
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Φi Λ-Φi = 2 -f (ω + ω4) ( 0 - 1),

ψj(^4 = (φ — 1)2 _j_ (ω _|_ ω 4) ζ0 — 1) + C3 — tt>2 — ω 3 ) ,

φ^φi = (</> — l^ 2 -\- (co2 4~ (o^Qφ — 1) -\~ (3 — (o — ft)4).

An e lementary calculation shows t h a t (5. 3) is

Hence

A-, , — φ* - 3φ* + 5ψ - 5 V O ^ , 4 Q / 3 . C / 2 C , N

—Λ~—\/ 5 — ^ Λ *— = (Ψ* — 303 + 5ψ2 — 50),

since A* = ΨiΦzΦzΨί = ^/^. Putting this value in (5. 2") and simplifying,
we find the modular equation (3.14). Thus (5. 1) is proved. It was of
course not necessary to appeal to the previous derivation of (3.14), since
AA = (ΦiΨά)(Φ2Φz) can be found directly from (5. δ). It is not surprising
that the symmetric functions in (5. 5) are expressible in terms of φ, since
they satisfy the condition immediately following (3. 5) (invariance under
r -> <5V), which guarantee that they belong to Γ[J(5), as does φ. In fact, φ
is a Hauptmodul for this group, but this fact was not used here.

A similar, though computationally more involved, treatment should yield
the corresponding identity for g = 7 proved by Rademacher [6, eq. (5. 7)].
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