NOTE ON A THEOREM OF HILTON
TOrU WaDA
(Received July 31,1956)

1. Introduction. P.]J. Hilton [4] showed as a generalization of Chang-
Whitehead theorem the following theorem: Let X be a connected CW-complex
which is the union of CW-complexes A, B. Let A be (p — 1)—connected (p = 3),
Bbe (g — 1) connected (g = 3),and let A | B = C be contractible over itself.

Then
T X) = tpaa(A) + iy ma(B), n<p+qg-—1
'”'l’+q-1(X) = ié*""p+q—1(A) + i.;*'”'p#-q-—l(B) + P’('ﬂ'p(A) ) 'ﬂ'q(B)).
The purpose of this paper is to generalize the latter as follows:
THEOREM. Let (X: A, B) be an excisive triad (see [3] p. 335), (A, C) be (p — 1)-
connected (p =3) (see [1] p. 389),(B,C) be (g — l)-connected (@ =3), and let
Cbe l-connected (1 =1). Then
(X, C) = i3x ma(A, C) + i ma(B, C) n<l+ min(p,q)—1=n,
Tul X, C) = iswmn(A, C) + tyrn(B, C) + P(my(A) ® m(B)),
where P is a univalent homomorphism and is given by
Pla® B) = ila, Bl a € my(A), B &€ m(B),
[, ] being the Whitehead product, and ix is a wunivalent homomorphism to
appear in Prop.1.

This follows readily from Prop. 1, Prop. 2, in the next section, and Blakers—
Massey ’s triad theorem [2].

We use in the following the same notations, of Blakers-Massey [1], but
our fundamental tool is Lemma 2.

2. Statements and Proofs.
LEmMA 1. In the diagram

51 A
Gl\ ——%T ’—tG;
N
P1 e Ps
T,
2}
G,

of groups and homomorphisms, assume that jp, = i, jijsps =1, image i =
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kernel ju (& = 1,2), 11, 4, p1, ps are univalent homomorphisms, and j,, 7, are onto
homomorphisms. Then G decomposes into the direct sum

G = p,G, + ©:G: + psGs,
if s has a left inverse i¥, (a =1,2).

Proor. Consider x € p,G; ] psGs, since x € p,G,, it follows that j(x)

belongs to #;G,, hence jij:(x) = 0. Since x € p;Gs, it follows that there is a
Y € Gs, such that x = p3(¥). Then

¥ = juhps(¥) = Jujo(%) = 0,
and this implies x = p3(¥) = 0, hence  p,G; N psGs = 0.
Next, if g € Gi, & € Gs, and x € ,G,, let x = pi{g) + ps(gs). Then
fnPl(gl) + szs(gs) = Jy(x) =0
by virture of our assumption image f; = kernel 7. Let j* be a univalent
homomorphism such that s,ps = 7, while fp; = 7. Then
0 = ji(i(&) + 7(&) =0 + &.
Since & = 0 and & = 0, it follows that
(p1G) + p3Gs) N 4Gy = 0.
Finally, let h be an element of the group H such that f(g) = h, for any g € G,

as #y is a homomorphism of G onto H. Since the group H decomposes into
the direct sum #G,; + 7¥Gs;, it follows that there areg; € Gy, gs € Gssuch that

h = i(q1) + 7i(gs) for all A € H.
The assumption implies #(g1) = Api(g1), 7(gs) = 7.ps(gs), hence
7i(9) = 12pr(&) + Faps(gs).
This completes the proof of the lemma.

LEMMA 2. In the diagram

il j 1
G1 —-——-—-—)H-———*Gs
T
| 7
P \G
T
£
G,

of groups and homomorphisms, assume that the commutativity holds in the
triangle, image ix = kernel jy (o = 1,2), 4, i; are univalent homomorphisms,
and ji, j» are onto homomorphisms. Then there is a univalent homomorphism
p3s; Gs— G such that jij.ps =1, and G decomposes into the direct sum

G = p,G, + £,Gs + psG;
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tf and only if i, has a left inverse t¥ (a =1,2).

Proor. Let there exists a univalent homomorphism p;: G;— G such that
juisps = 1, and let the direct sum decomposition hold. Now, we define j*: G; —H
by j* = jups, then jj* = jijsps = 1. The existence of a homomorphism f: H—G,
such that ¥ 4, = 1 follows from the fact that the group H decomposes into
the direct sum

H= ilGl + ]? Ga.
Next, we define j* H— G,by ¥ = pii;~! on 4, G,, and by Jf = ps/¥~! on j¥ Gs.
Then ’
G = piG, + 1:.G; + psGs
= 6,63 + 4G + 15 Gs
= 4Gy + (4G, + 7F¥Gs) = 6,6, + 7}H,
and follows the existence of a homomorphism z}: G — G, such that 74, = 1.

Conversely assume that 7, has a left inverse ¥ (a = 1.2). Then there are
subgroups X of tha group G such that G = 7,G, + X. Let X, denote one of
such groups. Then 7| X, maps X, onto H, for G = 7.4:G: + 7:Xo = f:Xo.

Let x, x, € Xp, and 7% = fu%s. Then 7% — % = fu(% — ;) = 0, hence the
element (x; — %) of the group X belongs to #,G;. Since 7,G; + X, is a direct
sum, it follows that x, = %, therefore 7, is an isomorphism of the group X,
onto the group H. Let p be an inverse isomorphism of 7,| Xo, then 7;u(k) = h,
for all h € H. We define now the univalent homomorphism ps: G;—G by p; =
uit. Then fups(g) = fapi¥ (&) = jH (&) & € Gs, and Lemma 1 implies the
conclusion.

Consider the various groups and homomorphisms indicated by the follow-
ing diagram (see [1], Lemma 3.5.5)

1%
'ﬂ'n(A, C)**—'—VIT n(X, B )

AW B+ T3\ ™ \jl* S
7l'n+1(‘X;'A, B) i4* ;m.(B, C) 'lTn(X; A, B)
7 B-\( / Ndsx Mk N

(B, C )—'.2—.——>7r,.( X

Then the following commutativity relationship holds :
fix = j4*ia*, jz* = ja*l}*-

Moreover, we have the following result:

ProrosITION 1. Let (X; A, B) be a triad, then there is a univalent homo-
morphism :

ix: m(X: A, B)— m(X,C) B=n=<7)
such that
jl*j‘*i* = 1;

and the group mw(X, C) decomposes into the direct sum
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(X, C) = tswmrn(A, C) + tpama(B, C) + txire(X; A, B)
if injection homomorphisms
tix: ma(A, C) > (X, B)
tox: (B, C) = mn(X, C)
have left inverses for all n 2= n=<r).
Proor. In the above diagram, since 7x, fu, f3%, 4 are univalent homo-
morphisms for #» — 1, then jix, jox, s+, /ix are onto homomorphisms for ». The

assumption for # implies that #, Z, are univalent homomorphisms for .
Then, we obtain the following diagram

0
1% i) Jux
0——ma(A, C)——+m'n(TX, B)y——mo(X;A, B)——0
Jox
Ton \
(X, C)
T,
(7t ]
'Il'n(B 5 C)
T
0
and Proposition 1 now follows from Lemma 2.

ProrosiTiON 2. Let (X; A, B) be an excisive triad,(A,C) be (p — 1)-con-
nected (p =3), (B,C) be (q — 1)~connected (q=3), and let C be l-connected
(1 =1), then injection homomorphisms
fix: (A, C) > ma(X, B)
fox: (B, C) > (X, A)

have left inverses at least for n <1 -+ min (p,q) — 1.

Proor. Corollary 3.2 in [3] implies that

fix: ma(A, C) = m(X, B)

has a left inverse for n <1+ p — 1. Similarly
ise: ma(B, C) > (X, A)

has a left inverse for n <1 + q — 1. Therefore the Proposition is true.

Note. If (X; A, B) is an excisive triad, (A, C) is (» — 1)-connected (p = 3),

(B, C) is (g — 1)-connected (¢ =3), and C is (p + g — 1)-connected, then
T(X) =ty ma(A) + igxmra( B) n=p+q-—2
77'p+q—l(X) = 1;* Tp+q-1 (A) + i;* 7Tp+q—x(B) + P’(”Tp(A ®'ﬂ'q(B))-
This follows immediately from the Theorem.
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