NOTE ON A THEOREM OF HILTON

TÔRU WADA

(Received July 31, 1956)

1. Introduction. P. J. Hilton [4] showed as a generalization of Chang-Whitehead theorem the following theorem: Let X be a connected CW-complex which is the union of CW-complexes A, B. Let A be (p-1)-connected $(p \ge 3)$, B be (q-1) connected $(q \ge 3)$, and let $A \cap B = C$ be contractible over itself. Then

$$\pi_n(X) = i'_{3*}\pi_n(A) + i'_{4*}\pi_n(B), \qquad n$$

$$\pi_{p+q-1}(X) = i'_{3*}\pi_{p+q-1}(A) + i'_{i*}\pi_{p+q-1}(B) + P'(\pi_p(A) \otimes \pi_q(B)).$$

The purpose of this paper is to generalize the latter as follows:

THEOREM. Let (X: A, B) be an excisive triad (see [3] p. 335), (A, C) be (p-1)-connected $(p \ge 3)$ (see [1] p. 389), (B, C) be (q-1)-connected $(q \ge 3)$, and let C be l-connected $(l \ge 1)$. Then

$$\pi_n(X,C) = i_{3*} \pi_n(A,C) + i_{4*} \pi_n(B,C) \qquad n < l + \min(p,q) - 1 = n_0$$

 $\pi_{n_0}(X,C) = i_{3*}\pi_{n_0}(A,C) + i_{4*}\pi_{n_0}(B,C) + P(\pi_p(A)\otimes\pi_q(B)),$

where P is a univalent homomorphism and is given by

$$P(\alpha \otimes \beta) = i_*[\alpha, \beta] \qquad \qquad \alpha \in \pi_p(A), \ \beta \in \pi_q(B),$$

[,] being the Whitehead product, and i_* is a univalent homomorphism to appear in Prop.1.

This follows readily from Prop. 1, Prop. 2, in the next section, and Blakers-Massey's triad theorem [2].

We use in the following the same notations, of Blakers-Massey [1], but our fundamental tool is Lemma 2.

2. Statements and Proofs.

LEMMA 1. In the diagram

of groups and homomorphisms, assume that $j_2\rho_1 = i_1$, $j_1j_2\rho_3 = 1$, image $i_{\alpha} =$

kernel j_{α} ($\alpha = 1, 2$), i_1, j_2, ρ_1, ρ_2 are univalent homomorphisms, and j_1, j_2 are onto homomorphisms. Then G decomposes into the direct sum

$$G =
ho_1 G_1 + i_2 G_2 +
ho_3 G_3,$$

if i_{α} has a left inverse i_{α}^{*} , $(\alpha = 1, 2)$.

PROOF. Consider $x \in \rho_1 G_1 \cap \rho_3 G_3$, since $x \in \rho_1 G_1$, it follows that $j_3(x)$ belongs to i_1G_1 , hence $j_1j_2(x) = 0$. Since $x \in \rho_3 G_3$, it follows that there is a $y \in G_3$, such that $x = \rho_3(y)$. Then

$$y = j_1 j_2 \rho_3(y) = j_1 j_2(x) = 0,$$

and this implies $x = \rho_3(y) = 0$, hence $\rho_1G_1 \cap \rho_3G_3 = 0$.

Next, if $g_1 \in G_1$, $g_3 \in G_3$, and $x \in i_2G_2$, let $x = \rho_1(g_1) + \rho_3(g_3)$. Then

$$j_2\rho_1(g_1) + j_2\rho_3(g_3) = j_2(x) = 0$$

by virture of our assumption image $i_2 = \text{kernel } j_2$. Let j_1^* be a univalent homomorphism such that $j_2\rho_3 = j_1^*$, while $j_2\rho_1 = i_1$. Then

$$0 = j_1(i_1(g_1) + j_1^*(g_3)) = 0 + g_3.$$

Since $g_3 = 0$ and $g_1 = 0$, it follows that

$$(\rho_1 G_1 + \rho_3 G_3) \cap i_2 G_2 = 0.$$

Finally, let **h** be an element of the group H such that $j_2(g) = h$, for any $g \in G$, as j_2 is a homomorphism of G onto H. Since the group H decomposes into the direct sum $i_1G_1 + j_1^*G_3$, it follows that there are $g_1 \in G_1$, $g_3 \in G_3$ such that

$$h = i_1(g_1) + j_1^*(g_3) \qquad \text{for all } h \in H.$$

The assumption implies $i_1(g_1) = j_2 \rho_1(g_1), j_1^*(g_3) = j_2 \rho_3(g_3)$, hence

$$j_2(g) = j_2\rho_1(g_1) + j_2\rho_3(g_3).$$

This completes the proof of the lemma.

LEMMA 2. In the diagram

of groups and homomorphisms, assume that the commutativity holds in the triangle, image $i_{\alpha} = kernel j_{\alpha}$ ($\alpha = 1, 2$), i_1 , i_2 are univalent homomorphisms, and j_1 , j_2 are onto homomorphisms. Then there is a univalent homomorphism ρ_3 ; $G_3 \rightarrow G$ such that $j_1 j_2 \rho_3 = 1$, and G decomposes into the direct sum

$$G = \rho_1 G_1 + i_2 G_2 + \rho_3 G_3$$

if and only if i_{α} has a left inverse i_{α}^{*} ($\alpha = 1, 2$).

PROOF. Let there exists a univalent homomorphism $\rho_3: G_3 \rightarrow G$ such that $j_1 j_2 \rho_3 = 1$, and let the direct sum decomposition hold. Now, we define $j_1^*: G_3 \to H$ by $j_1^* = j_2 \rho_3$, then $j_1 j_1^* = j_1 j_2 \rho_3 = 1$. The existence of a homomorphism i_1^* : $H \to G_1$ such that $i_1^* i_1 = 1$ follows from the fact that the group H decomposes into the direct sum

$$H = i_1 G_1 + j_1^* G_3.$$

Next, we define $j_2^*: H \to G$, by $j_2^* = \rho_1 i_1^{-1}$ on $i_1 G_1$, and by $j_2^* = \rho_3 j_1^{*-1}$ on $j_1^* G_3$. Then

$$G = \rho_1 G_1 + i_2 G_2 + \rho_3 G_3$$

= $i_2 G_2 + j_2^* i_1 G_1 + j_2^* j_1^* G_3$
= $i_2 G_2 + j_2^* (i_1 G_1 + j_1^* G_3) = i_2 G_2 + j_2^* H$,

and follows the existence of a homomorphism $i_2^*: G \to G_2$ such that $i_2^*i_2 = 1$.

Conversely assume that i_{α} has a left inverse $i_{\alpha}^{*}(\alpha = 1, 2)$. Then there are subgroups X of the group G such that $G = i_2G_2 + X$. Let X_0 denote one of such groups. Then $j_2|X_0$ maps X_0 onto H, for $j_2G = j_2i_2G_2 + j_2X_0 = j_2X_0$.

Let $x_1, x_2 \in X_0$, and $j_2 x_1 = j_2 x_2$. Then $j_2 x_1 - j_2 x_2 = j_2 (x_1 - x_2) = 0$, hence the element $(x_1 - x_2)$ of the group X_0 belongs to i_2G_2 . Since $i_2G_2 + X_0$ is a direct sum, it follows that $x_1 = x_2$, therefore j_2 is an isomorphism of the group X_0 onto the group *H*. Let μ be an inverse isomorphism of $j_2 | X_0$, then $j_2 \mu(h) = h$, for all $h \in H$. We define now the univalent homomorphism $\rho_3: G_3 \to G$ by $\rho_3 =$ μj_1^* . Then $j_2 \rho_3(g_3) = j_2 \mu j_1^*(g_3) = j_1^*(g_3) g_3 \in G_3$, and Lemma 1 implies the conclusion.

Consider the various groups and homomorphisms indicated by the following diagram (see [1], Lemma 3.5.5)

Then the following commutativity relationship holds:

$$i_{1*} = j_{4*}i_{3*}, \quad j_{2*} = j_{3*}i_{4*}.$$

Moreover, we have the following result:

PROPOSITION 1. Let (X; A, B) be a triad, then there is a univalent homomorphism

> $i_*: \pi_n(X; A, B) \rightarrow \pi_n(X, C)$ $(3 \leq n \leq r)$

such that

$$j_{1*}j_{4*}i_{*}=1,$$

and the group $\pi_n(X, C)$ decomposes into the direct sum

 $\pi_n(X, C) = i_{3*}\pi_n(A, C) + i_{4*}\pi_n(B, C) + i_{*}\pi_n(X; A, B)$

if injection homomorphisms

$$i_{1*}: \pi_n(A, C) \to \pi_n(X, B)$$
$$i_{2*}: \pi_n(B, C) \to \pi_n(X, C)$$

have left inverses for all $n \ (2 \leq n \leq r)$.

PROOF. In the above diagram, since i_{1*} , i_{2*} , i_{3*} , i_{4*} are univalent homomorphisms for n-1, then j_{1*} , j_{2*} , j_{3*} , j_{4*} are onto homomorphisms for n. The assumption for n implies that i_{3*} , i_{4*} , are univalent homomorphisms for n. Then, we obtain the following diagram

and Proposition 1 now follows from Lemma 2.

PROPOSITION 2. Let (X; A, B) be an excisive triad, (A, C) be (p-1)-connected $(p \ge 3)$, (B, C) be (q-1)-connected $(q \ge 3)$, and let C be l-connected $(l \ge 1)$, then injection homomorphisms

$$i_{1*}: \pi_n(A, C) \to \pi_n(X, B)$$
$$i_{2*}: \pi_n(B, C) \to \pi_n(X, A)$$

have left inverses at least for $n \leq l + \min(p, q) - 1$.

PROOF. Corollary 3.2 in [3] implies that

$$i_{1*}: \pi_n(A, C) \rightarrow \pi_n(X, B)$$

has a left inverse for $n \leq l + p - 1$. Similarly

$$i_{2*}: \pi_n(B, C) \rightarrow \pi_n(X, A)$$

has a left inverse for $n \leq l + q - 1$. Therefore the Proposition is true.

NOTE. If (X; A, B) is an excisive triad, (A, C) is (p-1)-connected $(p \ge 3)$, (B, C) is (q-1)-connected $(q \ge 3)$, and C is (p+q-1)-connected, then

$$\pi_n(X) = i'_{3*} \pi_n(A) + i_{4*} \pi_n(B) \qquad n \le p + q - 2$$

$$\pi_{p+q-1}(X) = i'_{3*} \pi_{p+q-1}(A) + i'_{4*} \pi_{p+q-1}(B) + P'(\pi_p(A \otimes \pi_q(B))).$$

This follows immediately from the Theorem.

T. WADA

References

- A. L. BLAKERS AND W. S. MASSEY, The homotopy goups of a triad I, Ann. of Math., 53(1951), 161-205.
- [2] A. L. BLAKERS AND W. S. MASSEY, The homotopy group. of a triad III, Ann. of Math., 58(1953), 409-417.
- [3] J. C. MOORE, Some application of homology theory to homotopy problems, Ann. of Math., 58(1953), 325-350.
- [4] P. J. HILTON, On the homotopy groups of unions of spaces, Comm. Math. Helv., 29 (1955), 59–92.

MATHEMATICAL INSTITUTE, TÔHOKU UNIVERSITY.