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The object of this paper is to investigate a general method concerning
the approximate evaluation of multiple integrals with periodic continuous
functions as integrands. As it will be shown, our general method has some
practical advantage when applied especially to the cases of double integrals
and triple integrals which are taken over circular regions and spherical
domains respectively.

Throughout the paper we always denote, for a continuous function
f(x1, . . . .,xn) defined on a certain w-dimensional domain D,

Mf = m.3.x\f(Xι, Xn)\,
D

ω/δi, , δ») = max \f(x1} , *„) — f(xv ,xn)\, (\xt — x\\ <; &j
D

where the maxima are all taken with respect to (xu , xn) € D, (x{ ,x'n)
€ί D, the letter one being restricted to | Xι — xi | <Ξ δi (!<;&<; n). Moreover,
for a real number x > 0, we shall always denote its decimal part by <x>,
i. e. <x> = x — [x], [x] being the integral part of x.

1. A fundamental lemma and its consequences. Hereafter Dn is
always used to denote an w-dimensional hypercubic domain of (x1} ...., xn) in
euclidean w-space, namely, Dn 0 <; xλ ^ 1, , O ^ ^ S l . We are now going
to establish a useful lemma which actually forms a basis of our method.

LEMMA. Let f{xι, . . . . , Xh,yi, . -., JV) &e any continuous function defined on
Dlk. Then for all positive integers N% ^ 2 (i = 1, , k) we have

{1) f f(x,y)dxdy- ff(x,<Nx»dx

where x, dx etc. are abbreviations for (x1} . . . . , xk), dx1... .dxk etc. respectively-,
and <Nx> stands for <NιXi>, - . . . , <NkXtc>.

As is easily seen, the meaning of this lemma is that it replaces the 2k-
fold integral by the &-fold integral with an error estimation expressed by
the modulus of continuity ω/AΓf1, . . . . , Λfc1, 0, . . . . , 0). In order to save space
in its proof, we have to adopt more abbreviations here, e. g.

stands for / . . . . / 2 s t a n d s f o r

v
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Let us now define
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stands for ^NΓ' \~> Λ, ,Λ).

B(N)= 2 J Af J Λ*,
" (y-l)Λ.* 0

C(N)= ] d

= ΣJv dx-

It is clear that C(N) = A(Λ̂ ; = D(iV) and

7(A0 = f Ax, <Nx» dx, B(N) =. J /(ΛΓ,

Putting pxfiV; = UN) - ACΛΓ) and p/N) = A(iV) - S(iV), we may write
/(AT) = Pl(N) + p,W) + B(N) so it follows that

\ff,x,<Nx»dx-f<Nx>)dx- I f(x,y)dxdy + |/>ΛV)|.

Now we have to estimate |f>i(iV)| and |p2(iV)|. In fact, we have

= \IW)~A(N)\ =

17
' < N x > dx
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This completes the proof of our lemma.
For k = 1 and k = 2 the lemma yields some simple but interesting conse-

quences. We now mention a few of them as follows:

COROLLARY 1. For any continuous function fix, y) of two variables defined
on 0<gx<Ll, O^jy^l, we have

(2) lim J fix, <Nx>)dx = J J f(x,y)dxdy,
0 0 0

where N-+oo through the sequence of positive integers.

COROLLARY 2. Let f(x,y) be a continuous function defined on 0<Ξ#<Ξl,
0 <i y <Ξ 1 and satisfying the following Lipschitz condition

\f(χ,y)-f(χ',y)\<A\χ-χ'\, (θ^χ^χ'^1)

where A is an absolute constant independent of y in 0<Ξjy<Ξl. Then for all
positive integers N^2 we have

2Aj J f(x,y)dxdy - j f(x, <Nx>) dx
0 0

COROLLARY 3 (An improvement of Marechal-Wilkins* theorem). Let g(r, θ)
be a continuous function defined on the circular region SCO ̂ r ^ i ? , 0 g ^ 27r),
(r, θ) denoting polar coordinates. Denote

g , )
s

Then for all positive integers N ^ 2 we have

(4)

where MQ = max-|p(r, θ)\, g ir, θ) = gir, θ + 2ττ), (0 ̂  θ < +00).

PROOF. Making the substitutions

and noticing that/<>i,0i) is of period 1 in θ1} we get

(5) JJg(r>θ) dS =
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g(r, 2Nτr jArdr = 2τrR*J f(ru Nrjdn = 2irR*'yAr1, <iVri»Λv
0 0 0

Denoting the plane region 0<Ξ#<Ξl, 0<;.y<Ξ27r by Δ, we clearly have

ι*-*Ί ̂

max I <?(#*, y) - g(Rx', y)\x + max j g(Rx!,y) \-\x-xf\
Δ Δ

Thus the inequality (4) is implied by (1) in view of (5) and (6).
It is known that J. E. Wilkins has given a proof by means of Fejer's

theorem on Fourier series, justifying the limiting process of A. Marέchal
(See [1] and [2] cf. also Grosswald [3]):

ire cR ± rR

^— / / g(r, 0)dS = lim I g(r, rip) (V2 + pι) - dr = lim I g(r, r/p)r dr.
2/iτ J J p->o+ J ρ->o+ J

S 0 0

Apparently our Corollary 3 is more precise than this original result; yet its
proof here presented seems more elementary than the original one.

It may be noteworthy that a slight modification of the proof of our lemma

(taking for instance k = 1 and Ax = Δxx = -^ (β — a) etc.) will easily show

that the formula (2) can be slightly generalized to the following form

(7) lim ίf{x,<Nx>)dx= \ dx[ f(x,y)dy,
a a 0

where f(x,y) is assumed to be bounded and continuous in a< x<β,

This remark enables us to state the

COROLLARY 4. For any continuous function f(x,ysz) defined on 0:
0 <1 y :g 1, 0 g 2 g 1, we have

(8; lim lim / fix, <\x>, <μx»dx= I I I f(x,y,z)dxdydz,
μ->oo λ->co J J J J

0 0 0 0

where λ-κχ>, μ-*oo are assumed through the sequence of positive integers.

PROOF. First, an application of our lemma with k = 2, N± = N2 = N

gives at once the result

I I I I f(x,y,z)dxdydzdu = lim / / f(x,y, <μx>)dxdy.
0 0 0 0 0 0
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Now φμfx, y) -f(x,y, <μx>) is obviously a bounded function, continuous in

each rectangular region v ~~ <x< — , 0 < y $ 1, (v = 1,2, . . . , ,μ) . Thus,

by applying (7) we obtain

J J f(x,y, <μx>)dxdy= 2 j άx] Kχ>y> <μx>)dy
\v-ί)iμ. 0

= S l i m / /fo < ̂  > , < /A«> ) d!r = lim I f(x,<\x>,< μx > ) dx.
~λ^oo J λ->coj

" = 1 d'-D/μ 0

This is what we need to show.
As a final remark, we mention that the order estimation 0{N~ι) for the

left-hand side of (3) cannot be improved. In fact, taking f(x,y) = xy for
instance, we easily find

ί C
I xydxdy — /

J J
x<Nx>dx

the order being precisely of N'1 as iV—> oo.

2. A reduction principle. Since any (2k — l)-fold integral taken over
Afc-i can always be expressed as a 2^-fold integral over the domain Dllΰ, we
see that a successive application of the fundamental lemma (with the case
iVi = N2 = = Nk) enables us to state the following principle:

Let F(xi, , xn) (n > 3) be a continuous function defined on Dn (0 <i xt <i 1'
and let it be periodic in x3, , Xn with the periods all equal to 1. Let s be an

integer such that 2s-1<n<:2s. Then the multiple integral I Fix) dx can

always be reduced to a certain definite integral I ψ(Xi)dXι with an error

o
estimation, ρ(Ni, ,Ns) say, such that pίiVj, , Ns)-)-0 asiVί->oo, ,
Ni~> oo successively, where ψ(Xi) is a piece-wisely continuous function of xλ

involving the s integral parameters Ni,....,Ns. More precisely, we may
express

(9) JFdx!.... dxn = J ψ{xι)dxι + p(N} ,N s),

where the function ψ(Xι) is of the form F(x,yi, ... .,yn-i), (yi, - •., yn-i) being
a certain permutation of (n — 1) symbols out of the 2s — 1 symbols below:

<NV1<NV,< . . . . <NvtXi> . . . . > > > , (l<ι>ι<p,<....<vt<:S; 1 < t < s;.

In fact, it is not difficult to verify that the pariod'city assumption upon
x3, . . . . , Xn sufficiently ensures the piece-wise continuity of F ^ i j i , . . . . , yn-i)
in X\. A simple instance with n = 4 will suffice to illustrate this point, as
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its reasoning is true in general. If f(x,y,z,u) is a continuous function defined
on D4 with the property that f(x,y, 0, u) = f(x,y, 1, u), f(x,y, z, 0) = f(x,y, z, 1),
then φ(x,y)= f(x,y, < Xx> , <μx > ) is easily verified to be a continuous
function of (x,y) and ψ(x) = φ(x, <vx>) is piec 3-wisely continuous in x,
where λ, μ, v are arbitrary integers > 2. Also, we easily observe that the
further assumption f(x,0,z,u) =f(x,l,z,ύ) will imply the continuity of ψ(x).

As an illustration of the principle, we now give the following result,
corresponding to the case n = 3:

i l l Kχ>y>z)dxdydz = J f(x,<μx>,< λ* > )dx+ p(\μ),

THEOREM 1. Let f(x,y,z) be any continuous function defined on D3 with
f(x,y, 0) =f(.x,y, 1). Then we may express

r r r Γι

(10)
0 0 0 0

where \ρ(\μ)\ ^2{ωφ(μ-1,0) + ω/λ"1,0,0)}, and φ = φk =f(x,y, <Xx>) is a
continuous function of (x,y), μ, λ being any positive integers 2:2.

This is obviously a refinement of Corollary 4 in § 1 and its proof is
easily completed by repeated application of the fundamental lemma. More-
over, it is clear that lim lim p{\,μ) = 0; since

—, o) = 0, limω/4-' °>

Similar results for the cises n = 4 and n = 5 can also be obtained by
means of our principle. Finally, we recall that a definite integral of a
continuous function can always be evaluated approximately by various nu-
merical methods so that our reduction principle actually asserts a general
way of approximately evaluating multiple integrals of periodic continuous
functions extended over hypercubic domains.

3. Some approximation formulas. Fo: the sake of practical applica-
tion, we are particularly interested in the approximate evaluation of double
integrals and triple integrals. In this section we shall make use of Corollarly
3 (§1) and Theorem 1 (§2) to obtain sont approximation formulas for inte-
grals of the forms:

= jjj Fίr> Ψ>

where S and σ denote respectively the circular region SCO ^r 5Ξ R, 0
2τr) and the spherical domain σ(0 < r <; R, 0 ̂  ψ ^ TΓ, 0 < θ ^ 2τr), (r, θ) and
(r,<p,θ) being known as polar coordinates and spherical coordinates respecti-
vely.

Denote by ξ^, , ξ£° the zeros of the Legendre polynomial

Pn{x) = -±p Dn(X> - 1)», (n = 1,2, . . . . ) and l--t
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Then by appealing to Gauss' formula for numerical integrations (See for
example, [4 pp. 605-611] and [5 pp. 85-86]), we may immediately deduce a
theorem from Corollary 3, viz.

THEOREM 2. For every continuous function g(r, Θfdefined on S(0 <gr^R,
0 <; 0 <Ξ 27r) we have

Γ f g(r,
J J

(11) Γ f g(r, θ) dS = lim 2τrR* V A ^ ί ^ Γ , 2τrNx^)x^ + p{N)

J J n* £*

with

(12; \P(N)\

Ŵ  = max|flr(r,^|, flr(r, 0) = g(r, θ + 2τr), (0<<9<+oo), ΛΓ= 2,3,4, . . . .

In fact it is well-known that (cf. [4; p. 605])
n)) 4 n ) = / g(.Rx,2πNx)xdx.

J
lim

Therefore (11) is inferred from (4).
For large N and n, we may write, in view of (11) and (12),

f fg(r,
V

<liy f fg(r, θ) dS & 2τrR* 2 Aίn)g(Rx(p,2 ί)g(Rx(p

This formula applies to every continuous function (with period 2ττ in θ)
defined on S, provided that both R and Mg are relatively very small when

•compared with N. In practical calculation, we usually take N to be very
large in order to make ρ(N) very small. As to numerical values of A^\ x(^}

( l ^ w g 8), one may refer to [5: pp. 85-86] or elsewhere.

EXAMPLE. Assuming R = 1 and taking N = 10,000 and n = 8, we may
•gain at once the following numerical integration formula from (11)':

— I I 9(r, θ)dS ̂  0. 0010 x g(0. 0199, 3.4601) + 0. 0113 x g(0.1017,4.1947) +

+ 0.0372 x g(0.2372,2.1230) + 0.0740 x g(0.4083,5.1949) +

+ 0.1073 x g(0.5917,1.0882) + 0.1197 x g(0.7628,4.1601) +

+ 0.0999 x g(0.8983, 2.0885) + 0.0496 x </(0.9801,2.8230).

We have purposely worked out a simple numerical example in which

ez = g(r, θ) just represents a hemispherical surface with radius 1 and centre
at the origin of the (/, 0)-plane ((r, θ, z) being understood as the cylindrical

^coordinates), showing that the error produced by the above formula is less
than 0.002. It is believed that the accuracy of such a kind of formulas can
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be considerably increased by taking N = 1,000,000 and n = 10 or 12.

In order to obtain an approximatoin formula for the triple integral Jr

we need first to establish the

THEOREM 3. Let f(x,y,z) be any continuous function defined on D3 with
f(x,y, 0) =Ax,y, 1). Then for all integers N> 2 we have

(13)

0 0 0 0

J J \ f(x,y,z)dxdydz - J f(x, <N2x> , <Nx> )dx

PROOF. By Theorem 1 we obtain

j J j fdxdydz - J fix, < NH > , <Nx>)dx(14)

where φ = φ(x,y, < Nx>). Let us estimate \ωφ(N'2,0)|. Define the inter-
vals Ik = [(k — 1)/N, k/N], (k = 1,2, N). For a pair of points x, x' belonging"
to the interior of some Λ with \x — xr\ g N~2, we clearly have | < Nxf > —
<Nx>\ ^N-1; so that

\f(x\y, < Nxf > ) -f(x,y, <Nx»\ s

For other possible cases we may assume x 6 Λ«, Λ' € Λ+i, I ΛΓ — ΛΓΛ | S

and we may write x = - ^ - 61? ̂  = A- + £2, (^ ^ 0, 6, ̂  0, β1 + θ, ^

Then we find

lf(x',y, < Nxf >) -f(x,y, < Nx »\

^ \f(x',y, < Nxf » -f(x,y, < Nx' » | 4- \f(x,y, < Nx' » -f(x,y, <Nx

^ 2 , 0, 0) + \f>ix,y, NS2) -fίx,y, 1 - N€0\

^ - , 0, o) + \f(x,y, NSz) ~f(x:y, 0)| + |/T

^ 2 , 0, 0) + 2toτ(θ, 0, i ) S S ω / ^ , 0,

Thus we can conclude that wφ(N^,0) ^Sω/N-^O.N-1). The inequality (13->
is therefore inferred from (14).

For a continuous function F{r,φ,θ) defined on the spherical domain,

<τ(0 <,r ^ A, 0<;<£><7r, 0 < ^ ^ 27r), we can always extend its definition,

to the region <τ*(0 ^ rS.R, OSφ < +°°> 0 < ^ < +oo) by assuming

F>, 9?, θ) = F>, 2ττ - <p, (?);

Fvr, r̂ , (9; = Kr, φ + 2 τ̂r, (9) - F(r, ̂ , έ? + 2kτr;, (k = 1,2,3, . . . . ) .
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T h a t is to say, F can always be made continuous and periodic in φ and Θ
with periods both equal to 2τr. Thus we may express

,/ = Y f dφ\ dθϊ F(r, φ, θ)rι sin φ dr
o ό o

= 2τr*R3 i f f f ( x , y , z ) d x d y d z ,

0 0 0

where f(x,y, z) = F(Rx, 2πz, 2τry)x*sm(2'7rz), (0 ^ x ^ 1,
Now in order to apply Theorem 3, it requires to estimate ω/^N"1,0, N'1).

Clearly we have (with x, xr,z, zr being subjected to \x — x'\ ^N'1, \z — z'\ %

ω
2 sin(2>τrz) - F(Rx\ 2πz', 2my)** sin{2τrz')\

s i n (2<7r<2)' + M r ' x * s i n ( 2 ? r 2 ) - χ t i s i n ( 2 7 r 2 / ) i

In an analogous manner, if we define g(x, y, z) = F(Rx, 2ττy, 2πz) xι sin (2πy),
then it can be found that

Thus we see that Theorem 3 entails the following

THEOREM 4. Let F{r,φ,θ) be any continuous function defined on the
spherical domain σ ( 0 g r ^ ί , 0 .^ i? ^ TΓ, 0 ^ (9 g 2τr) with F(r, φ, θ) =
27r — 9?, 0) and with period 2*π in both φ and θ. Then for all integers
we have

r, <P> θ) dσ - ί F(Rx, 2-irNx, 2τr N*x)x* sin (2πNx) dxI
(15)

S 8 {(R + 1) (2ττ + 1)«, ( i , -̂ r., O) + (2τr + 2) M, - ^ J.

THEOREM 5. Let F(r,φ, ff). be defined as in Theorem 4. Then
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(16)

Moreover, as an immediate consequence of Theorem 4, we obtain
COROLLARY 5. For every continuous function F(r, φ, θ) as in Theorem 4r

we have

(17) -7ΓTEΓ I ί \F(r, φ, θ) dσ = lim [ F(Rx} 2ττNx, 2irNλx^ sin (2ττNx) dx,

ί l 8 )

I pN\ ^ 8{(/? + 1) (2τr + lJω^iV-1, AT"1,0) + (2τr + 2) MF N'1}, (N ^ 2).

The formula (17), or the more precise relation (15), may obviously be
regarded as an improvement over ιa result of E. Grosswald [3] concerning
an extension of the Marechal-Wilkins theorem to the euclidean 3-space.
Moreover, (18) actually provides a type of numerical integration formulas

f o r / = fffσF(r,φ,θ)dσ. In particular, if both R and MF are relatively
very small as compared with N, and if the function F is not very irregular,
then we may write, in view of (15),

/ ^ 2τr2/?3 £ F(Rx, 2τrNx, 2τrN2x) x2 sin (2τrNx) dx.

0

Note added. It is not difficult to justify that the Corollary 4 of § 1
remains valid when 'λ -> oo' and cμ -> oo' are assumed through any sequences
of real numbers; and consequently we may apply the Corollary to establish
the following theorem:

If Φ(%,y, z) is continuous and bounded on the domain D( — oo < # < oo, OS
y <i ωh O ^ ^ S ω2), and if it is periodic with periods ωu ω2 in y, z respectively,
then for every function f(x) summάble over ( — oo, oo) we have

lim lim / f(x)Φ(x, \x, μx) dx
— oo

= — - — / f(x)dx dy \ Φ(x,y,z)dz.
-oo 0 0

This is not only a generalization of Marechal-Wilkins' theorem, but also
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a new extension of the well-known Riemann-Lebesgue lemma. In fact, the
lemma follows easily by taking

ω> = 27r, Φ(x,y, z) = cos z or sin z.

For proof, it suffices to notice that an easy substitution of variables can
show that the Corollary 4 implies

f* i rb Γ Γ
lim lim I Φ(x, Xx, μx) dx = \ dx j dy I Φ(x,y}z)dz,

a a o υ

where a and b are any two finite numbers. The passage from this relation
to the more general one as stated in the theorem goes similarly as in the
ordinary case of the Riemann-Lebesgue lemma, since in fact

\f(x) I dx < + oo, I φ(x, y, z) I < M = constant.
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