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1. In a recent paper, H. Suzuki [β] has proved the following:

Let X be a topological space with vanishing homotopy groups 7Γi(X) for
Q%i<n,n<i<q{l<n<q), and Ω(X) be its loop space (in the sense of
J.P. Serre [4]). If we denote their Eilenberg-MacLane invariants by K
and kl_ι(Ω(X)) respectively, then there is the relation

between them, where 2 : H9+1(7rn, n; πq) -> Hq( π n, n — 1; τrς) is the cohomology
suspension.

In this note, we give a proof by a different method from the original and
in some general form.

2. Now, We are familiar with-:

LEMMA 1. (Eilenberg-MacLane [1], see also [5]) Let Y be a cell complex.
There is a 1:1-correspondence between the homotopy classes of maps of Y into K
(πq, q + 1) and the elements of Hq+1(Y, 7rg), which is given by the correspondence
{/}*-» f*(u), where {/> is the class represented by f: Y-+K(πq, q + 1), uξ. Hq+1

far,,, q + 1: 7rq) is fundamental class and f* is the homomorphism induced by /.

Let X be ati arcwise connected topological space. We know that there is
a contractible fiber space in the sense of J.P. Serre, in which the total space
E(X) is the space of all paths in X with a fixed starting point (named base
point) and with compact-open topology, the base space is X and the fiber over
the base point is the loop space of X. Next theorem by Nakaoka-Mizuno [2J
will be used later.

LEMMA 2. Consider the fiber space (E,p,B) satisfying the following condi-
tions :
(i) The total space E is a simply connected space with vanishing homotopy
groups 7Γi(E) for i > r > 1.
(ii) The base space B is a space with vanishing homotopy groups 7n(B) for
i>r>l.
(iii) The projection p: E-*B induces the isomorphisms
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for 0<:i<r.
Then the image of the fundamental class u of the fiber by transgression τ is

equal to — hr-u where Av_i is the geometrical realization of Postnikov invariant
ΛV-i of E. (See [3] for Postnikov invariants)

3. Now we prove:

PROPOSITION 1. Let (B,p, Y) be the induced fibre space from the contractible
fiber space (E(X),po,X; Ω(X)) over 2-connected space X by a continuous map
f: Y-+X, and let B' be the total space of the fiber space which is induced from
(E(Ω(X)), q,Ω(X); ΩHX)) by fa: Ω(Y)-+Ω(X), where fΩis the continuous map
induced by f. Then B' is homeomorphic to Ω(B).

PROOF. By the definition of the induced fiber space,

B = {(y} u)\f(y) = Po(u), y€Y,u<£ E(X)}.

Let / be the fiber map of B into E(X) and let p the projection of B in-
to Y. For φ € Ω{B\ we define a map

by φ(t) -+ (Pφ(t), Tφ(t))3 tζ I = [0,1].

Since pφ{0) = pφ{l) and Tφ(0) = fφ(l), we havepφ ^ Ω(Y) and Jφ € Ω(E(X)).
Moreover, fpψit) = pofφ(t). Therefore, if we denote by pn the map Ω^E(X))
-> Ω(X) induced by pQ: E(X) -> X, then Jςφφ = pςyfφ. Conversely, it is clear
that the elements (y'} u') € ίl(Y) x Ω(E(X)\ satisfying the condition fay' = pau\
belong to Ω(B). So We can identify Ω{B) with a subset of ίl(F) x Ω(E(X)).
On the other hand, by the definition

B' = {(y, v')\foyf = w,y € Ω(Y\ υ' ̂  E(Ω(x))}.

We give a correspondence between v' € E(Ω(X)) and ξυ' € Ωί£(-X)) as follows:

(ξυ'(t))(s) = (ι/(s)Xf) s,t € I = [0,1].

Choosing the base points suitably, we have a continuous map

For, by [4] p. 474, (i/(s))(t) is continuous relative to both s and t. Therefore,
ξυ'{t) is an element of E(X) and ξv' is an element of Ω,(E(X))} and it is clear
that ξ is also continuous. By similar arguments (with slight modifications;,
we can get a continuous map of Ω(E(X)) into E(Ω(X))

η .u'-tηu'

defined by (u'(t))(s) = (ηu'(s))(t).

Now we define the correspondences

V

by J'{?, V) = (/, ξv'),

U') = (y, ηu>).
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(Since (pn(ξυ'))(t) = p{ζvχt))(ξυ'(t))(l) = (t/(l))(t) = (qι/) (t) = fnf <t), (yf, ξv') €
Q(B), etc.)

It is clear that ψ and η are continuous, and that ~ξ rj, ~η ξ are both
identities. Therefore, Bf is homeomorphic with ίl(B).

Let £ be a 1-connected cell complex with i-th homotopy groups 7n for
i = 2, 3, .., r, and τn(S) = 0 for t > r, and with Postnikov invariants ft2, ..

By Cartan-Serre's construction, we have a fiber space (£0, p, Y) satisfying
the conditions of Lemma 2. £0 has the same homotopy type with £ and Y
has the same invariants k2j .., Av-2 as £0 (or £)

Let X be a space K(irr, r + 1), r > 1. By Lemma 1, for Λv-i £ IΓ+1(Y, τrr)
there is a continuous map

such that f*ur+i = — &r-i,
where «r+i is the fundamental class of Hr+1(X, 7rr).

Since the transgression in (E(X),p0, X; Ω,(X)) is translated by/* to that
of (#,i>, Y), if we denote by ur the fundamental class of IFίΩiX), iτr) and by
T the transgression in (B,p, Y), then, by Lemma 2, τwr = — kr^lt Therefore,
B and £0 (and £) have the same homotopy groups and invariants. This
implies that their singular polytop^s have the same homotopy types, and so
do their loop spaces. Accordingly, the invariants of ί2f£) are equal to the
corresponding invariants of Ω(B) which are equal to that of B' in Proposi-
tion 1.

But we have:

PROPOSITION 2. Invariants % of B' are of the forms 2 J^+1, where 2 :
Ht+3(Y, iri+.λ)-+Hi+HΩ{Y), in**) is the cohomology suspension in the fiber space
(E(Y), p, Y Ω(Y)) over Y.

PROOF. Invariants of B' are of the forms —f£ m = —/^2«f+i. Since the
homomorphism of cubical singular chain groups C(Ω,{Y)) -> C(Y) defined by

σy(tu ....,tn) = (y(ί2,....,tn))ft) tjξ I

induces the suspension and this σ commutes with the chain homomorphisms
induced by / and /Ω, —/J 2m + 1 = - Σ / * ui+x = — 2 ί— Λi+1) = 2 Λi+i

By above discussions, we have

THEOREM. The Postnikov invariants of the loop space of a 1-connected cell
complex S are the images of that invariants of £ by the cohomology suspension
defined in the fiber space (E(β),p,£) over £.

REMARK. In the case where £ is a "space", we can replace £ with its
singular polytope without changing proofs. So we have the theorem in this
case too.
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