ON SOME RANDOM RIEMANN-SUMS

Shigeru Takahashi

(Received March 30, 1956)

1. In the present note $\left\{t_{i}(\omega)\right\}, i=1,2, \ldots$, will denote a sequence of independent random variables defined on a probability space (Ω, \mathbf{B}, P) and each $t_{i}(\omega)$ have the uniform distribution on the interval [0,1], that is, for $0 \leqq x \leqq 1$

$$
P\left[t_{i}(\omega)<x\right]=x^{1)}
$$

For each ω let $t_{i, n}(\omega)$ be the i-th value of $\left\{t_{j}(\omega)\right\}(1 \leqq j \leqq n)$ arranged in the increasing order and let, for all n,

$$
t_{0, n}(\omega) \equiv 0 \quad \text { and } \quad t_{n+1, n}(\omega) \equiv 1
$$

Further let $f(t), 0 \leqq t \leqq 1$, denote a Borel-measurable and integrable function.
It is an interesting problem, proposed by K. Ito, whether the following Riemann-sums

$$
\begin{equation*}
S_{n}(\omega)=\sum_{i=1}^{n} f\left(t_{i, n}(\omega)\right)\left(t_{i+1, n}(\omega)-t_{i, n}(\omega)\right) \tag{1.1}
\end{equation*}
$$

converge to $\int_{0}^{1} f(t) d t$ or not, in any sense. In [2] we proved that under certain local conditions, we have

$$
\begin{equation*}
P\left[\lim _{n \rightarrow \infty} S_{n}(\omega)=\int_{0}^{1} f(t) d t\right]=1 \tag{1.2}
\end{equation*}
$$

In this note we prove the following
Theorem 1. If $f(t) \in L_{p}(0,1) p>1$, then (1. 2) holds.
For $f(t) \in L(0,1)$ we can not prove whether (1.2) holds or not.
2. Let us put, for $1 \leqq i \leqq n$ and $n=1,2, \ldots$,

$$
\begin{equation*}
d_{i, n}(\omega)=t_{j+1, n}(\omega)-t_{i}(\omega), \text { if } t_{i}(\omega)=t_{j, n}(\omega) \quad(j=1,2, \ldots, n) \tag{2.1}
\end{equation*}
$$

and

$$
d_{i, n}^{\prime}(\omega)=t_{i}(\omega)-t_{j-1, n}(\omega), \text { if } t_{i}(\omega)=t_{j, n}(\omega) \quad(j=1,2, \ldots, n) .
$$

Then we can write

$$
\begin{equation*}
S_{n}(\omega)=\sum_{i=1}^{n} d_{i, n}(\omega) f\left(t_{i}(\omega)\right) \tag{2.2}
\end{equation*}
$$

and

1) For the notations and definitions in the theory of probability see [1].

$$
\begin{equation*}
\int_{0}^{1} f(t) d t=\sum_{i=1}^{n} \int_{0}^{i_{i, n}(\omega)} f\left(t_{i}(\omega)+u\right) d u+\int_{0}^{t_{1, n}(\omega)} f(t) d t . \tag{2.2'}
\end{equation*}
$$

Lemma 1. We have, for $0 \leqq h \leqq 1$,

$$
P\left[d_{i, n}<h\right]=1-(1-h)^{n 2)} .
$$

Proof. By (2.1), we have

$$
\begin{aligned}
P\left[d_{i, n}<h\right] & =P\left[\left(d_{i, n}<h\right) \cap\left(t_{i} \leqq 1-h\right)\right]+P\left[t_{i}>1-h\right] \\
& =\int_{0}^{1-h} P\left[d_{i, n}<h \mid t_{i}=x\right] d x+h .
\end{aligned}
$$

where $P(E \mid F)$ denotes the conditional probability of E under the hypothesis F.

From the independency of $\left\{t_{i}\right\}$, it is seen that

$$
\begin{aligned}
P\left[d_{i, n}<h \mid t_{i}=x\right] & =P\left[\bigcup_{\substack{j=1 \\
j \neq i}}^{n}\left(t_{j} \in[x, x+h]\right) \mid t_{i}=x\right] \\
& =P\left[\bigcup_{\substack{j=1 \\
j \neq i}}^{n}\left(t_{j} \in[x, x+h]\right)\right] \\
& =1-P\left[\bigcap_{\substack{j=1 \\
j=i}}^{n}\left(t_{j} \bar{\in}[x, x+h]\right)\right] \\
& =1-(1-h)^{n-1} .
\end{aligned}
$$

Thus we obtain

$$
\begin{aligned}
P\left[d_{i, n}<h\right] & =\int_{0}^{1-h}\left\{1-(1-h)^{n-1}\right\} d x+h \\
& =1-(1-h)^{n}
\end{aligned}
$$

From this lemma, it follows that

$$
\begin{align*}
P\left[\operatorname{Max}_{1 \leqq i \leqq n} d_{i, n} \geqq\right. & \left.\frac{3 \log n}{n}\right] \leqq \sum_{i=1}^{n} P\left[d_{i, n} \geqq \frac{3 \log n}{n}\right] \tag{2.3}\\
& =n\left(1-\frac{3 \log n}{n}\right)^{n}=O\left(1 / n^{2}\right) \quad(n \rightarrow+\infty) .
\end{align*}
$$

On the other hand, for any $\varepsilon(0<\varepsilon<1)$, we have

$$
\begin{align*}
P\left[\sum_{i=1}^{n} d_{i} n \leqq 1-\varepsilon\right] & =P\left[t_{1, n} \geqq \varepsilon\right] \tag{2.4}\\
& =P\left[\bigcap_{i=1}^{n}\left(t_{i} \geqq \varepsilon\right)\right]
\end{align*}
$$

2) We write simply $d_{i, n}$ for $d_{i, n}(\omega)$ and so on.

$$
=(1-\varepsilon)^{n} .
$$

Hence we have

$$
\sum_{n=1}^{\infty} P\left[\sum_{i=1}^{n} d_{i, n} \leqq 1-\varepsilon\right]<+\infty,
$$

and this implies

$$
P\left[\lim _{n \rightarrow \infty} \sum_{i=1}^{n} d_{i, n}=1\right]=1
$$

Lemma 2. Let x and y be any two numbers.
1° If $0 \leqq x<1-y \leqq 1$, then we have

$$
P\left[\left(d_{i, n}<y\right) \cap\left(t_{i}<x\right)\right]=x\left\{1-(1-y)^{n-1}\right\} .
$$

2° If $0 \leqq y<x \leqq 1$, then we have

$$
P\left[\left(d_{i, n}^{\prime}<y\right) \cap\left(t_{i} \geqq x\right)\right]=(1-x)\left\{1-(1-y)^{n-1}\right\}
$$

Proof. By the independency of $\left\{t_{i}\right\}$, we have

$$
\begin{aligned}
P\left[\left(d_{i, n}<y\right) \cap\left(t_{i}<x\right)\right] & =\int_{0}^{x} P\left[d_{i, n}<y \mid t_{i}=z\right] d z \\
& =\int_{0}^{x} P\left[\bigcup_{\substack{j=1 \\
j \neq i}}^{n}\left(t_{j} \in[z, z+y) \mid t_{i}=z\right)\right] d z \\
& =\int_{0}^{x} P\left[\bigcup_{\substack{j=1 \\
j \neq i}}^{n}\left(t_{j} \in[z, z+y)\right)\right] d z \\
& =\int_{0}^{x}\left\{1-(1-y)^{n-1}\right\} d z \\
& =x\left\{1-(1-y)^{n-1}\right\} .
\end{aligned}
$$

In the same way, we can prove 2°.
Lemma 3. Let x_{1}, y_{1}, x_{2} and y_{2} be non-negative numbers and satisfy either the condition

$$
\begin{equation*}
x_{2}>y_{1}+y_{2} \quad \text { and } \quad x_{2}+x_{1}<1, \tag{2.5}
\end{equation*}
$$

or the condition
(2.5')

$$
y_{2}>x_{1}+x_{2} \text { and } y_{2}+y_{1}<1
$$

Then we have, for $i \neq j$,

$$
\begin{aligned}
& P\left[\left(d_{i, n}<x_{1}\right) \cap\left(d_{j, n}<y_{1}\right) \mid t_{i}=x_{2}, t_{j}=y_{2}\right] \\
& =1-\left(1-x_{1}\right)^{n-2}-\left(1-y_{1}\right)^{n-2}+\left(1-x_{1}-y_{1}\right)^{n-2} .
\end{aligned}
$$

Proof. We prove the lemma under (2.5), for under (2.5') the proof is analogous.

It is seen that

$$
\begin{align*}
& P\left[\left(d_{i, n}<x_{1}\right) \cap\left(d_{j, n}<y_{1}\right) \mid t_{i}=x_{2}, t_{j}=y_{2}\right] \tag{2.6}\\
& =P\left[d_{i, n}<x_{1} \mid t_{i}=x_{2}, t_{j}=y_{2}\right]+P\left[d_{j, n}<y_{1} \mid t_{i}=x_{2}, t_{j}=y_{2}\right] \\
& -P\left[\left(d_{i, n}<x_{1}\right) \cup\left(d_{j, n}<y_{1}\right) \mid t_{i}=x_{2}, t_{j}=y_{2}\right] .
\end{align*}
$$

By (2.5), we have

$$
\begin{align*}
& P\left[d_{i, n}<x_{1} \mid t_{i}=x_{2}, t_{j}=y_{2}\right] \tag{2.7}\\
& =P\left[\bigcup_{\substack{k=1 \\
k \neq 1, j}}^{n}\left(t_{k} \in\left[x_{2}, x_{2}+x_{1}\right)\right) \mid t_{i}=x_{2}, t_{j}=y_{2}\right] \\
& =P\left[\bigcup_{\substack{k=1 \\
k \neq 1, j}}^{n}\left(t_{k} \in\left[x_{2}, x_{2}+x_{1}\right)\right)\right]=1-\left(1-x_{1}\right)^{n-2}
\end{align*}
$$

and
(2.7')

$$
P\left[d_{j, n}<y_{1} \mid t_{i}=x_{2}, t_{j}=y_{2}\right]=1-\left(1-y_{1}\right)^{n-2} .
$$

And in the same way, it follows that
(2.8) $P\left[\left(d_{i, n}<x_{1}\right) \cup\left(d_{j, n}<y_{1}\right) \mid t_{i}=x_{2}, t_{i}=y_{2}\right]$

$$
\begin{aligned}
& =P\left[\bigcup_{\substack{k=1 \\
k \neq i, j}}^{n}\left(t_{k} \in\left[x_{2}, x_{2}+x_{1}\right)\right) \cup \bigcup_{\substack{m=1 \\
m \neq i_{n}, j}}^{n}\left(t_{m} \in\left[y_{2}, y_{2}+y_{1}\right)\right) \mid t_{i}=x_{2}, t_{j}=y_{y}\right] \\
& =P\left[\bigcup_{\substack{k=1 \\
k \neq i, j}}^{n}\left(t_{k} \in\left[x_{2}, x_{2}+x_{1}\right)\right) \cup \bigcup_{\substack{m=1 \\
m \neq i, j}}^{n}\left(t_{m} \in\left[y_{2}, y_{2}+y_{1}\right)\right)\right] \\
& =P\left[\bigcup_{\substack{k=1 \\
k \neq i, j}}^{n}\left(t_{k} \in\left[x_{2}, x_{2}+x_{1}\right) \text { or }\left(t_{k} \in\left[y_{2}, y_{2}+y_{1}\right)\right)\right]\right. \\
& =1-P\left[\bigcap_{\substack{k=1, j \\
k \neq i, j}}^{n}\left(t_{k} \bar{\in}\left[x_{2}, x_{2}+x_{1}\right) \text { and }\left(t_{k} \bar{\in}\left[y_{2}, y_{2}+y_{1}\right)\right)\right]\right. \\
& =1-\left(1-x_{1}-y_{1}\right)^{n-2} .
\end{aligned}
$$

By (2.6)(2.7)(2.7) and (2.8), we can prove the lemma.
3. Let us put

$$
\begin{equation*}
\Omega_{n} \equiv\left[\omega ; \operatorname{Max}_{1 \leq i \leq n} d_{i, n}<\frac{3 \log n}{n}\right] . \tag{3.1}
\end{equation*}
$$

Lemma 4. If $f(t)$ satisfy the following conditions

$$
\begin{equation*}
\int_{0}^{1} f(t) d t=0 \tag{3.2}
\end{equation*}
$$

and

$$
\int_{0}^{1} f^{2}(t) d t<+\infty
$$

then we have, for $n \geqq 6$,

$$
\int_{\Omega_{n}} S_{n}^{2} d P \leqq A \frac{(\log n)^{5 / 2}}{n^{1 / 2}} \int_{0}^{1} f^{2}(t) d t
$$

where A is a constant independent of $f(t)$ and n.
Proof. We divide the proof in several steps.
1°. We have, by (3.1),

$$
\begin{align*}
\int_{\Omega_{n}} d_{i, n} f^{2}\left(t_{i}\right) d P & \leqq \frac{(3 \log n)^{2}}{n^{2}} \int_{\Omega} f^{2}\left(t_{i}\right) d P \tag{3.3}\\
& =\frac{(3 \log n)^{2}}{n^{2}} \int_{0}^{1} f^{2}(t) d t .
\end{align*}
$$

We have, for $\boldsymbol{i} \neq \boldsymbol{j}$,

$$
\begin{aligned}
& \int_{\Omega_{n}} d_{i, n} d_{j, n} f\left(t_{i}\right) f\left(t_{j}\right) d P
\end{aligned}
$$

From the definitions of $d_{i, n}$ and $d_{j, n}$, it is seen that

$$
\left[\omega ; t_{j} \leqq t_{i} \leqq t_{j}+d_{j, n}\right]=\left[\omega ; t_{i}=t_{j}+d_{j, n}\right]
$$

and

$$
\left.\left[\omega ; t_{i}<t_{j} \leqq t_{i}+d_{i, n}\right] \simeq\left[\omega ; t_{j}=t_{i}+d_{i, n}\right]^{3}\right) .
$$

Thus we have

$$
\begin{aligned}
& \int_{\Omega_{n}} d_{i, n} d_{j, n} f\left(t_{i}\right) f\left(t_{j}\right) d P
\end{aligned}
$$

By (3.1) and the independency of $\left\{t_{i}\right\}$, we have

$$
\begin{aligned}
& \left(\int_{\substack{\Omega_{n} \\
t_{i}=t_{j}+d_{j, n}}}+\int_{\substack{\Omega_{n} \\
t_{j} t_{i}+d_{i, n}}}\right)\left|d_{i, n} d_{j, n} f\left(t_{i}\right) f\left(t_{j}\right)\right| d P \\
& \quad \leqq\left(\frac{3 \log n}{n}\right)^{2} \int_{\left|t_{t}-t_{j}\right|<\frac{3 \log n}{n}}\left|f\left(t_{i}\right) f\left(t_{j}\right)\right| d P
\end{aligned}
$$

[^0]\[

$$
\begin{aligned}
& =\left(\frac{3 \log n}{n}\right)^{2} \int_{0}^{1}|f(x)| d x \int_{x-\frac{3 \log n}{n}}^{x+\frac{3 \log n}{n}}|f(y)| d y \\
& \leqq \sqrt{2}\left(\frac{3 \log n}{n}\right)^{5 / 2}\left(\int_{0}^{1} f^{2}(t) d t\right) .
\end{aligned}
$$
\]

Thus we obtain

$$
\begin{align*}
&\left|\int_{\Omega_{n}} d_{i, n} d_{j, n} f\left(t_{i}\right) f\left(t_{j}\right) d P\right| \tag{3.4}\\
& \leqq \sqrt{2}\left(\frac{3 \log n}{n}\right)^{5 / 2} \int_{0}^{1} f^{2}(t) d t+\left|\left(\int_{\substack{n_{n} \\
t_{i>}>t_{j}+d_{j, n}}}+\int_{\substack{\Omega_{n}, n_{i} \\
t_{j}, x_{i}+d_{4}, n}}\right) d_{i, n} d_{j, n} f\left(t_{i}\right) f\left(t_{j}\right) d P\right|
\end{align*}
$$

2°. We have, by (3.1) and the independency of $\left\{t_{i}\right\}$,

$$
\begin{aligned}
& \leqq\left(\frac{3 \log n}{n}\right)^{2}\left(\int_{1 \geq t_{i}>1-\frac{3 \operatorname{lo\sigma } n}{n}}+\int_{1 \geq t_{j} \geq 1-\frac{3 \log n}{n}}\right)\left|f\left(t_{i}\right) f\left(t_{j}\right)\right| d P \\
& \leqq\left(\frac{3 \log n}{n}\right)^{2}\left(\int_{\Omega}\left|f\left(t_{j}\right)\right| d P \int_{1 \geq t_{i}>1-\frac{3 \log n}{n}}\left|f\left(t_{i}\right)\right| d P+\int_{\Omega}\left|f\left(t_{i}\right)\right| d P \int_{1 \geq t_{\rho}>1-\frac{3 \log n}{n}}\left|f\left(t_{j}\right)\right| d P\right) \\
& \leqq 2\left(\frac{3 \log n}{n}\right)^{5 / 2} \int_{0}^{1} f^{2}(t) d t .
\end{aligned}
$$

Let us put

$$
E_{i} \equiv\left[\omega ;\left(t_{i}>d_{j, n}+t_{j}\right) \cap\left(t_{i}+d_{i, n}<1\right) \cap\left(d_{i, n}<\frac{3 \log n}{n}\right) \cap\left(d_{j, n}<\frac{3 \log n}{n}\right)\right]
$$

and

$$
E_{j} \equiv\left[\omega ;\left(t_{j}>d_{l, n}+t_{i}\right) \cap\left(t_{j}+d_{j, n}<1\right) \cap\left(d_{i, n}<\frac{3 \log n}{n}\right) \cap\left(d_{j, n}<\frac{3 \log n}{n}\right)\right],
$$

then we have, by (3.1),

$$
\begin{aligned}
& \left|\left(\int_{E_{i}}-\int_{E_{i} \cap \Omega_{n}}\right) d_{i, n} d_{j, n} f\left(t_{i}\right) f\left(t_{j}\right) d P\right| \\
& \leqq \int_{\left(\Omega-\Omega_{n}\right) \cap E_{i}}\left|d_{i, n} d_{j, n} f\left(t_{i}\right) f\left(t_{j}\right)\right| d P
\end{aligned}
$$

$$
\leqq\left(\frac{3 \log n}{n}\right)^{2} \sum_{\substack{k=1 \\ k \neq i, j_{j} \\ d_{k}, n}} \int_{k^{\frac{3}{2} \log n}}^{n}\left|f\left(t_{i}\right) f\left(t_{j}\right)\right| d P
$$

From the definition of $d_{k, n}$, we have for $k \neq i$ and $k \neq j$,

$$
\begin{aligned}
& \int\left|f\left(t_{i}\right) f\left(t_{j}\right)\right| d P \leqq \int_{\substack{a_{k}, n n^{3}=\frac{\log n}{n}}}\left|f\left(t_{i}\right) f\left(t_{j}\right)\right| d P \\
& =P\left[\operatorname{Min}_{\substack{1 \leq m \leq n \\
m_{i}=n \\
t_{m} \geq t_{k}}}\left(t_{m}-t_{k}\right)>\frac{3 \log n}{n}\right] \int_{\Omega}\left|f\left(t_{i}\right) f\left(t_{j}\right)\right| d P \\
& \leqq\left(1-\frac{3 \log n}{n}\right)^{n-3} \int_{0}^{1} f^{2}(t) d t \leqq K \frac{1}{n^{3}} \int_{0}^{1} f^{2}(t) d t,
\end{aligned}
$$

where K is a constant independent of n and $f(t)$. Hence we have

$$
\left\lvert\,\left(\int_{E_{i}}-\int_{E_{i} \cap \Omega_{n}}\right) d_{i, n} d_{j, n} f\left(t_{i}\right) f\left(t_{j}\right) d P^{\prime} \leqq K^{(3 \log n)^{2}} \frac{n^{4}}{1} \int_{0}^{1} f^{2}(t) d t\right.
$$

and

$$
\left|\left(\int_{E_{j}}-\int_{E_{j} \cap \Omega_{n}}\right) d_{i, n} d_{j, n} f\left(t_{i}\right) f\left(t_{j}\right) d P\right| \leqq K \frac{(3 \log n)^{2}}{n^{4}} \int_{0}^{1} f^{2}(t) d t
$$

By (3.4) and the reasons in 2°, we have, for $i \neq j$,

$$
\begin{align*}
& \left|\int_{\Omega_{n}} d_{i, n} d_{j, n} f\left(t_{i}\right) f\left(t_{j}\right) d P\right| \tag{3.5}\\
& \quad \leqq K^{\prime}\left(\frac{\log n}{n}\right)^{5 / 2} \int_{0}^{1} f^{2}(t) d t+\left|\left(\int_{E_{i}}+\int_{E,}\right) d_{i, n} d_{j, n} f\left(t_{i}\right) f\left(t_{j}\right) d P\right|
\end{align*}
$$

where K^{\prime} is a constant independent of $f(t)$ and n.
3°. We define four dimensional sets whose points are ($x_{1}, y_{1}, x_{2}, y_{2}$) as follows :

$$
\begin{aligned}
& D \equiv\left[0 \leqq x_{1}<\frac{3 \log n}{n}, 0 \leqq y_{1}<\frac{3 \log n}{n}, 0 \leqq x_{2}<1-x_{1}, 0 \leqq y_{2}<1-y_{1}\right] \\
& D_{1} \equiv\left[y_{1}+y_{2}<x_{2}\right] \cap D, \\
& D_{1}^{\prime} \equiv\left[x_{1}+x_{2}<y_{2}\right] \cap D,
\end{aligned}
$$

and

$$
D_{2} \equiv\left[x_{2}-y_{1} \leqq y_{2} \leqq x_{2}+x_{1}\right] \cap D .
$$

Then any two of D_{1}, D_{1}^{\prime} and D_{z} are disjoint and

$$
D=D_{1} \cup D_{1}^{\prime} \cup D_{\varkappa} .
$$

On the other hand by Lemma 3, we have

$$
\begin{gathered}
\left(\int_{E_{1}}+\int_{E_{j}}\right) d_{i, n} d_{j, n} f\left(t_{i}\right) f\left(t_{j}\right) d P=\left(\iiint \int+\iiint_{D_{1}} \int\right)_{D_{1}^{\prime}} x_{1} y_{1} f\left(x_{2}\right) f\left(y_{2}\right) \\
\cdot P\left[(d _ { i , n } < x _ { 1 }) \cap \left(d_{\left.\left.j_{, n}<y_{1}\right)\left.\right|_{i}=x_{3_{3},} t_{j}=y_{2}\right] d x_{1} d y_{1} d x_{2} d y_{2}}^{=\left(\iiint \int+\iiint \int\right)(n-2)(n-3) x_{1} y_{1}\left(1-x_{1}-y_{1}\right)^{n-4} f\left(x_{2}\right) f\left(y_{2}\right) d x_{1} d y_{1} d x_{2} d y_{2}}\right.\right. \\
=\left(\iiint \int-\iiint_{D} \iint(n-2)(n-3) x_{D_{1}} y_{1}\left(1-x_{1}-y_{1}\right)^{n-4} f\left(x_{2}\right) f\left(y_{2}\right) d x_{1} d y_{1} d x_{2} d y_{2} .\right.
\end{gathered}
$$

By Fubini's theorem, we have

$$
\begin{aligned}
& \left|\iiint \int(n-2)(n-3) x_{1} y_{1}\left(1-x_{1}-y_{1}\right)^{n-4} f\left(x_{2}\right) f\left(y_{2}\right) d x_{1} d y_{1} d x_{2} d y_{2}\right| \\
= & \left|\int_{0}^{\frac{3 \log n}{n}} y_{1} d y_{1} \int_{0}^{\frac{3 \log n}{n}}(n-2)(n-3) x_{1}\left(1-x_{1}-y_{1}\right)^{n-4} d x_{1} \int_{0}^{1-x_{1}} f\left(x_{2}\right) d x_{2} \int_{0}^{1-\nu_{1}} f\left(y_{2}\right) d y_{2}\right| .
\end{aligned}
$$

Since $\frac{3 \log n}{n} \leqq 1$ for $n \geqq 6$, we have, by (3.2),

$$
\begin{aligned}
& \left|\iiint_{D} \int(n-2)(n-3) x_{1} y_{1}\left(1-x_{1}-y_{1}\right)^{n-4} f\left(x_{2}\right) f\left(y_{2}\right) d x_{1} d y_{1} d x_{2} d y_{2}\right| \\
& \leqq\left|\int_{0}^{\frac{3 \log n}{n}} y_{1} d y_{1} \int_{0}^{\frac{3 \log n}{n}}(n-2)(n-3) x_{1}\left(1-x_{1}-y_{1}\right)^{n-4} d x_{1} \int_{0}^{1-x_{1}} f\left(x_{2}\right) d x_{2} \int_{1-y_{1}}^{1} f\left(y_{2}\right) d y_{2}\right| \\
& \leqq \int_{0}^{\frac{3 \log n}{n} y_{1}^{3 / 2}} d y_{1} \int_{0}^{\frac{3 \log n}{n}}(n-2)(n-3) x_{1}\left(1-x_{1}-y_{1}\right)^{n-4} d x_{1}\left(\int_{0}^{1} f^{2}(t) d t\right) \\
& \leqq\left(\frac{3 \log n}{n}\right)^{5 / 2} \int_{0}^{1} f^{2}(t) d t .
\end{aligned}
$$

We divide D_{2} in two disjoint subsets such that

$$
D_{2}^{\prime} \equiv\left(x_{2}-y_{1} \leqq y_{2} \leqq 1-y_{1}, 1-y_{1} \leqq x_{1}+x_{2}\right) \cap D
$$

and

$$
D_{2}^{\prime \prime} \equiv\left(x_{2}-y_{1} \leqq y_{2} \leqq x_{1}+x_{2}, 1-y_{1}>x_{1}+x_{2}\right) \cap D .
$$

Then we have, for $n \geqq 6$,

$$
\begin{aligned}
& \left|\iiint \int_{D_{2}^{\prime}}(n-2)(n-3) x_{1} y_{1}\left(1-x_{1}-y_{1}\right)^{n-4} f\left(x_{2}\right) f\left(y_{2}\right) d x_{1} d y_{1} d x_{2} d y_{2}\right| \\
= & \left|\int_{0}^{\frac{3 \log n}{n}} y_{1} d y_{1} \int_{0}^{\frac{3 \log n}{n}}(n-2)(n-3) x_{1}\left(1-x_{1}-y_{1}\right)^{n-4} d x_{1} \int_{1-y_{1}-x_{1}}^{1-x_{1}} f\left(x_{2}\right) d x_{2} \int_{x_{2}-y_{1}}^{1-y_{1}} f\left(y_{y_{1}}\right) d y_{2}\right| \\
\leqq & \left|\int_{0}^{\frac{3 \log n}{n}} y_{1} d y_{1} \int_{0}^{\frac{3 \log n}{n}}(n-2)(n-3) x_{1}\left(1-x_{1}-y_{1}\right)^{n-4} d x_{1} \int_{1-y_{1}-x_{1}}^{1-x_{1}} f\left(x_{2}\right)\left(1-x_{2}\right)^{1 / 2} d x_{2}\right|\left(\int_{0}^{1} f^{3}(t) d t\right)^{1} \\
\leqq & \left(\int_{0}^{\frac{3 \log n}{n}} y_{1} d y_{1} \int_{0}^{\frac{3 \log n}{n}}\left(x_{1}+y_{1}\right)^{1 / 2}(n-2)(n-3) x_{1}\left(1-x_{1}-y_{1}\right)^{n-4} d x_{1}\right) \int_{0}^{1} f^{2}(t) d t \\
\leqq & \sqrt{2}\left(\frac{3 \log n}{n}\right)^{5 / 2} \int_{0}^{1} f^{3}(t) d t .
\end{aligned}
$$

and

$$
\begin{aligned}
& \left|\iiint \int_{D_{2}^{\prime \prime}}(n-2)(n-3) x_{1} y_{1}\left(1-x_{1}-y_{1}\right)^{n-4} f\left(x_{2}\right) f\left(y_{2}\right) d x_{1} d y_{1} d x_{2} d y_{2}\right| \\
& =\left|\int_{0}^{\frac{3 \log n}{n}} y_{1} d y_{1} \int_{0}^{\frac{3 \log n}{n}}(n-2)(n-3) x_{1}\left(1-x_{1}-y_{1}\right)^{n-4} d x_{1} \int_{0}^{1-y_{1}-x_{1}} f\left(x_{2}\right) d x_{2} \int_{x_{2}-y_{1}}^{x_{2}+x_{1}} f\left(y_{2}\right) d y_{2}\right| \\
& \leqq\left(\int_{0}^{\frac{3 \log n}{n}} y_{1} d y_{1} \int_{0}^{\frac{3 \log n}{n}}(n-2)(n-3) x_{1}\left(x_{1}+y_{1}\right)^{1 / 2}\left(1-x_{1}-y_{1}\right)^{n-4} d x_{1}\right)\left(\int_{0}^{1} f^{2}(t) d t\right) \\
& \leqq \sqrt{2}\left(\frac{3 \log n}{n}\right)^{5 / 2} \int_{0}^{1} f^{2}(t) d t .
\end{aligned}
$$

Hence we have, for $n \geqq 6$,

$$
\begin{equation*}
\left|\left(\int_{E_{i}}+\int_{E_{j}}\right) d_{i, n} d d_{j, n} f\left(t_{i}\right) f\left(t_{j}\right) d P\right| \leqq\left(\frac{3 \log n}{n}\right)^{5 / 2} \int_{0}^{1} f^{2}(t) d t . \tag{3.6}
\end{equation*}
$$

By (3.3), (3.5) and (2.2), we can prove the lemma.
4. For the proof of Theorem 1 stated in $\S 1$, it is sufficient to prove the following Theorem 1^{\prime}. Because if $\int_{0}^{1} f(t) d t \neq 0$, then by (2.4^{\prime}), instead of $f(t)$, we may take the function $f^{\prime}(t)$ such that

$$
f^{\prime}(t)=f(t)-\int_{0}^{1} f(t) d t
$$

Theorem 1'. Let $f(t)$ be a function such that

$$
\begin{equation*}
\int_{0}^{1} f(t) d t=0 \tag{4.1}
\end{equation*}
$$

and for some $p, 1<p \leqq 2$,

$$
\int_{0}^{1}|f(t)|^{p} d t<+\infty .
$$

Then we have

$$
P\left[\lim _{n \rightarrow \infty} S_{n}=0\right]=1
$$

Proof. Let us define the functions $f_{k i}(t), k=1,2, \ldots$, as follows:

$$
f_{k}(t)=\left\{\begin{array}{lll}
f(t)-\alpha_{k}, & \text { if } & |f(t)|<k^{1 / 4}, \tag{4.2}\\
-\alpha_{k}, & \text { if } & |f(t)| \geqq k^{1},
\end{array}\right.
$$

where
(4. $\left.2^{\prime}\right)$

$$
\alpha_{k}=\int_{|\tau(t)|\left\langle k^{1 / 4}\right.} f(t) d t .
$$

Then we have, by (4.1)(4.1') and the definition of $f_{k}(t)$,

$$
\begin{align*}
& \int_{0}^{1} f_{k}(t) d t=0, \tag{4.3}\\
& \int_{0}^{1} f_{k}^{2}(t) d t=\int_{\left||(t)|<k^{1 / 4}\right.} f^{2}(t) d t-\alpha_{k}^{2} \\
& \leqq \int_{\left||(t)|<k^{1 / 4}\right.} f^{2}(t) d t=O\left(k^{(2-p) / 4}\right) \quad(k \rightarrow+\infty),
\end{align*}
$$

and

$$
\begin{align*}
\left|\alpha_{k}\right| & =\int_{|\mathcal{F}(t)| \geqq k^{1 / 4}} f(t) d t \leqq\left(\int_{|f(t)| \geqq k^{1 / 4}}|f(t)|^{p} d t\right)^{\frac{1}{p}}\left(\int_{|\mathcal{L}(t)| \geqq k^{1 / 4}} d t\right)^{\frac{p-1}{p}} \\
& =O\left(k^{-1 / 4(p-1)}\right) \quad(k \rightarrow+\infty) .
\end{align*}
$$

By (2. 2), we have

$$
\int_{\Omega_{k}}\left|S_{k}\right| d P \leqq \sum_{i=1}^{k} \int_{\Omega_{k}} d_{i, k}\left|f\left(t_{i}\right)-f_{k}\left(t_{i}\right)\right| d P+\left\{\int_{\Omega_{k}}\left(\sum_{i=1}^{k} d_{i, k} f_{k}\left(t_{i}\right)\right)^{2} d P\right\}^{1 / 2}
$$

By the definition of $f_{k}(t)$ and (4.3"), it follows that

$$
\sum_{i=1}^{k} \int_{\mathbf{a}_{k}} d_{i, k}\left|f\left(t_{i}\right)-f_{k}\left(t_{i}\right)\right| d P
$$

$$
\begin{aligned}
& \leqq \sum_{i=1}^{k} \int_{\Omega_{k}}\left|\alpha_{k}\right| d_{i, k} d P+\sum_{i=1}^{k} \int_{\Omega_{k}} d_{i_{i k}}\left|f\left(t_{i}\right)\right| d P \\
& \leqq\left|\alpha_{k}\right|+O\left(\frac{\log k}{k^{(p-1) / 4}}\right)=O\left(\frac{\log k}{k^{(p-1)^{\prime} 4}}\right) \quad(k \rightarrow+\infty)
\end{aligned}
$$

By Lemma 4 and (4.3), we have

$$
\begin{aligned}
\left\{\int_{\Omega_{k}}\left(\sum_{i=1}^{k} d_{i, k} f_{k}\left(t_{i}\right)\right)^{2} d P\right\}^{1 / 2} & \left.\leqq\left(A \frac{(\log k)^{5 / 2}}{k^{1 / 2}} \int_{0}^{1} f^{2}(t) d t\right)\right)^{12} \\
& =O\left(\frac{(\log k)^{5 / 4}}{k^{p / 8}}\right) \quad(k \rightarrow+\infty)
\end{aligned}
$$

Since $0<p-1 \leqq p / 2$ for $1<p \leqq 2$, we have

$$
\begin{aligned}
\int_{\Omega_{k}}\left|S_{k}\right| d P & \leqq \sum_{i=1}^{k} \int_{\Omega_{k}} d_{i, k}\left|f\left(t_{i}\right)-f_{k}\left(t_{i}\right)\right| d P+\left\{\int_{\Omega_{k}}\left(\sum_{i=1}^{k} d_{i, k} f\left(t_{i}\right)\right)^{2} d P\right\}^{1^{\prime 2}} \\
& =O\left(\frac{(\log k)^{5 / 4}}{k^{(p-1) / 4}}\right) \quad(k \rightarrow+\infty)
\end{aligned}
$$

Therefore if we take an integer α such that $\alpha(p-1) / 4>1$, then

$$
\begin{equation*}
\sum_{k=1}^{\infty} \int_{\Omega_{k} \alpha}\left|S_{k}^{\alpha}\right| d P=O\left(\sum_{k=1}^{\infty} \frac{(\log k)^{5 / 4}}{k^{\alpha(p-1) / 4}}\right)=O(1) . \tag{4.4}
\end{equation*}
$$

On the other hand, by (3.1) and (2.3), we have

$$
\sum_{k=1}^{\infty} P\left[\Omega-\Omega_{k^{\kappa}}\right]=O\left(\sum \frac{1}{k^{2 \alpha}}\right)=O(1)
$$

By (4.4) and (4.5), we can prove that

$$
\begin{equation*}
P\left[\lim _{k \rightarrow \infty} S_{S_{k}}=0\right]=1 \tag{4.5}
\end{equation*}
$$

Next let us put

$$
\Omega_{k}^{\prime} \equiv \bigcap_{n=k}^{(k+1)^{\alpha}-1} \Omega_{n}
$$

then we have

$$
\begin{equation*}
\sum_{k=1}^{\infty} P\left[\Omega-\Omega_{k}^{\prime}\right] \leqq \sum_{k=1}^{\infty} \sum_{n=k^{\alpha}}^{(k+1)^{\alpha}-1} O\left(1 / n^{2}\right)=O(1) \tag{4.6}
\end{equation*}
$$

It is seen that

$$
\begin{align*}
&{ }_{k^{\alpha}} \leqq n \operatorname{Max}_{<(k+1)^{\alpha}}\left|S_{n}-S_{k}{ }^{\alpha}\right| \tag{4.7}\\
& \leqq \sum_{n=k^{\alpha}+1}^{(k+1)^{\alpha}}-1 \\
& S_{n}-S_{n-1} \mid .
\end{align*}
$$

On the other hand by (2.2), we have

$$
S_{n}-S_{n-1}= \begin{cases}d_{n, n} f\left(t_{n}\right), & \text { if } t_{n}=t_{1, n}, \\ d_{n, n}\left\{f\left(t_{n}\right)-f\left(t_{n}-d_{n, n}^{\prime}\right)\right\}, & \text { if } t_{n} \neq t_{1, n}\end{cases}
$$

By the definition of $t_{1, n}$, we can see that

$$
\left[\omega ; t_{n} \neq t_{1, n}\right] \simeq\left[\omega ; d_{n, n}^{\prime}<t_{n}\right],
$$

Therefore we have, by Lemma 2,

$$
\begin{aligned}
\left\{\int_{\substack{\Omega_{k}^{\prime} \\
t_{n} \neq t_{1, n}}} \mid d_{n, n} f\left(t_{n}\right)\right. & \left.-\left.f\left(t_{n}-d_{n, n}^{\prime}\right)\right|^{p} d P\right\}^{1 / p} \leqq\left(\frac{3 \log n}{n}\right)\left(\int_{a_{n, n}<t_{n}}\left|f\left(t_{n}\right)-f\left(t_{n}-d_{n, n}^{\prime}\right)\right|^{p} d P\right)^{1 / p} \\
& \leqq\left(\frac{3 \log n}{n}\right)\left(\int_{0}^{1}(n-1)(1-y)^{n-2} d y \int_{v}^{1}|f(x)-f(x-y)|^{p} d x\right)^{1 / p} \\
& \leqq 2\left(\frac{3 \log n}{n}\right)\left(\int_{0}^{1}|f(t)|^{p} d t\right)^{1 / p}
\end{aligned}
$$

By (3.1), we have

$$
\left(\int_{\substack{n_{n}^{\prime} \\ t_{n}=(t, n}}\left|d_{n, n} f\left(t_{n}\right)\right|^{p} d P\right)^{1 / p} \leqq\left(\frac{3 \log n}{n}\right)\left(\int_{0}^{1}|f(t)|^{p} d P\right)^{1 / p}
$$

Hence we obtain that

$$
\begin{equation*}
\left(\int_{\mathbf{n}_{k}^{\prime}}\left|S_{n}-S_{n-1}\right|^{p} d P\right)^{1 / p}=O\left(\frac{3 \log n}{n}\right) \quad(n \rightarrow+\infty) \tag{4.8}
\end{equation*}
$$

By (4.7) and (4.8), we have

$$
\begin{aligned}
\left(\int_{\Omega_{k}^{\prime}}\left\{\operatorname{Max}_{k^{\alpha} \leq n<(k+1)^{\alpha}}\left|S_{n}-S_{k}^{\alpha}\right|\right\}^{p} d P\right)^{1 / p}=O\left(\sum_{n=k^{\alpha}+1}^{(k+1)^{\alpha}-1} \frac{\log n}{n}\right) \\
=O\left(\frac{(\log k)\left\{(k+1)^{\alpha}-k^{\alpha}\right\}}{k^{\alpha}}\right)=O\left(\frac{\log k}{k}\right) \quad(k \rightarrow+\infty)
\end{aligned}
$$

Thus we obtain that

$$
\begin{equation*}
\sum_{k=1}^{\infty} \int_{\Omega_{k}^{\prime}}\left(\underset{k^{a} \leqq n<(k+1)^{a}}{\operatorname{Max}}\left|S_{n}-S_{k} a\right|\right)^{p} d P<+\infty \tag{4.9}
\end{equation*}
$$

By (4.6) and (4.9), we can prove that

$$
\begin{equation*}
\left.P_{\left[k^{\alpha} \leq n<(k+1)^{\alpha}\right.}^{\ulcorner } \operatorname{Max}^{\operatorname{Max}} \quad\left|S_{n}-S_{k^{\alpha}}\right| \rightarrow 0\right]=1 \tag{4.10}
\end{equation*}
$$

By (4.5) and (4.10), we can prove theorem.
5. In this paragraph we prove the following.

Theorem 2. If $f(t) \in L(0,1)$, then we have, for any $\varepsilon>0$,

$$
\lim _{n \rightarrow \infty} P\left[\left|S_{n}-\int_{0}^{1} f(t) d t\right|>\varepsilon\right]=0 .
$$

Proof. It is sufficient to prove that

$$
\begin{equation*}
I_{n}=\int_{\Omega}\left|S_{n}-\int_{0}^{1} f(t) d t\right| d P=o(1) \quad(n \rightarrow+\infty) \tag{5.1}
\end{equation*}
$$

By (2.2) and (2.2'), we have

$$
I_{n} \leqq \sum_{i=1}^{n} \int_{\Omega}\left\{\int_{0}^{\pi_{i, n}, n}\left|f\left(t_{i}\right)-f\left(t_{i}-u\right)\right| d u\right\} d P+\int_{\Omega}\left|\int_{0}^{t_{1, n}} f(u) d u\right| d P
$$

(5.1) can be shown easily, by the first two Lemmas in §2 and the fact

$$
\int_{0}^{1}|f(t+u)-f(t)| d t=o(1) \quad(u \rightarrow 0)
$$

References

[1] A. N. Kolmogoroff, Grundbegriffe der Wahrscheinlichkeitsrechnung, Berlin (1933).
[?] S. Takahashi, Notes on the Riemann-Sum, Proc. Japan Acad., 31(1955), 6-13.

Institute of Mathematics, Kanazawa University.

[^0]: 3) If $P[(E-E \cap F) \cup(F-F \cap E)]=0$, then we write $E \simeq F$.
