ON THE DIRECT PRODUCT OF OPERATOR ALGEBRAS IV

TAKASI TURUMARU

(Received April 1, 1956)

M. Nakamura [2] has discussed the relation between the direct product and the generation of two sub-factors in a finite W^* -factor, and obtained a satisfactorily analogous result as the classical theory of hypercomplex numbers: that is, in a finite W^* -factor, the direct product (in W^* -sense) of elementwise commutative two sub-factors means the generation in weak operator topology and vice versa. In the present paper, we shall consider the same problem for sub-algebras in an arbitrary C^* -algebra. In the case of W^* -factor, the key point of Nakamura's argument is the multiplicativity of the faithful normal trace. In view of this fact, we introduce a notion of independence of sub-algebras in a C^* -algebra (§ 1, Def.): this definition seems to be artificial at a first glance but this may be considered as a generalization of the stochastic independence in the probability theory. Finally in §2, we shall state a theorem for an abelian C^* -algebra recently obtained by R. McDowell for real case [1].

1. Let A be a C^* -algebra with the unit 1, and A_i (i = 1, 2) be two C^* -sub-algebras of A which contain 1. Then A_i are called *algebraically independent* if they have following properties:

(1) A_1 and A_2 commute elementwise,

(2) If $\{a_i | i = 1, ..., m\}$ and $\{b_j | j = 1, ..., n\}$ are arbitrary linearly independent set of elements of A_1 and A_2 respectively, then $\{a_i b_j | i = 1, ..., m; j = 1, ..., n\}$ is linearly independent in A.

If $A_i(i = 1, 2)$ are algebraically independent C*-sub-algebras of a C*-algebra A, the following facts are easily verified:

(I) The algebraic direct product $A_1 \odot A_2$ of A_1 and A_2 is isomorphic to the *-algebra A_0 generated by A_1 and A_2 algebraically and this isomorphism is given by the correspondence

$$\sum_i a_i b_i \leftrightarrow \sum_i a_i \times b_i.$$

(II) For any pair of positive linear functionals (σ, τ) where σ is defined on A_1 and τ on A_2 , the functional which we call a *product functional* of σ and τ ,

$$[\sigma \odot \tau] \left(\sum_{i} a_{i} b_{i} \right) = \sum_{i} \sigma(a_{i}) \tau(b_{i}), \sum_{i} a_{i} b_{i} \in A_{0}$$

is well-defined on A_0 and additive, homogeneous and positive:

$$[\sigma \odot \tau] \left(\left(\sum_{i} a_{i} b_{i} \right) \left(\sum_{i} a_{i} b_{i} \right)^{*} \right) \ge 0, \text{ for all } \sum_{i} a_{i} b_{i} \in A_{0}.$$

Then, "Under what topological conditions for A_i , the product functional does become continuous?" is an interesting problem for us. In abelian real case, R. MacDowell has discussed this problem with different aspects [1]. In §2, we shall come back to this problem for the abelian complex case. In this section we discuss the relation between this problem and the direct product $A_1 \times a_{a}$ A_{a} (cf. [4]). For this purpose, we want to introduce the notion of independence of sub-algebras. Now, we begin with the consideration on the probability theory. If (X, F, μ) be a probability measure space, then two bounded real random variables a and b are called mutually independent if E(f(a))g(b)) = E(f(a))E(g(b)), where $f(\lambda)$, $g(\lambda)$ are arbitrary complex-valued Baire

functions and $E(c) = \int c(x)d\mu(x)$. And moreover, the space $L^{\infty}(X, F, \mu)$ of all

bounded random variables forms a commutative W^* -algebra, acting on the Hilbert space $L^2(X, F, \mu)$, having a faithful normal trace $E(\cdot)$. Conversely, if a commutative W^* -algebra M has a faithful normal trace τ , then Gelfand-Neumark's respresentation theorem shows that there is a probability measure space on which the algebra M is isomorphically, preserving the value of the trace, represented to the algebra of all bounded random variables of the space, i.e., $\tau(a) = E(a^{\text{#}})$, $a^{\text{#}}$ denotes the representation of a. Since the W^* -sub-algebra A generated by an hermitian element a and 1 in M consists of all Baire functions of a, the above notion of independence can be transfered into any commutative W^* -algebra M with a faithful normal trace τ as follows: Two hermitian elements a and b are called *mutually independent* if $\tau(uv) = \tau(u)\tau(v)$ for every $u \in A$, $v \in B$, where A and B are W^* -sub-algebras generated by $\{a, 1\}$ and $\{b, 1\}$ respectively.

Under these considerations we set the following definition for C^* -algebras.

DEFINITION. Let A be a C*-algebra, and $A_i(i = 1, 2)$ be algebraically independent sub-algebras. Then A_i are called *mutually independent* if the product functional $\sigma \odot \tau$ is continuous on A and the totality of its continuous extension $\sigma \times \tau$ is complete on the C*-sub-algebra generated by $A_i(i = 1, 2)$.

Now, our aimed proposition is the following:

PROPOSITION 1. Let A be a C*-algebra, $A_i(i = 1, 2)$ be C*-sub-algebras of A, and if A is generated by A_i , then the following two statements are mutually equivalent:

(1) $A_i(i = 1, 2)$ are mutually independent,

(2) A is isomorphic to the direct product $A_1 \times_{\alpha} A_2$ of A_i .

PROOF. Implication $(1) \rightarrow (2)$. It is sufficient to prove that the isomorphism

 $\sum_{i} a_i b_i \leftrightarrow \sum_{i} a_i \times b_i$ between A_0 and $A_1 \odot A_2$ described in (I) is isometric. Since A_i are mutually independent and generate A, the totality of $\sigma \times$

 τ , where σ and τ are pure states of A_1 and A_2 respectively, is complete on A, and we have by [4]

$$\begin{split} \|\sum_{i}a_{i}b_{i}\|^{2} &= \sup_{\sigma\times\tau} \frac{[\sigma\times\tau]((\sum_{j}a'_{j}b'_{j})(\sum_{i}a_{i}b_{i})(\sum_{i}a_{i}b_{i})^{*}(\sum_{j}a'_{j}b'_{j})^{*})}{[\sigma\times\tau]((\sum_{j}a'_{j}b'_{j})(\sum_{j}a'_{j})b'_{j})^{*})} \\ &= \alpha \Big(\sum_{i}a_{i}\times b_{i}\Big)^{2}. \end{split}$$

Implication (2) \rightarrow (1). Since $A \simeq A_1 \times \alpha A_2$, then $A_1 \simeq A_1 \times 1$, $A_2 \simeq 1 \times A_2$; hence A_1 and A_2 are algebraically independent, and finally the continuity of the product functional is clear from the definition of norm in $A_1 \times \alpha A_2$. [cf. 4] Q. E. D.

For infinitely many sub-algebras we can prove the following

PROPOSITION 2. Let A and A_i $(i \in I)$ be C*-algebras with units, then A is isomorphic to the infinite product of A_i $(i \in I)$ in the sense of Takeda [3], if and only if there exists a mapping Φ from the set union $\bigcup_{i \in I} A_i$ of A_i into A such that

- (1) Restriction ϕ_i of Φ on A_i is the principal isomorphism of A_i into A_i
- (2) Any finite set of images $\{\phi_{ik}(A_{ik})|k = 1, ..., n\}$ are mutually independent, (3) $\{\phi_i(A_i)|i \in I\}$ generate A as C*-algebra.

PROOF. For any finite subset of indices $\gamma = \{i_1, \ldots, i_n\}$, let A^{γ} be the C^* -sub-algebra of A generated by $\{\phi_{i_k}(A_{i_k})|k=1, \ldots, n\}$, then A^{γ} is isomorphic to $A_{i_1} \times \ldots \times A_{i_n}$ by the above Prop. 1. Then A is isomorphic to the infinite direct product of A_i by [3: Definitions 1, 2].

2. In this section, we wish to answer partly for the question described in the preceding section by proving MacDowell's theorem for the complex case : that is, in an abelian case to obtain the topological condition under which product functional becomes continuous. For this purpose, we begin with the

DEFINITION. Let A be a commutative C*-algebra with the unit, and B, C be two C*-sub-algebras of A which contain units. Then they are called additively related sub-algebras if and only if for every pair (b,c) of $b \in B$ and $c \in C$, there exists a scalar $\theta = \theta(b,c) \in I = [0, 2\pi]$ such that $||b + e^{i\theta}c|| = ||b|| + ||c||$.

Then we have the following

THEOREM. Let A be a commutative C^* -algebra with unit, and let B, C be two C^* -sub-algebras of A. Suppose that A is generated by B and C, then the following three statements are mutually equivalent:

(1) A is isomorphic to the direct product $B \times_{\alpha} C$,

(2) B and C are mutually independent,

(3) B and C are additively related.

REMARK. R. MacDowell had proved the equivalency of (1) and (3) for real case.

PROOF. Since A, B and C are commutative C^* -algebras with the unit,

283

let $C(\Omega)$, $C(\Gamma)$ and $C(\Delta)$ be their representations on the rings of all continuous complex-valued functions on compact Hausdorff spaces respectively.

Implication $(3) \to (1)$. We use the following terminologies (MacDowell [1]): We call a subset T of a Banach space S a T-set of S if T is maximal with respect to the property $b_1, \ldots, b_n \in T \to ||\sum_i b_i|| = \sum_i ||b_i||$. Moreover if T is a T-set of S, then we call $\bigcup_{\theta \in I} e^{i\theta} T$ a circular T-set. If the space S = C(X) (the space of all continuous complex valued functions on a compact Hausdorff space X) then every T-set T of S has the form $\{f \in S | f(x_0) = e^{i\theta_0} ||f||\}$ for some point x_0 of X and scalar $\theta_0 \in I$, and conversely every such subset is a T-set of S.

Now let γ and δ be arbitrary pure states of B and C respectively, then $T_{E}(\gamma) = \{b \in B \mid b(\gamma) = \|b\|\}, T_{c}(\delta) = \{c \in C \mid c(\delta)\| = \|c\|\}$ are T-sets of B and C respectively. We can prove that there exists a circular T-set of A which contains the set $\bigcup_{\theta' \in I} e^{i\theta'} T_{E}(\gamma) \cup \bigcup_{\theta'' \in I} e^{i\theta''} T_{c}(\delta)$. Indeed, if not, for every $\theta_{0} \in I$ the set $T_{E}(\gamma) \cup e^{i\theta_{0}} T_{c}(\delta)$ can be contained in no T-set of A, hence there exist $b_{\theta_{0}} \in T_{E}(\gamma), c_{\theta_{0}} \in T_{C}(\delta)$ such that $\|b_{\theta_{0}} + e^{i\theta_{0}}c_{\theta_{0}}\| < \|b_{\theta_{0}}\| + \|c_{\theta_{0}}\|$. Hence, there exists a neighborhood $I(\theta_{0})$ of θ_{0} such that $\|b_{\theta_{0}} + e^{i\theta}c_{\theta_{0}}\| < \|b_{\theta_{0}}\| + \|c_{\theta_{0}}\|$ for $\theta \in I(\theta_{0})$; and finally I can be covered by a finite number of $I(\theta): I \subset \bigcup_{k=1}^{n} I(\theta_{k})$. Put $b = \sum_{i=1}^{n} b_{\theta_{i}}$ and $c = \sum_{i=1}^{n} c_{\theta_{i}}$ then $\|b + e^{i\theta}c\| < \|b\| + \|c\|$ for all θ ,

 $I(\theta_k)$. Put $b = \sum_{i=1}^{n} o_{\theta_i}$ and $c = \sum_{i=1}^{n} c_{\theta_i}$ then $||b + e^{c}c|| < ||b|| + ||c||$ for all θ , which contradicts to the additive relatedness of B and C.

Now, let the $\bigcup_{\theta} e^{t\theta}T_A(\omega)$ be a circular *T*-set of *A* which contains the $\bigcup_{\theta'\in I} e^{t\theta'}T_B(\gamma) \cup \bigcup_{\theta''\in I} e^{t\theta''}T_C(\delta)$, then we can show $T_B(\gamma) = T_A(\omega) \cap B$ and $T_C(\delta) = T_A(\omega) \cap C$. Indeed, if $b'_1, b'_2 \in T_B(\gamma)$ then $b'_1(\omega) = e^{t\theta_1} ||b'_1||$ and $b'_2(\omega) = e^{t\theta_2} ||b'_2||$ for some $\theta_1, \theta_2 \in I$; hence $b_1 = b'_1/||b'_1||$ and $b_2 = b'_2/||b'_2||$ belong to $T_B(\gamma)$ and $b_1(\omega) = e^{t\theta_1}$ and $b_2(\omega) = e^{t\theta_2}$. Since b_1 and b_2 belongs to $T_B(\gamma), b_1 + b_2$ belongs to $T_B(\gamma)$; hence $b_1 + b_2 \in e^{t\theta}T_A(\omega)$ for some $\theta \in I$, that is $(b_1 + b_2)(\omega) = e^{t\theta} ||b_1 + b_2|| = 2e^{t\theta}$. Hence $e^{t\theta_1} + e^{t\theta_2} = 2e^{t\theta}$, therefore $\theta_1 = \theta_2 = \theta$, and since $1 \in T_B(\gamma)$ belongs to $T_A(\omega), \theta_1 = \theta_2 = \theta = 0$; hence $T_B(\gamma) \subset T_A(\omega)$. Similarly $T_C(\delta) \subset T_A(\omega)$. Then clearly the pure state ω of *A* is a common extension of γ and δ , hence $\gamma \odot \delta$ can be extended continuously, that is *B* and *C* are mutually independent.

Implication $(2) \rightarrow (1)$. We have proved this in Prop. 1.

Implication $(1) \rightarrow (2)$. Let *b* and *c* be arbitrary elements of *B* and *C* respectively, then there exist θ' , $\theta'' \in I$, $\gamma \in \Gamma$ and $\delta \in \Delta$ such that $b(\gamma) = e^{i\theta'} ||b||$, $c(\delta) = e^{i\theta''} ||c||$. Now, if we define $\theta = \theta' - \theta'' \pmod{2\pi}$, $\theta \in I$ then $||b|| + ||c|| \ge ||b + e^{i\theta}c|| \ge |(b + e^{i\theta}c)(\gamma, \delta)| = |b(\gamma) + e^{i\theta}c(\delta)| = |e^{i\theta'}||b|| + e^{i(\theta + \theta'')} ||c||| = ||b|| + ||c||$, that is, *B* and *C* are additively related.

BIBLIOGRAPHY

- [1] R. MACDOWELL, Banach spaces and algebras of continuous functions, Proc. Amer. Math. Soc., 6(1955), 67-78. [2] M. NAKAMURA, On the direct product of finite factors, Tôhoku Math. Journ.,
- 6(1954), 205-207. [3] Z. TAKEDA, Inductive limit and infinite direct product of operator algebras,
- Tôhoku Math. Journ., 7(1955), 67-86.
- [4] T. TURUMARU, On the direct product of operator algebras, I, Tôhoku Math. Journ., 4(1952), 242-251.

MATHEMATICAL INSTITUTE, TÔHOKU UNIVERSITY.