NOTE ON A THEOREM OF HILTON

Tôru Wada

(Received July 31, 1956)

1. Introduction. P. J. Hilton [4] showed as a generalization of ChangWhitehead theorem the following theorem: Let X be a connected $C W$-complex which is the union of $C W$-complexes A, B. Let A be $(p-1)$-connected ($p \geqq 3$), B be ($q-1$) connected ($q \geqq 3$), and let $A \cap B=C$ be contractible over itself. Then

$$
\begin{array}{cc}
\pi_{n}(X)=i_{3 *}^{\prime} \pi_{n}(A)+i_{4 *}^{\prime} \pi_{n}(B), & n<p+q-1 \\
\pi_{p+q-1}(X)=i_{3 *}^{\prime} \pi_{p+q-1}(A)+i_{4 *}^{\prime} \pi_{p+q-1}(B)+P^{\prime}\left(\pi_{p}(A) \otimes \pi_{q}(B)\right) .
\end{array}
$$

The purpose of this paper is to generalize the latter as follows:
Theorem. Let ($X: A, B$) be an excisive triad (see [3] p. 335), (A, C) be ($p-1$)connected ($p \geqq 3$) (see [1] p. 389), (B, C) be ($q-1$)-connected ($q \geqq 3$), and let C be l-connected $(l \geqq 1)$. Then

$$
\begin{aligned}
& \pi_{n}(X, C)=i_{3 *} \pi_{n}(A, C)+i_{4 *} \pi_{n}(B, C) \quad n<l+\min (p, q)-1=n_{0} \\
& \pi_{n_{0}}(X, C)=i_{3 *} \pi_{n_{0}}(A, C)+i_{4 *} \pi_{n_{0}}(B, C)+P\left(\pi_{p}(A) \otimes \pi_{q}(B)\right),
\end{aligned}
$$

where P is a univalent homomorphism and is given by

$$
P(\alpha \otimes \beta)=i_{*}[\alpha, \beta] \quad \alpha \in \pi_{p}(A), \beta \in \pi_{q}(B)
$$

[,] being the Whitehead product, and i_{*} is a univalent homomorphism to appear in Prop.1.

This follows readily from Prop.1, Prop. 2, in the next section, and BlakersMassey 's triad theorem [2].

We use in the following the same notations, of Blakers-Massey [1], but our fundamental tool is Lemma 2.

2. Statements and Proofs.

Lemma 1. In the diagram

of groups and homomorphisms, assume that $j_{2} \rho_{1}=i_{1}, j_{1} j_{2} \rho_{3}=1$, image $i_{\alpha}=$
kernel $j_{\alpha}(\alpha=1,2), i_{1}, j_{2}, \rho_{1}, \rho_{2}$ are univalent homomorphisms, and j_{1}, j_{2} are onto homomorphisms. Then G decomposes into the direct sum

$$
G=\rho_{1} G_{1}+i_{2} G_{2}+\rho_{3} G_{3},
$$

if i_{α} has a left inverse $i_{\alpha}^{*},(\alpha=1,2)$.
Proof. Consider $x \in \rho_{1} G_{1} \cap \rho_{3} G_{3}$, since $x \in \rho_{1} G_{1}$, it follows that $j_{3}(x)$ belongs to $i_{1} G_{1}$, hence $j_{1} j_{3}(x)=0$. Since $x \in \rho_{3} G_{3}$, it follows that there is a $y \in G_{3}$, such that $x=\rho_{3}(y)$. Then

$$
y=j_{1} j_{2} \rho_{3}(y)=j_{1} j_{2}(x)=0,
$$

and this implies $x=\rho_{3}(y)=0$, hence $\rho_{1} G_{1} \cap \rho_{3} G_{3}=0$.
Next, if $g_{1} \in G_{1}, g_{3} \in G_{3}$, and $x \in i_{2} G_{2}$, let $x=\rho_{1}\left(g_{1}\right)+\rho_{3}\left(g_{3}\right)$. Then

$$
j_{2} \rho_{1}\left(g_{1}\right)+j_{2} \rho_{3}\left(g_{3}\right)=j_{2}(x)=0
$$

by virture of our assumption image $i_{2}=$ kernel j_{2}. Let j_{1}^{*} be a univalent homomorphism such that $j_{2} \rho_{3}=j_{1}^{*}$, while $j_{2} \rho_{1}=i_{1}$. Then

$$
0=j_{1}\left(i_{1}\left(g_{1}\right)+j_{1}^{*}\left(g_{3}\right)\right)=0+g_{3}
$$

Since $g_{3}=0$ and $g_{1}=0$, it follows that

$$
\left(\rho_{1} G_{1}+\rho_{3} G_{3}\right) \cap i_{2} G_{2}=0
$$

Finally, let \boldsymbol{h} be an element of the group H such that $j_{2}(g)=h$, for any $g \in G$, as j_{2} is a homomorphism of G onto H. Since the group H decomposes into the direct sum $i_{1} G_{1}+j_{1}^{*} G_{3}$, it follows that there are $g_{1} \in G_{1}, g_{3} \in G_{3}$ such that

$$
h=i_{1}\left(g_{1}\right)+j_{1}^{*}\left(g_{3}\right) \quad \text { for all } h \in H
$$

The assumption implies $i_{1}\left(g_{1}\right)=j_{2} \rho_{1}\left(g_{1}\right), j_{1}^{*}\left(g_{3}\right)=j_{2} \rho_{3}\left(g_{3}\right)$, hence

$$
j_{2}(g)=j_{2} \rho_{1}\left(g_{1}\right)+j_{2} \rho_{3}\left(g_{3}\right) .
$$

This completes the proof of the lemma.
Lemma 2. In the diagram

of groups and homomorphisms, assume that the commutativity holds in the triangle, image $i_{\alpha}=$ kernel $j_{\alpha}(\alpha=1,2), i_{1}, i_{2}$ are univalent homomorphisms, and j_{1}, j_{2} are onto homomorphisms. Then there is a univalent homomorphism $\rho_{3} ; G_{3} \rightarrow G$ such that $j_{1} j_{2} \rho_{3}=1$, and G decomposes into the direct sum

$$
G=\rho_{1} G_{1}+i_{2} G_{2}+\rho_{3} G_{3}
$$

if and only if i_{α} has a left inverse $i_{\alpha}^{*}(\alpha=1,2)$.
Proof. Let there exists a univalent homomorphism $\rho_{3}: G_{3} \rightarrow G$ such that $j_{j} j_{2} \rho_{3}=1$, and let the direct sum decomposition hold. Now, we define $j_{1}^{*}: G_{3} \rightarrow \boldsymbol{H}$ by $j_{1}^{*}=j_{2} \rho_{3}$, then $j_{1} j_{1}^{*}=j_{1} j_{2} \rho_{3}=1$. The existence of a homomorphism $i_{1}^{*}: H \rightarrow G_{1}$ such that $i_{1}^{*} i_{1}=1$ follows from the fact that the group H decomposes into the direct sum

$$
H=i_{1} G_{1}+j_{1}^{*} G_{3} .
$$

Next, we define $j_{2}^{*}: H \rightarrow G$, by $j_{2}^{*}=\rho_{1} i_{1}^{-1}$ on $i_{1} G_{1}$, and by $j_{2}^{*}=\rho_{3} j_{1}^{*-1}$ on $j_{1}^{*} G_{3}$. Then

$$
\begin{aligned}
G & =\rho_{1} G_{1}+i_{2} G_{2}+\rho_{3} G_{3} \\
& =i_{2} G_{2}+j_{2}^{*} i_{1} G_{1}+j_{2}^{*} j_{1}^{*} G_{3} \\
& =i_{2} G_{2}+j_{2}^{*}\left(i_{1} G_{1}+j_{1}^{*} G_{3}\right)=i_{2} G_{2}+j_{2}^{*} H,
\end{aligned}
$$

and follows the existence of a homomorphism $i_{2}^{*}: G \rightarrow G_{2}$ such that $i_{2}^{*} i_{2}=1$.
Conversely assume that i_{α} has a left inverse $i_{\alpha}^{*}(\alpha=1.2)$. Then there are subgroups X of the group G such that $G=i_{2} G_{2}+X$. Let X_{0} denote one of such groups. Then $j_{2} \mid X_{0}$ maps X_{0} onto H, for $j_{2} G=j_{2} i_{2} G_{2}+j_{2} X_{0}=j_{2} X_{0}$.

Let $x_{1}, x_{2} \in X_{0}$, and $j_{2} x_{1}=j_{2} x_{2}$. Then $j_{2} x_{1}-j_{2} x_{2}=j_{2}\left(x_{1}-x_{2}\right)=0$, hence the element ($x_{1}-x_{2}$) of the group X_{0} belongs to $i_{2} G_{2}$. Since $i_{2} G_{2}+X_{0}$ is a direct sum, it follows that $x_{1}=x_{2}$, therefore j_{2} is an isomorphism of the group X_{0} onto the group H. Let μ be an inverse isomorphism of $j_{2} \mid X_{0}$, then $j_{2} \mu(h)=h$, for all $h \in H$. We define now the univalent homomorphism $\rho_{3}: G_{3} \rightarrow G$ by $\rho_{3}=$ μj_{1}^{*}. Then $j_{2} \rho_{3}\left(g_{3}\right)=j_{2} \mu j_{1}^{*}\left(g_{3}\right)=j_{1}^{*}\left(g_{3}\right) g_{3} \in G_{3}$, and Lemma 1 implies the conclusion.

Consider the various groups and homomorphisms indicated by the following diagram (see [1], Lemma 3.5.5)

Then the following commutativity relationship holds:

$$
i_{1 *}=j_{4} * i_{3 *}, \quad j_{2 *}=j_{3 *} i_{4 *} .
$$

Moreover, we have the following result:
Proposition 1. Let $(X ; A, B)$ be a triad, then there is a univalent homomorphism

$$
i_{*}: \pi_{n}(X: A, B) \rightarrow \pi_{n}(X, C) \quad(3 \leqq n \leqq r)
$$

such that

$$
j_{1 *} j_{\star *} i_{*}=1,
$$

$$
\pi_{n}(X, C)=i_{3 *} \pi_{n}(A, C)+i_{4} * \pi_{n}(B, C)+i_{*} \pi_{n}(X ; A, B)
$$

if injection homomorphisms

$$
\begin{aligned}
& i_{1 *}: \pi_{n}(A, C) \rightarrow \pi_{n}(X, B) \\
& i_{2} *: \pi_{n}(B, C) \rightarrow \pi_{n}(X, C)
\end{aligned}
$$

have left inverses for all $n(2 \leqq n \leqq r)$.
Proof. In the above diagram, since $i_{1 *}, i_{2 *}, i_{3 *}, i_{4 *}$ are univalent homomorphisms for $n-1$, then $j_{1 *}, j_{2 *}, j_{3 *}, j_{4 *}$ are onto homomorphisms for n. The assumption for n implies that $i_{3 *}, i_{4}$, , are univalent homomorphisms for n. Then, we obtain the following diagram

and Proposition 1 now follows from Lemma 2.
Proposition 2. Let $(X ; A, B)$ be an excisive triad, (A, C) be ($p-1$)-connected ($p \geqq 3$), (B, C) be ($q-1$)-connected $(q \geqq 3$), and let C be l-connected ($l \geqq 1$), then injection homomorphisms

$$
\begin{aligned}
& i_{1 *}: \pi_{n}(A, C) \rightarrow \pi_{n}(X, B) \\
& i_{2 * *}: \pi_{n}(B, C) \rightarrow \pi_{n}(X, A)
\end{aligned}
$$

have left inverses at least for $n \leqq l+\min (p, q)-1$.
Proof. Corollary 3.2 in [3] implies that

$$
i_{1 *}: \pi_{n}(A, C) \rightarrow \pi_{n}(X, B)
$$

has a left inverse for $n \leqq l+p-1$. Similarly

$$
i_{\nu^{*}}: \pi_{n}(B, C) \rightarrow \pi_{n}(X, A)
$$

has a left inverse for $n \leqq l+\boldsymbol{q}-1$. Therefore the Proposition is true.
Note. If ($X ; A, B$) is an excisive triad, (A, C) is $(p-1)$-connected $(p \geqq 3)$, (B, C) is $(q-1)$-connected ($q \geqq 3$), and C is $(p+q-1$)-connected, then

$$
\begin{gathered}
\pi_{n}(X)=i_{3 *}^{\prime} \pi_{n}(A)+i_{4 *} \pi_{n}(B) \quad n \leqq p+q-2 \\
\pi_{p+q-1}(X)=i_{3 *}^{\prime} \pi_{p+q-1}(A)+i_{4 *}^{\prime} \pi_{p+q-1}(B)+P^{\prime}\left(\pi_{p}\left(A \otimes \pi_{q}(B)\right) .\right.
\end{gathered}
$$

This follows immediately from the Theorem.

References

[1] A. L. Blakers and W.S. Massey, The homotopy goups of a triad I, Ann. of Math., 53(1951), 161-205.
[2] A. L. Blakers and W.S. MASSEY, The homotopy group. of a triad III, Ann. of Math., 58(1953), 409-41\%.
[3] J. C. MOORE, Some application of homology theory to homotopy problems, Ann. of Math., 58(1953), 325-350.
[4] P. J. Hilton, On the homotopy groups of unions of spaces, Comm. Math Helv., 29 (1955), 59-92.

Mathematical Institute, Tôhoku University.

