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M. Nakamura [2] has discussed the relation between the direct product
and the generation of two sub-factors in a finite W*-factor, and obtained
a satisfactorily analogous result as the classical theory of hypercomplex
numbers: that is, in a finite W*-factor, the direct product (in W*-sense)
of elementwise commutative two sub-factors means the generation in
weak operator topology and vice versa. In the present paper, we shall
consider the same problem for sub-algebras in an arbitrary C*-algebra.
In the case of W=*-factor, the key point of Nakamura’s argument is the
multiplicativity of the faithful normal trace. In view of this fact, we introduce
a notion of independence of sub-algebras in a C*-algebra (§1, Def.): this
definition seems to be artificial at a first glance but this may be considered
as a generalization of the stochastic independence in the probability theory.
Finally in §2, we shall state a theorem for an abelian C*-algebra recently
obtained by R.McDowell for real case [1]. '

1. Let A be a C*-algebra with the unit 1, and A; (i =1,2) be two
C*-sub-algebras of A which contain 1. Then A: are called algebraically
independent if they have following properties:

(1) A; and A, commute elementwise,

@) If {ai|li=1,....,m} and {bs|j=1,....,n} are arbitrary linearly inde-
pendent set of elements of A; and A; respectively, then {aib;] i=1,....,
‘m; j=1,....,n} is linearly independent in A.

If Ai(z = 1, 2) are algebraically independent C*-sub-algebras of a C*-algebra
A, the following facts are easily verified :

(I) The algebraic direct product A; ® A; of A; and A. is isomorphic to
the *-algebra A, generated by A, and A, algebraically and this isomorphism
is given by the correspondence

2iaibio Eiai X bi.

(II) For any pair of positive linear functionals (¢, T) Where o is defined
on A; and T on A, the functional which we call a product functional of o

and T,
[0@7](2iaibt) = Zid'(at)"r(bi), 2 waibi € Ay
is well-defined on A, and additive, homogeneous and positive :

o] ((Ziab) (Siab)*) 20, for all Sabic Ao.
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Then, “Under what topological conditions for A:, the product functional does
become continuous?” is an interesting problem for us. In abelian real case,
R. MacDowell has discussed this problem with different aspects [1]. In §2, we
shall come back to this problem for the abelian complex case. In this section
we discuss the relation between this problem and the direct product A; X &
A,(cf.[4]). For this purpose, we want to introduce the notion of independence
of sub-algebras. Now, we begin with the consideration on the probability
theory. If (X, F,u) be a probability measure space, then two bounded
real random variables @ and b are called mutually independent if E(f(a)
g(0)) = E(f(a))E(g(b)), where f{A), g(\) are arbitrary complex-valued Baire

functions and E(c) = f c(x)du(x). And moreover, the space L=(X, F,p) of all

bounded random variables forms a commutative W*-algebra, acting on the
Hilbert space ZX X, F,u), having a faithful normal trace E(-). Conversely,
if a commutative W+*-algebra M has a faithful normal trace =, then Gelfand-
Neumark’s respresentation theorem shows that there is a probability measure
space on which the algebra M is isomorphically, preserving the value of
the trace, represented to the algebra of all bounded random variables of
the space, i.e., ™(a) = E(a*), a* denotes the representation of q. Since the
W*-sub-algebra A generated by an hermitian element @ and 1 in M consists
of all Baire functions of a, the above notion of independence can be transfered
into any commutative W*-algebra M with a faithful normal trace T as
follows: Two hermitian elements @ and b are called mutually independent if
(uv) = T(u)r(v) for every u € A, v € B, where A and B are W*-sub-algebras
generated by {a,1} and {b, 1} respectively.

Under these considerations we set the following definition for C*-
algebras.

DEFINITION. Let A be a C*-algebra, and A:(Z=1,2) be- algebraically
independent sub-algebras. Then A; are called mutually independent if the
product functional ¢ ® 7 is continuous on A and the totality of its continuous
extension o X T is complete on the C*-sub-algebra generated by Ai(Z = 1, 2).

Now, our aimed proposition is the following :

PROPOSITION 1. Let A be a C*-algebra, A:(i = 1,2) be C*-sub-algebras of A,
and if A is generated by A:, then the following two statements are mutually
equivalent :

(1) A«Z = 1,2) are mutually independent,

(2) A is isomorphic to the direct product A, X« A; of As.

Proor. Implication (1)—(2). It is sufficient to prove that the isomorphism

Sabi—2yac X by between A, and A, ® A, described in (I) is isometric.

Since A: are mutually independent and generate A, the totality of o X
7, where o and T are pure states of A, and A, respectively, is complete on
A, and we have by [4]
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. [0' x TI(Ssa3) (Ziaib:) (Siaib:)* (Zsa;6))%)
| ] = s [o x 71 ((S,ap)) (S:a)b)")

= a(Ecat X bl) .

Implication (2) —(1). Since A >~ A; X Ay, then A, ~ A, x1,A;~1 x Ay;
hence A; and A; are algebraically independent, and finally the continuity

of the product functional is clear from the definition of norm in A; X .A..
[cf. 4] Q.E.D.

For infinitely many sub-algebras we can prove the following

PROPOSITION 2. Let A and A: (i € I) be C*-algebras with units, then A is
isomorphic to the infinite product of A: (i € 1) in the sense of Takeda [3], if

and only if there exists a mapping ® from the set union U Ai of A; into A
tel

such that
(1) Restriction ¢; of ® on A; is the principal isomorphism of A: into A,
(2) Any finite set of images {pulAw)|k =1, ..,n} are mutually independent,
(3) {p:(A)|i € I} generate A as C*-algebra.

ProoF. For any finite subset of indices v = {7}, ....,4s}, let AY be the
C*-sub-algebra of A generated by {¢:,(4:, )%k =1, ..,n}, then A is isomorphic
to Ai X .... X Ag, by the above Prop.1. Then A is isomorphic to the infinite
direct product of A; by [3: Definitions 1, 2].

2. In this section, we wish to answer partly for the question described in
the preceding section by proving MacDowell’s theorem for the complex case :
that is, in an abelian case to obtain the topological condition under which
product functional becomes continuous. For this purpose, we begin with the

DEFINITION. Let A be a commutative C*-algebra with the unit, and B,
C be two C*-sub-algebras of A which contain units. Then they are called
additively related sub-algebras if and only if for every pair (b,c) of b€ B
and ¢ € C, there exists a scalar 0 = 0(b,c) € I = [0, 27r] such that ||b + e¥c|
= ||5]| + llell-

Then we have the following

TuHEOREM. Let A be a commutative C*-algebra with unit, and let B,C be
two C*-sub-algebras of A. Suppose that Ais generated by B and C, then the
following three statements are mutually equivalent :

(1) A is isomorphic to the direct product B x4 C,

(2) B and C are mutually independent,

(3) B and C are additively related.

REMARK. R.MacDowell had proved the equivalency of (1) and (3) for
real case.

Proor. Since A, B and C are commutative C*-algebras with the unit,
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let C(Q), C(I') and C(A) be their representations on the rings of all continuous

complex-valued functions on compact Hausdorff spaces respectively.
Implication (3)—>(1). We use the following terminologies (MacDowell

[1]): We call a subset T of a Banach space S a T-set of S if T is maximal

with respect to the property by, ...., ba € T — | Eib,” = Ei ||B:]]. Moreover
if T is a T-set of S,l then we call U é® T a circular T-set. If the space

Gel
S = ((X) (the space of all continuous complex valued functions on a compact
Hausdorff space X) then every T-set T of S has the form {f € S|f(%) = et
I£1} for some point % of X and scalar 6, € I, and conversely every such
subset is a T-set of S.

Now let v and 8 be arbitrary pure states of B and C respectively, then
Ts(y) = {b € B|b(vy) = ||b||}, T«(8) = {c € Clc()|| = ||c||} are T-sets of B and
C respectively. We can prove that there exists a circular T-set of A which
contains the set Ue“” Ts(v)U U e%"'T8). Indeed, if not, for every 6, € I

0’el 8’7el
the set Ts(y)Ue®T(8) can be contained in no T-set of A, hence there exist
bo, € T5(y), co, € Te(8) such that ||be, + e%cg,| < ||ba|| + |lcoll. Hence, there
exists a neighborhood 1(6,) of «90 such that |[|be, + €col| < ||Beol + llcaoll for

0 € K6,); and finally I can be covered by a finite number of 1(§): I< U

k=l
K6y). Put b= by, and c= 3 co, then [|b+ e%| < b + |lc| for all 6,
which contradicts to the additive relatedness of B and C.

Now, let the U T (w) be a circular T-set of A which contains the
(‘] N

\J e Tsv)U \_J ¢ 'T«5), then we can show Tx(y) = Tu@)\B and Te(8) =
6’el 0’’el
T4(@)NC. Indeed, if b, b, € Tx(v) then b(w) = €®1||b;|| and by w) = e'%||b;|| for
some 6,0, € I; hence b, = b,/||b]| and &, = b,/||b;]| belong to Ts(y) and by(w)
= ¢ and by w) = €. Since b, and b, belongs to Tx(7y), b + b, belongs to
Tx(7y); hence b, + b, € T 4(w) for some 0 € 1, that is (b + b,) (@) = |5, +
byl| = 2¢°. Hence ¢ + ¢ = 2¢% therefore 6, = 6, =60, and since 1 €& Tx(y)
belongs to Tu(w), 6; = 6, = @ = 0; hence Tx(y)T «w). Similarly T¢(8)<T «(w).
Then clearly the pure state o of A is a common extension of v and 3, hence
7 ®© & can be extended continuously, that is B and C are mutually independent.

Implication (2)—(1). We have proved this in Prop. 1.

Implication (1)—(2). Let & and c¢ be arbitrary elements of B and C
respectively, then there exist @, 8’ €I, v €I and § € A such that &)
= &?|b]|, c(8) = €®’||c||. Now, if we define 8§ = & — 6’ (mod 2z), 6 € I then
Ilbll + llell 2116 + e?cll = [(B + &) (v, )| = |b(y)+e? c(8)] = Ie""llbl|+ e+l |

= |[8]] + |lc|l, that is, B and C are additively related.
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