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1. Introduction. The recent development of the Lie theory suggests the
investigation of Lie rings of operators on a Hubert space. In this paper
we shall treat the more restrictive one, that is, the Lie rings constructed
with the operators in a ring of operators (in the sense of von Neumann) on
a Hubert space. The adjective infinite is due to the same reason as and the
close connection to the infinite unitary groups and the infinite general linear
groups defined by Kadison [6, 7] (they are defined by the set of all unitary
operators and all invertible operators in a ring of operators, respectively).

The object of this paper is to introduce the natural definition of the
infinite Lie rings as the Lie rings associated to infinite unitary groups and
general linear groups, and to investigate the relations between the (closed)
normal subgroup structure and the Lie ideal structure.

In § 2 we shall introduce the natural definition of infinite Lie rings following
the method of Neumann [10]. He treated the group of matrices on a finite
dimensional vector space and the Lie ring associated with it. His results are
almost valid in a Hubert space. In § 3 we shall clarify the fundamental
properties of the infinite Lie rings, especially, of its derived rings, which
will play the essential role in the sequel. § 4 contains the complete determi-
nation of the closed Lie ideals in the various cases of factors. In this and
next sections we shall assume the underlying Hubert space to be separable.
This assumption is based on the technical reason in the case of factors of the
infinite class: that is, we shall essentially use the notion of the trace and
the unicity of the closed (two-sided) ideal in infinite factors. In the non-
separable case there exist the distinct equivalence classes of infinite projections
and the distinct closed ideals. But we may easily see the situation of the
non-separable case from the separable case. In § 5 we shall apply the
results of § 4 to the determination of all closed normal subgroups of the
infinite unitary groups and general linear groups in the various cases of
factors. These results are originally due to Kadison [6, 7, 8], but our proof
is quite different from his and makes clear the other aspect of the group
structure. Moreover, it looks more preferable from the theory of operator
rings and permits the unified treatment of the infinite unitary groups and
general linear groups.

In the meantime, Herstein [4, 5] published the interesting papers on the
Lie ring of an abstract associative ring and his results are closely related
to ours. By employing his results some of our proofs in § 3 are consider-
ably simplified.

In this paper we shall make free use of the fundamental results and
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techniques of rings of operators without further references (refer to [1,9,
11]), and the common terminologies such as Lie ring, the Lie subring and
the Lie ideal should be taken in the usual manner.

Finally, at the preliminary stage of this investigation we are indebted to
Professor M. Kondo and Professor M. Orihara for stimulating discussions, to
whom we shall want to express our hearty thanks.

2. Definition of infinite Lie rings.510 Let M be a ring of operators on
a Hubert space. Following Kadison [6,7] we define the infinite general linear
group G and the infinite unitary group U by the group of all invertible
operators and all unitary operators in M (with the uniform topology), re-
spectively.

Following the method of von Neumann [10], we denote by the Lie ring
L of the infinite general linear group G the set of all operators X, for which
there exist a sequence of operators AP € G and a sequence of positive numbers
SP converging to 0, such that

in the uniform topology of M. Clearly X €Ξ M. From the results of von
Neumann, we know that, for any Xζ L and any sequence of positive num-
bers ηp converging to 0, there exists a sequence of AP € G such that

—'(Ap — I)-+X. Hence the above relation will be denoted by {AP; Sp} ~X,
VP

or simply {AP} ~ X.
As Neumann has proved, we obtain that if X, F € L and let {AP; βp}

~ X, {BP; εP} ~~ Y then

— — (AP — I)-+aX for any real a, (a =t= 0)

-Jr (ApBpA;ιB;1 -j)->χγ- γχj

so that aX, X+Y, [X, Y] = XY - XY € L (For tf = 0, « X ζ L i s trivial;.
This shows that L is really a Lie ring. Moreover, if {Ap}^X, then {A*}^
X*, so that X € L implies Z* € L. Conversely, for any X € M, we define

exp X by / + X + -» r + ~oτ + . . . , then exp X € G and

-τ-(exp tX — I)-+X (f -> 0).

This shows

PROPOSITION 1. Tfte Ziβ rί/ί^1 L of the infinite general linear group G is
the real linear space of all operators in M, with the multiplication [X} Y] =
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XY - YX.

Next consider the Lie ring S of the infinite unitary group U. This is
defined analogously as above. In this case We see that if X ζ S and let
{UP}~X, then{U*} ~ X*, {U;1} ~ - X, that i s X € S i s skew-symmetric
(i. e. X + X* = 0). Conversely, if X is a skew-symmetric operator in M, then

exp X is unitary in U and -j- (exp tX — /) -> X. Hence we obtain

PROPOSITION 2. The Lie ring S of the infinite unitary group U is the
real linear space of all skew-symmetric operators in M with the multipilica-
tion [X, Y] = XY — YX. Further, it is a Lie subring of the Lie ring of the
infinite general linear group.

In this paper, we shall call L and S the infinite Lie ring L and the
infinite skew-symmetric Lie ring S of a ring of operator M, respectively.

Analogously, we can define the infinite complex Lie ring L and complex
skew-symmetric Lie ring S as the complex linear space, respectively. But in
the complex case, it is obvious that two notions L and S are coincident,
because a skew-symmetric operator S can be written as iH with an hermi-
tian operator H.

Next we shall investigate the relations between subgroups and Lie
subrings.

PROPOSITION 3. For any subgroup I of G, there corresponds a Lie sub-
ring K of L. The uniform closure of I in G has the same Lie subring K, and
K is uniformly closed in L. If I is a normal subgroup then K is a Lie ideal
in L.

PROOF. These propositions are almost evident from the definition. For
example, let AP <Ξ ΐ such that {AP} ~ X, then we can choose for each p an
A'pel such that \\AP - A'p\\ < S\. Therefore

^ {AP 4pιι < ep,

so that {Af

p} ~ X. This proves the second assertion.
Finally, if I is normal and let 1 6 L, Y € K and let {AP; £P}~X, {BP;

£P}~Y, APeG, BP€I, then

-^(ApBpA W? - 7) -+ [X, Y\,
cp

and ApBpAp1^ I so that APBpA~λB^ € I, and this implies [X, Y] e K.
PROPOSITION 4. Let K be a Lie subring of L, associated to a subgroup I,

and consider the set E = {exp X; X€ K}. Then E is contained in the con-
nected component of the uniform closure of I in particular, if E is a group,
then the both are coincident.

PROOF. The first assertion follows from [10; III § 2], but we shall sketch
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of Lie ideals in L, especially, the properties of the derived ring L(1). From
oo

it for the completeness. Consider the expression log A = — 2 ^ ~~ A)nln for

|| A — /1 | < 1, then it is easily seen that exp (log A) = A for || A — /1 | < 1

and log (exp A) = A for ||A|| < log 2. Further, ~(AP -1) -^ X and ~ log

A* -> X are equivalent [10 II § 2J.
Now let X € K and A* £ I such that £ (AP - I) -> X (£ -* oo). Then

ί log A*, -» X, and exp (p log AP) = (exp log AP)
P = (AP)

P as noted above. Sine-
exp X is continuous, we obtain (AP)

P -> exp X. But (A*,)21 € I, so that exp X
is contained in the uniform closure I of I. Moreover, {exp tX; 0 <Ξ t ^ l } c
ϊ is a connected arc from the identity / to exp X.

Suppose that E be a group. Since the identity / is an interior point of
E, the group property makes E to be open and closed in I *>. Hence E coin-
cides with the connected component of I. Thus the proof is completed.

K may consist of the zaro element only. For example, it is the case if
I is discrete. But in our case, we obtain

PROPOSITION 5. If a closed normal subgroup I has its Lie ideal K in the
center, then it is contained in the center. Especially, if K = (0), then I is a
discrete subgroup in the center.

PROOF. If K is contained in the center, then E = {exp X; X € K} is
contained in the center and is a group. For, (exp X) (exp Y) = exp (X + Y),
because X and Y are commutative. Thus the connected component of I is
contained in the center. Now let A be a noncentral element of I. Then
{U^AΐP; t real, U € U> c I are connected arcs about A. Therefore U^A^A'1

c I are connected arcs about the identity /, so that they are contained in the
center, which contradicts the non-centrality of A.

The second assertion is evident from the above consideration.

These relations between the closed normal subgroups and the closed Lie
ideals show that if we determine the closed Lie ideals, then we can use
them to determine the closed normal subgroups of G or U. This will be
done in the sequel.

Finally, we note that the above definition and the propositions can be
generalized to any operator algebra. If necessary, we shall use this gene-
ralized notion of infinite Lie rings.

3. F u n d a m e n t a l properties. Let L be the real (or complex) infinite
Lie ring of operator algebra M, and denote, as usual, L α ) = [L, L], L w =
PL/*1"1*, I/*" 1 *], then it is well known that each L w is a Lie ideal in L and
L ID L(1> :r> L<2> :z>... If there exists an integer m such that L ( m ) = (0), we
call that L is solvable. The object of this § is to investigate the structure

1) This is a well known theorem of Schreier. See, for example, Pontrjagin; Topological
Groups, p. ?6, Theorem 15.
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this we can prove the non-solvability of L in the case of non-commutative
ring of operators.

Following Herstein, a ring R, all of whose elements are nilpotent, is
said to be locally nilpotent if the subring generated by any finite set of
elements of R is nilpotent, and an ideal of R is said to be locally nilpotent
if, as a ring, it is locally nilpotent. Then it is evident that a ring of opera-
tors M has no nonzero locally nilpotent ideal, because any ideal in M con-
tains a projection. Thus we obtain an operator-theoretic version of Herstein's
theorem [4J.

THEOREM 1. Let M be a ring of operators, or more generally, an operator
algebra with no non-zero locally nilpotent ideals. Suppose that P is a Lie ideal
and also a subring of M, then P contains a non-zero ideal of M or P is con-
tained in the center of M.

As Herstein shows, any simple (abstract) algebra has no non-zero locally
nilpotent ideal. Hence we obtain the following

COROLLARY 1.1. If M is a simple C*-algebra,2) then any proper Lie ideal
which is, at the same time, a subring of M are only (0) or (cci), that is,
either of sets of reals, purely imaginary or complex numbers. 3>

PROOF. For it is well known that any simple C*-algebra has the center
of only scalars.

COROLLARY 1. 2. If M is a simple C*-algebra, then any Lie ideal K con-
tains L α ) or is a trivial one.

PROOF. AS proved in [4; Lemma 3], put
P = {A € M; [A, M] c= K>

then P is a Lie ideal and a subring of M. Moreover, K cz P.
If K is non-commutative, by Corollary 1.1, P = M = L, so that L α ) c :

K. If K is commutative then K is a trivial one.
Here we note that simple rings of operators are only factors of finite

class or countably decomposable (III) case.4) But if J is a maximal ideal in
a ring of operators, then the quotient ring M/J is a simple C*-algebra.

Now let M be a ring of operators and consider two cases of finite and
infinite class separately.

The following theorem is a generalization of a result of Halmos [3], who
treated the total operator ring. But we shall formulate it in the following
form:

THEOREM 2. If M is a ring of operators of infinite class, then L ( 1 ) = L.

PROOF. We shall proceed as Halmos. First remark that, if P is a pro-

2) By a C*-algebra we denote the uniformly closed operator algebra.
3) In the sequel, we shall always use this simplified notation of the trivial ideals for
the real case, in this sense.
4) A ring of operators is said to be countably decomposable if any collection of
mutually orthogonal projections in it is at most countable. See, for example, [12].
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jection in M such that P-</ — P, then there exists a mutually orthogonal
CO

system of projections {Hi} such that P = Hu Hι~H5 and 2 ®Hi^ I - P,

because / — P is an infinite projection. Let £Λ be the partially isometric
operator which gives the equivalence Hi~Hi, then Hi ~~ Hj is given by

CO

UjU*. Denote by xt the projection of x into Hi and defined = Ux by 2 Ut+iUfXi
i=l

CO CO

(that is, £7=0 on the orthocompl-ment of 2 θ -Hi), then U*y = 2
i=l ί=l

CO

UiUtιyi+ι. So that £7, £7* £ M and for * € 2 ® ^ tf**7* = xΛUU*x)t =

* t (i > 1) but (EftT**)i = 0.
Let A be an hermitian operator in M and denote by R(A) and N(A)

the closure of range and null space of A, then R (A), N (A) belong to M.
Let us now consider the positive hermitian operator A1 in M such that R(A)
= NiA)1- -< iV(A). Then we can put R(A) = P and consider £/, £7* as

CO

in the above remark. Define an operator A in M by Ax- *J?UiAU*Xi, and
i = l

put £ = AZ7, then A2 = B*B - BB* € L α ) . If the given operator is negative,
then it is sufficient to consider —A2. The assumption R(A)^N(A) can be
eliminated by the spectral theory as treated in [3; I, Lemma 3].

To apply the above results to an arbitary operator in M, that is in L, it
suffices to note that every operator T in M is decomposed into the uniquely
determined hermitian operators A, B for which T = A + iB, and that every
hermitian operator is the direct sum of a positive and a negative operators.

Finally, in the real case, if T can be written as i [A, B] by the above
argument, it is written in the form T = [iA, B] € L α ) . Thus we obtain the
result.

Next consider the ring of operators of finite class and denote by φ the
fcj-operation defined by Dixmier [1; Theorem 10].

Let

N = {A € M; ψ (A) = 0},

then it is clear that N is a closed Lie ideal, L α ) d N and that N contains
no projection.

THEOREM 3. If M is a ring of operators of finite class, then the uniform
closure of Z,α) coincides with N.

PROOF. From the construction of the fc) operation the following fact is
known: Let A be an hermitian operator in M and £ be any positive number,
then there exist unitary operators Ui € M and real numbers λ« ( l ^ ί ' S n,

n n

λi > 0, 2 λ< = 1) such that || φ (A) - "ΣλtU(Aϋΐ || < €.
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Since

n n n

'ΣXtUtAUΪ -A= ^MUtAU*t - A) =*Σ\,[UιA, lA] € [L, L],
i= l i=l i= l

and
n n

\\φ{A) -A- "Σxt[UιA, U?]\\ = WφiA) - "ΣXtUiAUΐ || < <?,

we have φ{A) — A € ί/^.
In particular, let A be hermitian and A € N, then we obtain A € L α ) .

For arbitary operator A in N, let A = Aι + ίAa be a decomposition into the
hermitian operators Ai, A2, then Aι, Aa € N, so that A € Lcϊy. This com-
pletes the proof.

COROLLARY 3.1. If M is a ring of operators of finite class, then for any
integer n, the uniform closure of L ( w ) equals to N.

PROOF. Any element A € M can be uniquely decomposed into central
element Z and NeN. To see this, it is sufficient to put N= A-φ (A),
and Z = φ(A). That is, L = Z + N, where Z denotes the center of M. So
that [L, L] = [N, N] = [Lα>; L ^ c Γ ί T 1 ^ ! / ^ = P , since the ring operations
are continuous. Hence N c Ϊ7*>, but it is clear that ~Ϊ72> c N. Hence we
cbtain N = L^>. Thus the proof is completed by mathematical induction.

COROLLARY 3.2. If M is a factor of finite class, then L α ) = LC 2 ) = ..

PROOF. By the above corollary L w
 Φ (aϊ). On the other hand, since a

factor of finite class is simple, L w ZD L(1>, by Corollary 1.2.

PROPOSITION 6. Let M be a ring of operators, and A € M be an element
which commutes with L α ) . Then A is in the center Z of M.

PROOF. Any ring of operators M has a central decomposition into two
rings Mi, M2, which are of finite and infinite class, resp., and L α ) = [Li,
Li] + [L2, LJ. Therefore, it is sufficient to consider the respective cases.
If M is of infinite class, then the result follows from Theorem 2. If M is of
finite class, then M can be decomposed as follows: M = Z + N, as noted
in the proof of Corollary 3.1. Hence M' = Z' (] N / 5 ), or Z = N' (] M. From
Theorem 3, we know that Lα>r = N r, so that L u ) ' ί lM' = Z. This completes
the proof.

REMARK. The result of this type has been obtained for arbitrary semi-
simple ring by Kaplansky.6) It is well known that rings of operators are
semi-simple.

THEOREM 4. Every solvable infinite Lie ring is commutative.

5) By P' we denote the set of all operators which commute with P.
6) I. Kaplansky, Semi-automorphisms of rings, Duke Math. Journal, 59(1947)521-525.
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PROOF. AS noted in the proof of the above Proposition, it is sufficient to
consider the two cases of finite class and infinite class separately. However,
the result is evident from Theorem 2 and Corollary 3.1.

COROLLARY 4.1. Every non-commutative skew-symmetric Lie ring is not
solvable.

PROOF. AS remarked in § 2, the complexification of S is the complex in-

finite Lie ring L, and the notion of solvability coincides in S and in its com-

plexification L. Hence this corollary follows immediately from the above

theorem.

4. Determination of closed Lie ideals in a factor. In this and the
next § we shall treat only a factor on a separable Hubert space. The as-
sumption of the separability is based on the technical reason in infinite
factors as mentioned in introduction. However, the situation in a factor of
finite class remains to the same and the proof given here remains valid in
a non-separable case, also in a factor of infinite class we may easily see the
situation from the separable case.

THEOREM 5. If M is a factor of finite class and by φ denote the trace on
M, then the closed Lie ideals in the infinite Lie ring are

( i ) (0), (al), N for complex case,

(ii) (0), (al), N, N U S, N U H for real case;

the closed Lie ideals in the infinite skew-symmetric Lie ring S are the intersection
of S with those of (i). Where N = {A; φ(A) = 0}, S the set of all skew-symmetric
operators, H the set of all hermitian operators.

PROOF. It is well known that the fcj-operation is reduced to the trace in
the case of factor. So Theorem 3 is applicable and the minimality of N
follows immediately from Corollary 1. 2, and Theorem 3.

First consider the complex case. Suppose that there exists a Lie ideal K
containing N, and let Xζ K such that φ(X)Φθ, then M is represented as
(aX) - t - N c K , Hence we obtain K = M.

In the real case, it is sufficient to remark that any hermitian operator
has a real trace and that any skew-symmetric operator S can be written as
iH with a hermitian operator H.

Finally in the skew-symmetric case, the result follows by the compl-
exification.

THEOREM 6. // M is a factor of case (III), then closed Lie ideals in the
infinite Lie ring are only trivial, that is, (0) or (al) for both real and complex
cases. So that the closed Lie ideals in the infinite skew-symmetric Lie ring are
also trivial.

PROOF. Evidently from Corollary 1.2 and Theorem 2.

Finally let us consider a factor of case (!«) or (Ho*). In these cases M
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is not simple and any ideal in M is also Lie ideal in L. Let F be the set
of all operators of finite rank, that is, all operators which are contained in
some finite projections. Then it is well known that F is an ideal in M and
that its uniform closure J is the maximal ideal and the unique closed one.
(Sea, for example, [12].) It is also known that, in these cases, there exists
the unique trace φ (up to a constant factor) with the following properties,
(cf. [11; Chap.I]);

(i) If P € M is a finite projection, then φ(P) = D(P), where D{P) de-
notes the relative dimension of P.

(ii) Let A € F be contained in a finite projection P, and consider the
induced ring MP by P, then MF is a factor of finite class with the identity
P. Let ψP be the trace defined in MP, then

φ(A) = D(P)φP(A). (This is the definition of φ(A).)

(iii) Let an hermitian positive H € M is the sum of strongly convergent
hermitian positive Hi € M, then

By T denote the set of all linear combinations of hermitian positive
operators of finite trace, then T is an ideal in M and satisfies

φ(AX) = φiXA) for A € T, X € M.7)

Clearly F c T c J . Now put No = {A € T φ(A) = 0}, then it is evident

that No and its uniform closure N are Lie ideals in L. Further we obtain

PROPOSITION 7. If M is a factor of case QL) or (Πoo), then N coincides
with the uniform closure of [J, J] or [J, L]. Any closed Lie ideal in L contains
N or is trivial.

PROOF. We shall first show that F Π N is uniformly dense in No, so
that N. For any hermitian operator A € No, denote by A+, A' the positive
and negative parts of A, resp., then φ{A) = 0 implies φ(A+) — φ(A~~) = 0.
By the spectral theory, for any preassigned positive number £, there exist
sequences of positive numbers {λi}, {μj} such that

0 ^ A+ - 2 XiE (Δt) < £/, 0 ̂  A" - Σ μjF{Δj) < £/.

By the property (iii) of the trace, we can assume that

φ(A+) - Σλ^(E(Δ0) < £, <p(A-) - ZμMFiAj)) < S.

Put

7 = Sλ^(E(Δ0) ~ 2μjφ(F(Δj))

then I γ I < 28. But take a projection E such that φ{E) = 1, and consider

B = Σ λ*£(Δ0 - iμjPίAj) -yE,

then φ{B) = 0 and || A - B || < 46. However, we know that from A+, A"€
J the spectral projections £(Δi), /^Δj) is finite (See [12]) so that B € FflN.

7) See §2 of R. Godement, Theorie des caracteres, I.Ann of Math., 59(1954) ,47-62.
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Thus F f l N is uniformly dense in N .

Now, from the property (ii) and Theorem 3, we see F f] N c [F, F] , so

that N a [F, F ] c [J, JJ c [J, L]. On the other hand N ID [F, L] is clear from

the fact F C T . S O N D [F, L] H> [F, L] = [J, L] ID [J, J] because the ring opera-

tions are continuous. Therefore N = [J, J] = [J, L].
Finally, let K be any closed Lie ideal, and put P = {A € M; [A, M] a

K}, then P is a Lie ideal and subring of M, K en P, and further uniformly
closed. According to Theorem 1, P C3ntains an ideal of M or is contained
in the center. In the latter case P is trivial, so that K is also trivial. In
the first case, it is sufficient to suppose that the ideal contained in P is
uniformly closed. By a theorem in [12], we obtain P ID J, so that [J, L] c:K.
By the above proved, this implies N c K . Thus the proof is completed.

PROPOSITION 8. If M is a factor of case (I*,) or (Hoc), then any proper
closed Lie ideal K containing J is J + (al).

PROOF. Since J is a closed ideal (and Lie ideal) in M (L) consider the
C*-algebra M/J and its Lie ring, then the latter is identified with the Lie
quotient ring L/J. Now M/J is simple and K/J is a Lie ideal in L/J.
Hence, by Corollary 1. 2, K/J is (0), (al) or contains [L/J, L/J] = Lα )/J.
In the first case, K cz J and this contradicts the assumption. In the second
case we obtain K = (al) + J. In the final case K/J ID Lα>/J, so that K IDL (1>
= L, by Theorem 2.

THEOREM 7. If M is a factor of case (loo) or (Πc»), then the closed Lie
ideals in the infinite Lie ring are

(i) (0), (al)f N", J, J + (al) for complex case,

(ii) (0), (al\ N, J, N U (J Π S), N Π (J U H),
N U (J Π S) + (pi), N U (J n H) + (rl), J + (al), for real case:

and the closed Lie ideals in the infinite skew-symmetric Lie ring s are the in-
tersection of S with those of (i). Where N is the uniform closure of N o = {A €
T; φ(A) = 0}, J the maximal ideal, H and S denote the set of all hermitian
and skew-symmetric operators in M, and (p) and (r) the set of all purely
imaginary and all real numbers, respectively.

PROOF. First consider the complex case. The set cited above are evi-
dently closed Lie ideals in L. Remembering the above two propositions, it
is sufficient to prove that there is no closed Lie ideal which contains N but
does not contain J. Suppose contrary and let K be such a Lie ideal. If K
contains an operator A of finite, non-zero trace, then any element of F can
be written as the sum (aA) + N c K . Henca its uniform closure J is contain-
ed in K, which contradicts the assumption. Next if K contains an operator
(aϊ) not contained in J, consider as before, the Lie ideal K/J in L/J. Then
K/J is a non trivial Lie ideal in the simple C*-algebra M/J = L/J, so that
K/J ID I/D/J. P ^ now P = {A € M; [A, M] c K}, then P is a Lie ideal and
subring of M and K c P . Since K is closed, P is also closed, so that P
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contains J from Theorem 1. Therefore, L(1VJ c K/J^c P/J, so P n> L α ) =
L. From this we obtain K ZD L(1> = L. Finally, if K contains an al, let us
consider the induced ring Mp by a finite projection P. It is well known that
Mp is a finite factor with the identity P. The corresponding Lie ideal KP in
Lp contains NP and (<xϊ)p = {ccP). Therefore Ίζ.P = Lp from Theorem 5. Since
P is an arbitrary finite projection in M, we obtain K = J + (aί), which is
also a contradiction.

For the real case we note that [L, J] d N, so that the sets cited above
are evidently closed Lie ideals in L. However, considering the above result
and the result of the finite class, we see these are all.

The skew-sym metric case follows by considering the complexification as
usual.

Thus we have determined the all closed Lie ideals in various cases of
factors completely. Of course, our treatment is topological and the purely
algebraic questions remain untouched, as remarked by Kadison.

5. Closed normal subgroups in factors. Let us now apply the results
of § 4 to determine the closed normal subgroups of the infinite unitary group
U and the general linear group G in a given factor M, according to Pro-
positions 3 and 4. Since we have known all closed Lie ideals in the infinite
Lie rings of factors, it is sufficient to characterize what kinds of Lie ideals
are associated to the closed normal subgroups (or, more precisely to the
connected components of the closed normal subgroups).

The following proposition makes clear the structure of G and U.

PROPOSITION 9. By U and G denote the infinite unitary group and the
general linear group in a ring of operators. Then U is the exponential image
of the elements of the infinite skew-symmetric Lie ring S and G is generated
by the exponential image of the elements of the infinite Lie ring L, and U and
G are connected.

PROOF. For any unitary operator U or positive hermitian operator H,

consider -τ-(£7* — 7) or-r-(7P —/), (for £->0), then these converge to log U
T T

and log H, by the spectral theory. Further it is evident that log U € S,
log H e L, and U = exp (log U), H = exp (log H).

Hence U is the exponential image of S. Since any U, V € U are con-
nected by the continuous arc {exp {a log U + (1 — a) log F ) ; 0 S « ^ l } , U
is connected.

Regarding to G, consider the polar decomposition A = UH, where U is
unitary and H is positive hermitian, then A = exp (log U) exp (log H), so
that G is generated by the exponential image of L. Now Alf A* € G are
connected by the continuous arc {exp (a log Ui + (1 — a) log Z72) exp {a log
Hi + (1 — a) log Hi)} where Ai = UiHi and A2 = UλHλ are the polar decompo-
sitions of Aι and A2. Hence G is also connected.

PROPOSITION 10. Any closed normal subgroup of U {or G), which has S
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(or L) as the corresponding Lie ideal, is U (or G) itself.

PROOF. This follows from Propositions 4 and 9.

Let us first investigate the factors of finite class.
According to Proposition 3 and Theorem 5, the Lie ideal corresponding

to a closed normal subgroup of the infinite unitary group U in a factor of
finite class is one of (0), (pi), or N f| S. But by the Proposition 5 the first
two cases correspond to normal subgroups contained in the center. Moreover,
we obtain

THEOREM 8. If ΉL is a factor of case (Hi), then the only proper, closed
normal subgroups of the infinite unitary group U o / M are the subgroups of
the center. 8> (This is [6 , Theorem 2].)

PROOF. By [6: Lemma 4], if a closed normal subgroup V is not a sub-
group of the center {XΓ, |λ | = /}, it is sufficient to suppose that V contains
(λ/). Then the corresponding Lie ideal K contains the identity /, so that
K = S, and the result follows from the Proposition 10.

Now consider the infinite general linear group G.

LEMMA. If ΉL is a factor of case (Hi), then a closed normal subgroup I of
G, not contained in the center, contains the infinite unitary group U. ([7;
Lemma 4J)

PROOF. By the non-centrality of I and Proposition 5, it is sufficient to
suppose that the corresponding Lie ideal K contains N. So that K Π S D N
Π S. Let X € K Π S, then by Proposition 4 exp Z € l f l ϋ and K f] S cor-
responds to the non-central normal subgroup of U, contained in I f] U. Hence
we obtain, by the above theorem, I (Ί U = U, that is, I ID U.

Now we shall use the notion of the determinant on G defined by Fuglede
and Kadison [2]. Let A 6 G and let A = UH be the polar decomposition.
Then the determinant of A is defined by

Δ(A) = Δ(tf) = exp {φQjag H)) = exp (/ log Xdφ(Eκ)),

where f λ dEκ is the spectral representation of H. It is known that Δ is a
uniformly continuous representation of G onto the real positives, and the
kernel Gx is evidently a non-central closed normal subgroup. Further we
obtain the Theorem 1 of [7], that is,

THEOREM 9. If M is a factor of finite class, then the Lie ideal in the
infinite Lie ring L, corresponding to proper closed normal subgroups (not con-
tained in the center), is unique. This consists of N" U S in the case (IIX) and
N in the case (ln) and is associated to Gi, which is the kernel of the deter-
minantial representation Δ.

Moreover, any non-central closed normal subgroup of G contains Gx as

8) In a factor of case (I n ), it is well known that the theorem is false. There exists
the normal subgroup of all operators of determinant 1.
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the connected component.

PROOF. This theorem is well known in the case (In), so we shall consider
the case (IIX). By the above lemma, any closed Lie ideal K corresponding to
a non-central closed normal subgroup I contains N U S . But, if K contains
N U S properly, then K contains some hermitian operator of non-zero trace,
so that K = L. This shows that I = G, which is a contradiction. It follows
that K is unique and K = N U S.

Next we shall prove that N U S is associated to Gi. Since Gi is the set
of all A € G with the determinant 1, that is, A = UH with <p(log H) = 0.
This implies that the set E generated by {expX; Xζ N US} contains Gi.
On the other hand, since Gλ is non central, by Proposition 5, N U S cor-
responds to G1} so that {exp I X ζ N U S } is contained in Gx. Thus we
see that N U S is associated to Gx and Gi = E.

Finally, as we first remarked, the Lie ideal N U S corresponds to any
closed normal subgroup I, so that {exp I ; X ζ N U S } c I But the group
Gx is generated by {exp I X ζ N U S } hence I contains G2 as the connect-
ed component (Proposition 4). This completes the proof.

REMARK. GX is characterized as the topological commutator subgroup of
G. (Cf. [7; p. 90])

THEOREM 10. If M is a factor of case (III), then both its infinite unitary
group and the general linear group have no proper, non-central, closed normal
subgroup. ([6,\ Theorem 2] and [7; Theorem 3]).

PROOF. The theorem follows from Theorem 6.

Let us now investigate a factor of case (Io*) or (He*). First consider the
infinite unitary group U. The Lie ideal corresponding to the non-central
closed normal subgroup is one of N (] S, J Π S, or (J f| S) -f (pi). However,

LEMMA. In a factor of case (IJ) or (Πoo), there exists no non-central closed
normal subgroup of U corresponding to N Π S.

PROOF. Suppose that there exists a non-central closed normal subgroup
V which corresponds to N Π S. From [6; Lemma 4] it is sufficient to assume
that V contains the center {λ/J . Then the corresponding Lie ideal contains
(pi). This is a contradiction.

Now denote by
Uj?: the subgroup consisting..of those operators in U which act as the

identity on the orthocomplement of a subspace of finite relative di-
mension,

U P : its uniform closure in U,

UVo : the subgroup consisting of those operators in U which act as XI
on the orthocomplement of a subspace of finite relative dimension,

U> : its uniform closure in U.
It will be easily proved that these are normal subgroups of U. Also
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clearly U}1} and U> are connected and U> is the direct product of U ^ and
(λ/).

PROPOSITION 11. Uj υ is the smallest {non-central) closed normal subgroup
in U and is associated to the Lie ideal J Π S.

PROOF. If a unitary operator U is in 17$, then there exists a finite
projection P € M such that U = UP + (/ - P). Now let UP € U$ , such that

-}-(UP-I)-*X, then
Cp

a n d i (£7* - 7)P, € F, hence X € J f] S.
Cp

Conversely, let X = XP be an element of F f] S, with a finite projection
P, then exp X" = exp XP = (exp X) P + (7 - P) € U#. Considering the struc-
ture of U (Proposition 9), for any X, F ^ F f l S , there exists a Z £ S
such that exp Z = (exp X) (exp F), but exp X, exp Y 6 UJJ\ so that exp Z€U^>
or Z € F ΓΊ S. Therefore {exp X; Z ^ P f l S } is a group, so that the Lie
ideal J f] S is associated to Z7£ι) by Propositions 3 and 4. This fact and the
above lemma implies also that U}1) is the smallest in the closed normal
subgroups corresponding to J f] S.

PROPOSITION 12. U r is the maximal closed normal subgroup in U and is
associated to the closed Lie ideal (J + (pel)) Π S.

PROOF. By the same consideration as in the above proposition, we see

that if Up € UrΌ such t h a t j ^ (UP —1)-+X, and if Up is of the form UPPP

tp

+ \p(l — Pp) with a finite projection PPi then

±-(Up - I) = -jr&Up - Xp)PP + (λ,, - 1)7) -+ X
Cp Cp

and the middle term is contained- in F + (α7), so that X £ (J + (αT))ΠS. The
converse relation may be proved analogously. Thus we see that U> is the
smallest closed subgroup corresponding to (J + (al)) f| S.

Let us now suppose that there exists a proper closed normal subgroup
V containing U>, and consider the C*-algebra M/J. Then V/J is a normal
subgroup of U/J, the unitary group of M/J and V/J has its Lie ideal (λ7)
in S/J, for the mapping M->M/J is uniformly continuous. According to
Proposition 59), this implies V/J is contained in (AT) or V c J + (λ7). Since
ϋ / = ϋ ( l ( J + (tf7)), V dU/, that is, the maximality of ϋ> is obtained, and
the proof is completed.

9) The C*-algebra M/J has sufficiently many unitary or hermitian operators as the
images of those operators in M.
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Combining the above two propositions we obtain the Theorem 4 of [6],
that is,

THEOREM 11. If M is a factor of case (I^) or (II,*) and U is its unitary
group, then the only proper closed normal subgroups of U are the closed
normal subgroups of U>. The closed normal subgroups of U> are those generat-
ed by U p and the finite subgroups of (λ/), and those finite subgroups them-
selves.

The final step is to investigate the infinite general linear group G of a
factor of case (L*) or (IIoo). The treatment is analogous as the infinite unitary-
group.

Let us first introduce two closed normal subgroups following to Kadison
[7]. Denote by

G/o: the subgroup of operators each of which acts as a complex multiple of
the identity on the orthocomplement of a subspace of finite relative
dimension,

G/ : its uniform closure in G,
GjJ}: the subgroup of those operators as mentioned above, for which this

scalar is 1,
Gp: its uniform closure in G.

Evidently G}υ and Gf are connected, and Gf is the direct product of Gp
and (ctl).

PROPOSITION 13. Gp is the smallest (non-central) closed normal subgroup
in Of of a factor of case (IJ) or (IIoo) and is associated to the Lie ideal J.

PROOF. AS in the proof of Proposition 11, let AP € G#} such that-^-

(Ap — I) ->• X, and of the form AP = APPP + (/ — PP) with a finite projection
PP} then

~(AP - 1) - f ( A Λ + (/ - Pp) - /)
tp tp

= ±(Ap - fiPp-*X,
tP

a n c j j-(Ap - I)PP € F, so that X 6 J. Further we note that if A € G}J> and

let A = UH be the polar decomposition, then U, Hξ G$>. For, H* = A*A
€ G}J>, so that H € G}J> by the spectral theory. This implies U = Aff-^GjJ*.
Hence log U, log JH" € F by the spectral theory. Conversely, consider exp
(log 17), exp (log H) such that log U, log H€F, then these are contained in
Gp and generate G}J\ as we can see from Proposition 9. Hence we obtain

that Gp and J are correspondent according to Propositions 3 and 4.
The minimality of Gp will be obtained if the following lemma is proved.

LEMMA. In a factor of case (1=0 or (IIoo), there is no closed normal subgroup
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corresponding to any one of the Lie ideals N, N U (J Π H), N U (Jfl H) + (rl),
N U (J Π S), or N U (J Π S) + (pi).

PROOF. Let K denotes any one of the above Lie ideals, and suppose
that there exists a closed normal subgroup I corresponding to K. Consider
the finite factor MP, together with Ip and Kp, induced by a finite projection
P, then Theorem 9 is applicable. Since Mp is a factor of case (ln) or (Hi)
according to (1J) or (IL>) of M.([9; Lemma 11.3.7.]), so we must treat the
two cases separately.

First consider the (loo) case. If K = N, then by Theorem 9, Ip contains
all operators of determinant 1 on Gp. This will be considered later.

Otherwise we obtain Ip = Gp. Since P is an arbitrary finite projection, it fol-
lows that I ID G/, which implies the contradiction to the above Proposition.

Next, the (IIJ) case. If K is either of N, N U d ί l H), N U (J Π H) +
(rl), then KF does not contain the skew-symmetric operators, so that IP C:
(aΐ)p from the lemma of Theorem 9. Since the finite projection P is arbitrari-
ly chosen, we obtain I c (al) which contradicts the assumption. Finally K
is either of N U (J Π S) or N U (J f| S) + (pi), then IP contains the unitary
group U P and all those operators which have the determinant 1 on Mp by
Theorem 9.

Therefore it is sufficient to consider the case that Ip contains all operators
of determinant 1 on Mp. By the same argument as the first paragraph of
the proof of [7; Lemma 6] we can conclude that IP = Gp. For, let a positive
number 7 be given and n so large that \l — y~1/n\ < β, where £ is a preas-
signed positive number. Let Px, , Pn be n orthogonal projections in / — P,
each equivalent to P (this choice is possible, since / — P is infinite). Then
the operator

B = yP + 7"1/w(Pi + . . . . + Λ) + / - (Λ + . . . . + P»)
is in I, because it has determinant 1 on the finite factor induced by the finite
projection (Pi + . . . . + Pn). Moreover, || fl — 7P — (/ — P)\\ < £. Since I is uni-
formly closed, yP — (/ — P) is in I for each positive scalar 7, so that IP
contains Gp by Theorem 9. Since P is an arbitrarily chosen, finite projec-
tion, I contains G/. But then we have contradictions to the above Proposi-
tion.

PROPOSITION 14. In a factor of case (I«,) or (J1J), the closed normal sub-
group G; is maximal in G and is associated to the closed Lie ideal J + (ccϊ),
where (a) are complex.

PROOF. By the same argument as in the proof of Propositions 11 and
12, we see that G/ is the smallest closed normal subgroup corresponding to
the Lie ideal J + (al).

The maximality of G/ follows from the same reasons as in Ur, if we
note that G ; = G f l ( J + (&ϊ)) and take the quotient modulo J. Hence the
proof is completed.

Thus, combining the above two propositions, we obtain Theorem 1 of
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[8].

THEOREM 12. Let M be a factor of case (IJ) or (lie), and G fo? its general

linear group. Then each proper closed normal subgroup in G is the direct

product ofG(

f

ι) and some closed subgroup of complex scalars (acϊ), or such

subgroup itself

In this way we complete the determination of all closed normal subgroups
of the infinite general linear groups and unitary groups of the various cases
of factors, which was originally due to Kadison.
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