ON A THEOREM OF LINDELÖF CONCERNING PRIME ENDS

T. M. Flett

(Received April 28, 1956)

A short proof of the following well known theorem of Lindelöf has been given by Tsuji [2].

THEOREM. Let D be a bounded simply-connected domain, and let w = f(z)map D conformally on |w| < 1. If $\{z_n\}$ is a sequence of points of D such that the sequence $w_n = f(z_n)$ converges to a point α of |w| = 1 in a Stolz angle, $|\arg(\alpha - w)| < \frac{1}{2}\pi - \delta$, then every limit-point of the sequence $\{z_n\}$ is a principal point¹ of the prime end of D which corresponds to α .

In this note we show how the proof of the theorem may be simplified still further by using a very elementary topological argument.

Tsuji proves the theorem by combining the following results.

LEMMA A. Let Dba bounded simply-connected domain, and let w = f(z)map D conformally on |w| < 1. Let $\{\rho_n\}$ be a sequence of positive numbers such that $\rho_{n+1} \leq \frac{1}{2}\rho_n < 1$, and let S_n be the domain $\frac{1}{2}\rho_n < |1-w| < \rho_n$, |w| < 1. Then we can find an increasing sequence $\{n_v\}$ of positive integers, and a chain $\{q_v\}$ of cross-cuts of D associated with the prime end of D which corresponds to w = 1, such that the image of q_v in |w| < 1 is an arc of a circle with centre w = 1 lying in S_{nv} .

LEMMA B. Let D be a bounded simply-connected domain, F(D) its frontier, let w = f(z) map D conformally on |w| < 1, and let $z = \psi(w)$ be the inverse of f. Let $\{\rho_n\}$ be a sequence of positive numbers such that $\rho_{n+1} \leq \frac{1}{2}\rho_n < 1$, and let T_n be the domain $\frac{1}{2}\rho_n < |w-1| < \rho_n$, |w| < 1, $|\arg(1-w)| < \frac{1}{2}\pi - \delta < \frac{1}{2}\pi$. Then we can find an increasing sequence $\{n_v\}$ of positive integers such that the values of $\psi(w)$ in \overline{T}_{n_v} converge to a point a of F(D).

The deduction of the theorem from these two lemmas is immediate. For we may suppose that $\alpha = 1$, and that $\{z_n\}$ converges to a point *a* of F(D). We can then find a chain of cross-cuts $\{q_i\}$, associated with the prime end of *D* which corresponds to w = 1, converging to the point *a*, and this is the required result.

¹⁾ For the definition of this and other terms belonging to the theory of prime ends, see Carathéodory [1].

We have nothing new to add concerning the proof of Lemma A. In place of Tsuji's proof of Lemma B (which uses Lemma A), we have, however, the following argument.

We may evidently suppose ρ_0 so small that each of the domains U_n defined by the relations

$$\frac{1}{4}\rho_n < |1-w| < 2\rho_n, \quad |\arg(1-w)| < \frac{1}{2}\pi - \frac{1}{2}\delta$$

is completely contained in |w| < 1. Let

$$\Psi_n(w) = \Psi\{1 + \rho_0 \rho_n^{-1}(w-1)\}.$$

The functions ψ_n are regular and uniformly bounded in U_0 , and the values taken by ψ_n in T_0 and U_0 are the values taken by ψ in T_n and U_n respectively. By Montel's theorem, we can select a subsequence of the ψ_n which converges

uniformly in any closed set in U_0 , and, in particular, in \overline{T}_0 , to a regular ϕ . If ϕ is not constant in U_0 , the values taken by ϕ in U_0 form an open set. This set contains the area of some complete circle, and this is impossible, since it is contained in F(D). Hence ϕ is constant in U_0 , and this proves the lemma.

References

- [1] C. CARATHÉODORY, Über die Begrenzung einfach zusammenhangender Gebiete, Math. Ann., 73 (1913), 323–370.
- [2] M. TSUJI, On the theorems of Carathéodory and Lindelöf in the theory of conformal representation, Jap. J. Math, 7(1930), 91-99.

UNIVERSITY OF LIVERPOOL.