CAUCHY INTEGRAL FOR FUNCTIONS OF SEVERAL VARIABLES

Richard Arens

(Received January 30, 1956)

1. Introduction. A. Weil [L'intégrale de Cauchy et les fonctions de plusieurs variables, Math. Annalen, 111(1935), 178-182] has produced an integral representation for a holomorphic function f valid in a special kind of region. He integrates over an analytic chain of 2 dimensions (in the case of 2 variables). This chain has singularities on its boundary; but on the other hand it does lie on the boundary of the region in which the representation is valid.

Our object here is to integrate Weil's integrand over an analytic chain with no singularities, allowing ourselves to use a chain in a neighborhood of the boundary. The resulting theorem is perhaps less elegant than Weil's, but it is adequate for most applications. Moreover, the proof is much simpler since it does not require an appeal to a theorem on the triangulation of analytic loci.

The result is stated (for 2 variables) in 4.3 below. The extension to n variables can be obtained by comparing Weil's proof of his theorem for $n=2$ with ours, and then considering his statement for the general case.

In a mimeographed note reporting on the Séminaire H. Cartan, 1951-52, VI, entitled "Intégrale d'André Weil" (14-1-1952), Michel Hervé discusses a different method (integration over an open set) of surmounting the difficulties presented by the singularities on the boundary. Another point, namely the question of the existence of the functions X_{i}, Y_{i} (see 3.1, below) is treated by K. Oka [Sur les fonctions analytiques de plusieurs variables, V. L'intégrale de Cauchy, Jap. Journ. of Math., 17(1941), 523-531] and (indepently) by H. Hefer [Zur Funktionentheorie mehrerer Veränderlichen; Math. Annalen, 122(1950), 276-278.]
2. Some Geometry. Let C^{2} be the class of pairs $z=(x, y)$ of complex numbers x, y. Let \mathfrak{D} be an open set in C^{2}. Let P_{1}, \ldots, P_{n} be (complex valued) functions holomorphic on \mathfrak{D}. Let $F_{i}, D_{i}(i=1, \ldots, n)$ be closed and open (respectively) subsets of the complex plane C with $F_{i} \subset D_{i}$. Let Φ_{i} be the set in \mathfrak{D} where $P_{i}(z) \in F_{i}$; and let Δ_{i} be similarly defined with D_{i}. Suppose that
$2.1 \quad \Delta \equiv \Delta_{1} \cap \ldots \cap \Delta_{n}$ has Δ^{-}compact and inside \mathfrak{D}.
With this understood, we shall prove the following.

2.2 There exists a 4-dimensional polyhedron k lying inside Δ, containing $\Phi \equiv \Phi_{1} \cap \ldots \cap \Phi_{n}$, and whose boundary ∂k can be written as

$$
\text { 2.3 } \partial k=g_{1}+\ldots+g_{n}
$$

where

$$
2.4 \quad g_{i} \subset \Gamma_{i} \cap \Delta \text { where } \Gamma_{i}=\Delta_{i}-\Phi_{i}
$$

Proof. Let B be the frontier of Δ. One can find a positive d such that for any point z of B, the d-neighborhood of z relative to Δ lies entirely in some Γ_{i} (i depending on z). Now dissect C^{2} into 4 -cells of diameter less than d. Let k be the sum of those which lie in Δ. Let g be a 2 -cell occurring on the boundary of k. It is a face of two 4 -cells, one in k and the other not. Hence the other meets B whence it and g lie in some Γ_{i}. We can now collect the terms of ∂k into a sum $g_{1}+\ldots+g_{n}$ where g_{i} contains only 3 -cells in Γ_{i}, q.e.d.
3. Some analytic forms. Besides the functions P_{i} of sec. 2, suppose there are functions X_{i}, Y_{i} holomorphic on $\mathfrak{D} \times \mathfrak{D}$ such that for z, z_{0} in \mathfrak{D} ($z=(x, y)$ etc.)
3.1

$$
P_{i}(z)-P_{i}\left(z_{0}\right)=\left(x-x_{0}\right) X_{i}\left(z, z_{0}\right)+\left(y-y_{0}\right) Y_{i}\left(z, z_{0}\right) .
$$

(If the P_{i} are holomorphic on sets $A \times B$ containing \mathfrak{D}, then such functions as in 3.1 can be easily found.)

Let f be any function holomorphic on \mathfrak{D}.
Consider the (analytic) differential 2 -forms
$3.2 \quad q_{i j}=\frac{f(z)\left|\begin{array}{ll}X_{i}\left(z, z_{0}\right) & X_{j}\left(z, z_{0}\right) \\ Y_{i}\left(z, z_{0}\right) & Y_{j}\left(z, z_{0}\right)\end{array}\right|}{8 \pi^{2}\left(P_{i}(z)-P_{i}\left(z_{0}\right)\right)\left(P_{j}(z)-P_{j}\left(z_{0}\right)\right)} d x d y$
wherein z_{0} is a parameter. These have the properties:
3.3

$$
\boldsymbol{q}_{i j}=-\boldsymbol{q}_{j i}, \quad \boldsymbol{q}_{i j}+q_{j i}+\boldsymbol{q}_{k i}=0 .
$$

3.4 If z_{0} (belongs to \mathfrak{D} but) is not on $\Gamma \equiv \Gamma_{1} \cup \ldots \cup \Gamma_{n}$ then $q_{i j}$ is holomorphic on $\Gamma_{i} \cap \Gamma_{j}$.
3. 5 If z_{0} (belongs to \mathfrak{D} but) lies outside $\Gamma \cup \Delta_{i}$ then $q_{i j}$ is holomorphic on $\Delta \cap \Gamma_{j}$.

These properties are easily established (see Weil). For the latter two, it is merely a matter of seeing when $P_{i}(z) \neq P_{i}\left(z_{0}\right)$, etc.
4. The integral. Suppose we have any 4 -chain k satisfying the conditions of 2.2 (even though not constructed as in the proof). Let $h_{i j}$ be the sum of those 2-cells that appear in both $\partial g_{i}, \partial g_{j}$, but with the sign as in the former. (For example let $k=a \times b$ where a, b are square 2 -cells in the respective planes. Then $\partial k=\partial a \times b+a \times \partial b$. Suppose the first is g_{1} and the second is g_{2}. Then $\partial g_{1}=-\partial a \times \partial b, g_{2}=\partial a \times \partial b$. Hence $h_{12}=g_{1}$. The appearance of the $-\operatorname{sign}$ in ∂g_{1} warns us that the calculus of combinatorial topology has to be taken seriously here.)

We define no $h_{i i}$. Then
4.1

$$
\sum_{j} h_{i j}=\partial g_{i}, \quad h_{i j}=-h_{j i}
$$

For a given k and choice of g_{1}, \ldots, g_{n} we define

$$
J\left(z_{0}\right)=\sum_{i, j} \int_{n_{i j}} \boldsymbol{q}_{i j}
$$

(Cauchy-Weil integral).
(The i, j term is the same as the j, i term, by 4.1 and 3.3. This explains the $1 / 2$ in

$$
-\frac{1}{2} \frac{1}{(2 \pi i)^{2}}=\frac{1}{8 \pi^{2}} .
$$

The - is to take care of the - in the example above.)
The integral 4.2 exists for z_{0} as in 3.4 and evidently is a holomorphic function of z_{0}. For other values of z_{0}, it may exist as an improper integral.
4. 3 Theorem. For z_{0} in \cap but not in $\Gamma \cup \Delta($ see 2.1$), ~ J\left(z_{0}\right)=0$. For z_{0} interior to Φ (see 2.2), $J\left(z_{0}\right)=f\left(z_{0}\right)$.

Proof. We treat first (as does Weil) the case z_{0} not in $\Gamma \cup \Delta$, following (mutatis mutandis) the method of Weil. Suppose z_{0} is not in some Δ_{k}, as must be for z not in Δ. Since $\dot{\boldsymbol{q}}_{i j}=\boldsymbol{q}_{k j}-q_{k i}$

$$
J\left(z_{0}\right)=\sum_{i, j} \int_{n_{i j}} \boldsymbol{q}_{k j}-\sum_{i, j} \int_{n_{i j}} \boldsymbol{q}_{k i}=\sum_{j} \int_{\partial g_{j}} \boldsymbol{q}_{k j}-\sum_{i} \int_{-\partial g_{i}} \boldsymbol{q}_{k i}
$$

where we have used 4.1. By 3.5, $\boldsymbol{q}_{k j}$. is holomorphic on g_{j}. By the CauchyPoincaré integral theorem, a form taken around the boundary of a chain on which the form is holomorphic, gives 0 . (One may prove this by observing that the exterior differential $d q_{k j}$, as a form in R^{4}, is 0 , and using the Green-

Cartan integral theorem: $\int_{\partial^{g}} q=\int_{\boldsymbol{g}} d q$.) This proves the first half of 4.3.
We do not use this half (as Weil does) to establish the second half, as this $J\left(z_{0}\right)$ is not precisely a "fonction additive de domaine," but we do defer the proof until sec. 5 .
4.4 Lemma. Let z_{0} be in \mathfrak{D} but not in Γ. Then the value of 4.2 is independent of how (for a given k) we choose the expression 2.3 satisfying 2.4.

It will suffice to show that if

$$
k=g_{1}+g_{2}+g_{3}+\ldots+g_{n}=g_{1}^{\prime}+g_{2}^{\prime}+g_{3}+\ldots .+g_{n}
$$

then 4.2 is the same for both. It will have to be that

$$
g_{1}-g_{1}^{\prime}=g_{2}^{\prime}-g_{2}=g \subset \Gamma_{1} \cap \Gamma_{2} .
$$

Let h_{1}, h_{2}, h_{k} be the parts of ∂g which it has in common with $\partial g_{1}^{\prime}, \partial g_{2}$, and $\partial g_{k}(k=3,4, \ldots)$. Then these latter three are of form $a-h_{1}, b-h_{2}, c-h_{k}$ where a, b, c do not share anything with ∂g. They may be ignored when we want to determine the change in h_{12}. Doing so, we obtain

$$
\partial g_{1}=h_{2}+\ldots+h_{k}+\ldots . \quad \partial g_{1}^{\prime}=-h_{1}
$$

$$
\begin{array}{ll}
\partial g_{2}=-h_{2} & \partial g_{2}^{\prime}=h_{1}+h_{3}+\ldots+h_{k}+\ldots \\
\partial g_{k}=-h_{k} & \partial g_{k}^{\prime}=-h_{k} .
\end{array}
$$

Hence (still ignoring a, b, c), $\boldsymbol{h}_{12}=h_{2}, h_{12}^{\prime}=-h_{1}$ so $h_{12}^{\prime}-h_{12}=-h_{1}-h_{2}$. Next, $h_{2 k}=0, h_{2 k}^{\prime}=h_{k}$, so $h_{2 k}^{\prime}-h_{2 k}=+h_{k}$. Finally, $h_{k 1}=-h_{k}, h_{k 1}^{\prime}=0$, so $h_{k 1}^{\prime}-h_{k 1}$ $=h_{k}$. The change in $J\left(k_{k 2}\right)$ is thus twice

$$
\begin{align*}
& \int_{-h_{1}-h_{2}} q_{12}+\sum_{k>2} \int_{n_{k}}\left(q_{2 k}+q_{k 1}\right) \\
= & \int_{-h_{1}-h_{2}} q_{12}+\sum_{k>2} \int_{n_{n_{k}}}\left(-q_{12}\right) \tag{by3.3}\\
= & -\int_{y} q_{12} \tag{by4.5}\\
= & 0 \text { (q. e. d.) }
\end{align*}
$$

This enables us to prove the following.
4.6 Lemma. If the system $P_{1}, F_{1}, D_{1} ; \ldots P_{n}, F_{n}, D_{n}$ is altered insof ar as some of the sets F_{i}, D_{j} are diminished maintaining however the proper inclusion relation, then a new chain k^{*} can be found such that for z_{0} neither in Γ nor in Γ^{*} (* referring to the altered system), there holds $J^{*}\left(z_{0}\right)=J\left(z_{0}\right)$.

Proof : If merely some F_{i} is diminished, the old k may be retained. It is clearly enough to consider beyond this only the case in which some D_{1} is diminished to D_{1}^{*}.

Let us first subdivide k into pieces so small that none of them maps (under P_{1}) into a set meeting both F_{1} and the outside of D_{1}^{*}. This gives a chain k_{1} and

$$
J_{k}\left(z_{0}\right)=J_{k_{1}}\left(z_{0}\right) .
$$

The cells of ∂k_{1} which do not meet Φ_{1} can all be placed in g_{1} without affecting $J_{k_{1}}\left(z_{0}\right)$, by 4.4. (This rearrangement changes the $h_{i j}$ of course.) Eject from k_{1} all cells not in Δ^{*}, and you have k^{*}. The faces of these ejected cells enter only into g_{1} and g^{*}. Indeed $\partial\left(k_{1}-k^{*}\right)=g_{1}-g_{1}^{*}$, whence $\partial g_{1}=\partial g_{1}^{*}$. Therefore this passage from k_{1} to k^{*} affects neither the $h_{i j}$ nor $J\left(z_{0}\right)$.
5. Proof of 4.3. In applications, the functions $P_{1}(z)=x, P_{2}(z)=y$ will usually be present among the P_{1}, \ldots, P_{n}. If either one is not present, it can be "adjoined" (say P_{1}) together with the sets F_{1}, D_{1} where F_{1} is so large as to contain all the x-values of z on the compact set Δ^{-}(Δ being based on the unaugmented system). This augmentation does not change Δ, Φ, nor Γ and in fact the (formally) created Γ_{1} will be void, so that 4.2 cannot involve the adjoined function.

Therefore let us suppose these P_{1}, P_{2} (as above) are in our system. Let z_{0} be interior to Φ (or more generally, as there need be no constant P_{i}) let $P_{i}\left(z_{0}\right)$ be interior to F_{i} for each i. Then for some positive d,

$$
\left|x-x_{0}\right|, \quad\left|y-y_{0}\right|<d \text { gives } P_{i}(z) \text { in } F_{i} \text { for } i=3,4, \ldots \ldots
$$

Let us replace D_{1}, D_{2} by d-nbds of x_{0}, y_{0}; and replace F_{1}, F_{2} by the points x_{0}, y_{0}. By 4.6, the integral retains its old value. But now $\Gamma_{i}^{*} \cap \Gamma_{j}^{*}$ is void for $i=1,2 ; j=3,4, \ldots$. Hence 4.2 reduces to
5.1

$$
J\left(z_{0}\right)=2 \int_{h_{12}} q_{12}=\frac{1}{4 \pi^{2}} \iint_{h_{12}} \frac{f(x, y) d x d y}{\left(x-x_{0}\right)\left(y-y_{0}\right)}
$$

where $h_{12}=\partial g_{1}, g_{1}+g_{2}=\partial k^{*}, g_{i} \subset \Gamma_{i}^{*}(i=1,2)$.
For any 4 -chain k, whose boundary misses (x_{0}, y_{0}), split ∂k into terms $g_{1}+g_{2}$ where $x \neq x_{0}$ on $g_{1}, y \neq y_{0}$ on g_{2}. Define
5.2

$$
I(k)=\frac{1}{4 \pi^{2}} \iint_{\partial g_{1}} \frac{f(x, y) d x d y}{\left(x-x_{0}\right)\left(y-y_{0}\right)} .
$$

Any arbitrariness in the selection of g_{1} involves only terms g on which $x \neq x_{0}, y \neq y_{0}$ and has no effect on 5.2 since

$$
\int_{\partial \sigma}=0 .
$$

Thus 5.2 depends only on k and $I\left(k_{1}+k_{2}\right)=I\left(k_{1}\right)+I\left(k_{2}\right)$.
Let 4 -cells k_{1}, k_{2}, \ldots be added to k^{*} until the sum is a 4 -cube of the form

$$
a \times b=k^{*}+k_{1}+k_{2}+\ldots \ldots
$$

(see the example in sec. 4), where a, b are solid squares about x_{0}, y_{0} contained in D_{1}^{*}, D_{2}^{*} respectively. It follows that

$$
J\left(z_{y}\right)\left(=I\left(k^{*}\right)\right)=I(a \times b) .
$$

Now

$$
\partial(a \times b)=\partial a \times b+a \times \partial b ;
$$

and the former has $x \neq x_{0}$ on it, and its boundary is

$$
-\partial a \times \partial b
$$

As a result,

$$
I(a \times b)=\frac{1}{(2 \pi i)^{2}} \int_{\partial x} \int_{\partial b} \frac{f(x, y)}{\left(x-x_{0}\right)\left(y-y_{0}\right)} d x d y=f\left(x_{0}, y_{0}\right)
$$

Thus 4.3 is completely proved.

University of California.

