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M. Nakamura [2] has discussed the relation between the direct product
and the generation of two sub-factors in a finite W*-factor, and obtained
a satisfactorily analogous result as the classical theory of hypercomplex
numbers: that is, in a finite W*-f actor, the direct product (in FΓ*-sense)
of elementwise commutative two sub-factors means the generation in
weak operator topology and vice versa. In the present paper, we shall
consider the same problem for sub-algebras in an arbitrary C*-algebra.
In the case of W*-factor, the key point of Nakamura's argument is the
multiplicativity of the faithful normal trace. In view of this fact, we introduce
a notion of independence of sub-algebras in a C*-algebra (§ 1, Def.): this
definition seems to be artificial at a first glance but this may be considered
as a generalization of the stochastic independence in the probability theory.
Finally in §2, we shall state a theorem for an abelian C*-algebra recently
obtained by R. McDowell for real case [1].

1. Let A be a C*-algebra with the unit 1, and Ai (/ = 1,2) be two
C*-sub-algebras of A which contain 1. Then At are called algebraically
independent if they have following properties:

(1) Ai and A* commute elementwise,
(2) If {at \i = 1, , m} and {bj\j = 1, , ή} are arbitrary linearly inde-

pendent set of elements of Aι and A2 respectively, then {aώj | i = 1, ,
m j = 1, , n} is linearly independent in A.

If Ai(i = 1,2) are algebraically independent C*-sub-algebras of a C*-algebra
A, the following facts are easily verified:

(I) The algebraic direct product Ai 0 A* of A\ and Aλ is isomorphic to
the *-algebra Ao generated by Ai and At algebraically and this isomorphism
is given by the correspondence

(II) For any pair of positive linear functionals (σ,τ) where σ is defined
on Ai and T on A2, the functional which we call a product functional of σ
and T,

[σ0τ] (2«βA) = Σ«K*M*ιλ 2 «Λ6ι € Ao

is well-defined on Ao and additive, homogeneous and positive:

^0, for a
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Then, "Under what topological conditions for At, the product functional does
become continuous7." is an interesting problem for us. In abelian real case,
R. MacDowell has discussed this problem with different aspects [1]. In §2, we
shall come back to this problem for the abelian complex case. In this section
we discuss the relation between this problem and the direct product A\ x Λ

A2(cf. [4]). For this purpose, we want to introduce the notion of independence
of sub-algebras. Now, we begin with the consideration on the probability
theory. If (X,F,μ) be a probability measure space, then two bounded
real random variables a and b are called mutually independent if E(f(a)
g(b)) = E{f(a))E(g(b)), where/(λ), g(X) are arbitrary complex-valued Baire

functions and E(c) = / c(x)dμ(x). And moreover, the space L°°(X, F, μ) of all

bounded random variables forms a commutative W*-algebra, acting on the
Hubert space L2{X, F, μ), having a faithful normal trace E{ ). Conversely,
if a commutative W*-algebra M has a faithful normal trace T, then Gelfand-
Neumark's respresentation theorem shows that there is a probability measure
space on which the algebra M is isomorphically, preserving the value of
the trace, represented to the algebra of all bounded random variables of
the space, i. e., τ(a) = E{a*), α* denotes the representation of a. Since the
W*-sub-algebra A generated by an hermitian element a and 1 in M consists
of all Baire functions of a, the above notion of independence can be transfered
into any commutative PΓ*-algebra M with a faithful normal trace T as
follows: Two hermitian elements a and b are called mutually independent if
τ(uv) = τ(u}r(v) for every « 6 A, v 6 B, where A and B are PP*-sub-algebras
generated by {a, 1} and {b, 1} respectively.

Under these considerations we set the following definition for C*-
algebras.

DEFINITION. Let A be a C*-algebra, and Ai(i = 1,2) be algebraically
independent sub-algebras. Then At are called mutually independent if the
product functional σ © T is continuous on A and the totality of its continuous
extension σ x r is complete on the C*-sub-algebra generated by At(t = 1,2),

Now, our aimed proposition is the following:

PROPOSITION 1. Let A be a C*-algebra} At(i = 1,2) be C*-sub-algebras of A,
and if A is generated by At, then the following two statements are mutually
equivalent:

(1) Ai(i = 1,2) are mutually independent,
(2) A is isomorphic to the direct product AιX« A2 of At.

PROOF. Implication (1) -> (2). It is sufficient to prove that the isomorphism

2ftff£i<—>Σiaι x bi between Ao and Ai © Aa described in (I) is isometric.

Since At are mutually independent and generate A, the totality of σ x
T, where σ and T are pure states of A\ and A3 respectively, is complete on
A, and we have by [4]
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Γ σ X τ ]

Implication (2) -v (1). Since A ~ Ai x * A2, then Aι~Ai x 1, A2 ~ 1 x A2

hence Ai and A2 are algebraically independent, and finally the continuity
of the product functional is clear from the definition of norm in Ai x «A2.
[cf. 4] Q. E. D.

For infinitely many sub-algebras we can prove the following

PROPOSITION 2. Let A and At (i € /) be C*-algebras with units, then A is
isomorphic to the infinite product of Ai (i € ϊ) in the sense of Takeda [3], if

and only if there exists a mapping Φ from the set union \J At of At into A

such that
(1) Restriction φi of Φ on At is the principal isomorphism of At into A,
(2) Any finite set of images {φίje(.AiJe)\k = 1, .., n} are mutually independent,
(3) {φi{Ai)\iζ. 1} generate A as C*~algebra.

PROOF. For any finite subset of indices <γ = {il} — , in}, let AΎ be the
C*-sub-algebra of A generated by {φtk(Aik)\k = 1, .., n}, then Aγ is isomorphic
to A<! x x Ain by the above Prop. 1. Then A is isomorphic to the infinite
direct product of At by [3: Definitions 1,2].

2. In this section, we wish to answer partly for the question described in
the preceding section by proving MacDowell's theorem for the complex case:
that is, in an abelian case to obtain the topological condition under which
product functional becomes continuous. For this purpose, we begin with the

DEFINITION. Let A be a commutative C*-algebra with the unit, and B,
C be two C*-sub-algebras of A which contain units. Then they are called
additiυely related sub-algebras if and only if for every pair (b, c) of b € B
and c € C, there exists a scalar θ = θ(b, c) € / = [0,2ττ] such that \\b + «*c||

= 11*11 + ¥1
Then we have the following

THEOREM. Let A be a commutative C*-algebra with unit, and let B, C be
two C*-sub-algebras of A. Suppose that A is generated by B and C, then the
following three statements are mutually equivalent:

(1) A is isomorphic to the direct product B xaC,
(2) B and C are mutually independent,
(3) B and C are additiυely related.

REMARK. R. MacDowell had proved the equivalency of (1) and (3) for
real case.

PROOF. Since A, B and C are commutative C*-algebras with the unit,
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let C(ί2), C(Γ) and C(Δ) be their representations on the rings of all continuous
complex-valued functions on compact Hausdorff spaces respectively.

Implication (3)->>(l). We use the following terminologies (MacDowell
[1]): We call a subset T of a Banach space S a T-set of S if T is maximal

with respect to the property bϊ} — , bn € T-» | | 2 Λ | | = Σ * lî 'll Moreover

if T is a T-set of S, then we call \J e*θ T a circular T-set. If the space

S = C(X) (the space of all continuous complex valued functions on a compact
Hausdorff space X) then every T-set T of S has the form {/£ S|/0«b) = etθ»
11/11} for some point x0 of Jf and scalar 0O 6 /, and conversely every such
subset is a T-set of S.

Now let 7 and δ be arbitrary pure states of B and C respectively, then
Tdy) = {b € B|6(7) = 11*11), Tc(δ) = {c € C|c(δ)|| - ||c||} are T-sets of B and
C respectively. We can prove that there exists a circular T-set of A which

contains the set \J ew TB(y) U \J &9"Tc(8). Indeed, if not, for every ΘOGI

the set Tdy) U &ΘOTC(8) can be contained in no T-set of A, hence there exist
booGTjfr), cθo€Tc(δ) such that \\bθo + Λr*0|| < ||^0|| + \\coθ\\. Hence, there
exists a neighborhood ί(0o) of ΘQ such that ||^0 + e?θcQθ\\ < \\bθQ\\ + ||^0|| for

•̂  € /(0o) and finally / can be covered by a finite number of I(β): Id \ l
fc-l

7(<9fc). Put £ - 2 u i *»ι a n d c = Σ L ^ t h e n II* + Λll < 11*11 + IMI far all θ,
which contradicts to the additive relatedness of B and C.

Now, let the \J e*θTA(ω) be a circular T-set of A which contains the
Θ

\J*»TJM)\) yje*θ"Tc(δ), then we can show T ^ ) = TA(ω)(]B and Tc{h) =
θ'el θ"eΓ

TA(ω)f\C. Indeed, if b'v b'2 € Ύdy) then ίj(ώ) = ^||ft[|| and bfo) = ^ | | ^ | | for
some ΘI,Θ%GI; hence ^ = ^/| |^| | and b2 = 6ί/||6ί|| belong to T*(7) and î(ω)
= €*θι and b2{ω) = eiθ\ Since ^! and &2 belongs to TB(7), bι + b2 belongs to

Tjy); hence ^ + ^3 € ^θTXω) for some 0 € /, that is (fix + £2)(ω) = &θ\\bi +
»s|| = 2^β. Hence β^ + ^ 2 = 2eiθ, therefore θι = 02 = θ, and since 1 € T^(7)
belongs to T^(ω), θι = 03 = 0 = 0 hence Tβ(y)c:TA(ω). Similarly T(7(δ)czT4(ω).
.Then clearly the pure state ω of A is a common extension of 7 and δ, hence
7 © δ can be extended continuously, that is B and C are mutually independent.

Implication (2) ->• (1). We have proved this in Prop. 1.
Implication (1)-K2). Let b and c be arbitrary elements of B and C

respectively, then there exist 0', θ" € /, γ ς Γ and δ € Δ such that b(y)
= «"Ί|*||f c(δ) = *H|c| | . Now, if we define θ = 0' - 0" (mod fcr), 0 € 7 then

= l(*ll + \\c\l that is, B and C are additiveϊy related.
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